
CHAPTER 6

POPLOG' s Two-level Virtuol
Mochine Support for
lnteroctive Longuoges

Robert Smith, Aaron Sloman*, John Gibson
Schoolof Cognitive and Computing Sciences,
tJniversity of Sussex, Brighton, England
*Now at Schoolof Computer Science, the University of
Birmingham, England.

ABSTRACT

Poplog is a portable interactive AI development environment available on a

"ur}g"
of op""ating systems and machines. It includes incremental compilers

for bommon Lisp, Pop-ll, Prolog and Standard ML, along with tools for

adding new incremental compilers. All the languages share a common

development environment and data structures can be shared between
programs written in the different languages. The power and portability of
iroptog depend on its two virtual machines, a high level virtual machine

tpWf-tne Poplog Virtual Machine) serving as a target for compilers for

interactive languages and a low level virtual machine (PIM-the Poplog
Implementation Machine) as a base for translation to machine code. A

machine-independent and language-independent code generator translates
from the PVM to thePIM, enormously simplifyingboththe taskofproducing
a new compiler and porting to new machines.

1. INTRODUCTION

During the late 1970s and early 1980s the AI group at sussex university
needed an AI environment for teaching and research. we adopted the
policy of using general-purpose computers (initially PDPl1, then VAX
(first running VMS, then later Unix), then Sun and other workstations)
rather than Lisp machines partly because we could not possibly afford

enough Lisp workstations for all our staff and students, and partly

203

204 SMITH ET AL.

because we desired maximum flexibility and independence from

particular manufacturers'
"*ci"

"rrt"*
t ua to u" upproachable enough for totally.naive first-year

students,includingnott-"om""tteArtsandSocialstudiesstudents'yet
powerful enough t" t;;;;Jgd"anced teaching and our own research

and software deuelol;I"i. lt n"a to be usab-le both on time-shared

machines with dumi VnU interfaces' and on powerful workstations

with bit-mappecl disilar"t, i"tf"ai"gtirose supporting the X Windows

system. Both our
""t'"Jtt'

and teaching
"uqoi""d

access to a variety of

AI languager, trrd-,o*e of our projects required lixe-d.
language

;;;;;til't"'e'
p"p-ir u"a F"oioei so the svstem had to support

several different languages sharing a common development interface'

common data-strucirirei etc' Because so many AI projects do not start

from a well-defined specif'cation' we wanted L syste- that supported

rapid prototyping and e"ploratorv develgn3*i l"1-tli,I:*otu
ot

clarifying . p"out",i, ;ii;-.' *uuti using interpreters or incremental

compilers, p""f""uUly *iift tft" con"eniJnt interface of an integrated

editor. Because we were a large and growing AI conmunity facilities for

sharing and re-usin;kt*; and dlcumentation were important'

An interfac" to .irrootines written in conventional languages such

as C, Fortrun o" pu.tat, or libraries such as NAG' was also required

especially for work in speech or vision' .
Moreover, because AI resea,ch continually points to the need to

develop rr"* turrg.,Jglt ltri"""a to specific uppiitutiottt' the system had

to make it easy to iirpru*""t new langrrages with a good development

environment'
And finatly, because new machines were becoming available it had to

be comParativelY easY to Port'
This demanairrglt'av of requirements is' as far as w-elnow' not met

by any ottter sysiem' So-" operating svstems' like VMS and Unix

provide mixed f.Ilso;g" dgvelopment Lniironments' but they directly

support only "batcfi -co"mpited' languages' not incremental compilation'

That is to say, p"ogru-i-dil. rruu" to'be compited to object files, then later

all the object files are linked into a runnable image. By contrast an

incremental compiler allows the source language to be used as a

command r."g*ue" l"Jai"*. p""cedures to be edited and re-compiled

or new p"o.edore" added without re-linking the whole system' This

""o"-""tfv
speeds up development and testing of software-'

Unix does have
'the

advantage of being portable'
-but

anyone

developing a
""*

."*pil". lo *tr oiaer Unix will normally have to write

the code_gerr""utoiio', each new host machine. This is not required rf,

for instance, un i.rt"tp"eter is written using a language like C' which is

"".-"rrv
provided with Unix systems, but for many purposes an

6. POPLOG

interpreted language will run too slowly, compared with a compiled
version.

Several AI systems based on Lisp have provided more than one
language, in an interactive development system, but this is usually done
by writing, in Lisp, interpreters for the other languages. Although
programs written in Lisp can run fast in such a system (provided that
the Lisp system is well engineered) programs written in the other
languages will be slowed down significantly on account of being
interpreted. By contrast the Poplog architecture does not favour one
language over others. All the languages are compiled to machine code
for maximum speed of execution (though of course interpreters can be
written if required, e.g. for reduced space or increased flexibility).

Poplog allows data-structures to be shared between programs written
in different languages because they run in the same process, with the
same address space. For some kinds of programs, especially where there
is no requirement for very rapid communication between sub-systems,
it might be preferable to have different languages running in different
processes, which would allow distribution over different machines.

The remainder of this paper describes the two-level virtual machine
architecture of Poplog, which makes it possible to meet all the
requirements sketched above.

2. THE POPLOG VIRTUAL MACHINES
Like other compiler systems that must accommodate several languages
and be portable across a wide range of computer architectures, Poplog
employs an intermediate virtual machine. Steel [1960] proposed the use
of an UNCOL (UNiversal Computer Oriented Language) to reduce the
effort required to implement a new language or to produce code for a
new architecture. Using this, to implement L languages on M machines
requires L front ends (each translating one source language to the
intermediate language) and M back ends (each translating the
intermediate language to one machine language) rather than having to
write LxM complete compilers.

The implementors of the Amsterdam Compiler Kit (ACK),
Tanenbaum et al. [1983], claim that the original IJNCOL concept failed
because of a desire to accept all languages and all machine architectures
using a single virtual machine language. The success of the ACK which
uses a compiler intermediate virtual machine, EM, is claimed to be due
to restricting the system to algebraic languages and byte-addressable
machines. Poplog is currently only implemented on byte-addressable
machines with a 32-bit word size. This restriction could be relaxed
(although there may be some efficiency penalties as discussed in section

206 SMITH ET AL.

C.2.). So far, however, no processor without these attributes has

appeared for which there was a need to porb Poplog-
-

Th"
"rog"

of languages supported by Poplog is much more diverse

than that or tn" ACK. These are Pop-11 (a LispJike language with a

Pascal-like syntax), Prolog, Common Lisp, Standard ML and sysPOP
(an extended dialect ofPop-L1 used for the Poplog system sources, as

described later). users have implemented additional languages and

tools, such as Scheme (a statically scoped dialect of Lisp), KDL (a

frame-based knowledge description language), Flavours (an object-

oriented extension to Pop-11), KERIS (a collection of knowledge

engineering tools extending common Lisp), RBFS (a RuIe Based Frame

system produced by Brighton Polytechnic), a vision toolkit developed at

Reading University, and various special purpose languages, e'g' a

controllanguage developed for a real time expert system project. FLEX,

a Prolog-based expert system toolkit developed by Logic Programming

Associates, is now available on Poplog, as is RULES, a rule induction
program produced by Integral Solutions Ltd.

One apparent disadvantage ofPoplog at present is that from the point

of view of oru"s it does not support languages,like c, that permit direct
pointer manipulation, since the automatic garbage collection
mechanism could at any time re-locate an object thereby invalidating a
pointer to one of its fields. This restriction is removed in sysPOP, which
ullo*r knowledgeable system programmers to manipulate pointers and

offsets, since these mechanisms are required for implementing Poplog
in any case. It would also be possible to add a pointer data-type to enable

user programs to simulate pointer manipulation. This would make it
possible, for instance, to add an incremental compiler for a language like

C to Poplog, in order to speed up development of C programs.
An improvement to the original IJNCOL strategy is the use in Poplog

of two virtual machines rather than one. The connection between these
is shown in Fig. 6.1.

All the compiler front ends produce code for the same high level
Poplog Virtual Machine (PVM). The high level VM is strongly language

oriented and consequently the front ends are straightforward to write.
The high level VM code is translated to code for the low level Poplog
Implementation Machine (PIM). The PIM is machine oriented, and
translating from its virtual machine instructions to target machine code
is trivial: indeed many only require one instruction on the VAX.

As will be e:rplained later, there are actually two different compilation
routes between the PVM and the PIM, one used for incremental
compilation of user procedures, and one used for batch compilation of
the system sources, which are mostly written in the sysPOP dialect of
Pop-1,L. Much effort can be spent on improving the phase of code

6. POPLOG 207

Fig. 6.1. The Poplog Virtual Machines.

generation between PVM and PIM because this translation is both
language and machine independent, so work done at this level benefits
all implementations.

The next two sections describe the data areas in Poplog and the
scheme for data representation. This will help in understanding the
more detailed description of the two virtual machines which then follow.

2.1 ObjectRepresentation

Most of the Poploglanguages are untyped andthus type-checkingmust
occur at run time. The following scheme for data object representation
is used for all current implementations of Poplog, these being on 32-bit

translation performed
by languagedependent

front end

language- and
machine-independent

optimisatiolr

208 SMITH ET AL.

sigred small inEger

sl e*nonent I
t-*' singte decimal

poin@r

Fig. 6.2. The three forms of tagged obiect reference in Poplog'

machines with byte addressing. Each reference to a Poplog object is held

.. . gz-Uit qourriity. There *Jth""" forms, as shown in Fig' 6'2' which

are differentiated bY a Z-bit tag.
This shows that small signe"d integers and single decimals are held

as immediate valuesln the ob5ect refe-rence. Other objects are stored as

iorrgwo"d-aligned vectors of longwords in memory' whic! are addressed

il ?h; Gt"er in the object
"-"f""utt.".

The type of these objects is

determined by the .o't"'t, of the second field of the vector, the "ke/

freld, which is actually itself a pointer to a structure that defines the

lyp"'oitfr" object. tf two objects irave a matching key field then thev are

o?-tt
"

*u-"'typu. irr" ouj..t reference actually points to the third

i;"g*";d ofthe-objecr This equates to the start ofdata for strings and

other vector-based tyf"., thus allowing these to be passed unmodified

to and from "extein'al1y loaded" (i.e. imported) foreign procedures

written, for example, in C or Fortran'
Not all of the-object vector need contain other object references'

Signed and unsign"l Uitfi"tdt, bytes, words, longwords and machine

inltructions (in the case of procedure objects, which are first class

objects) can be present, and information about this structure, held in

the key, will be used bythe garbage collector when tracing live objects.

As an lxample, Fig. G.5 showl theiepresentation of the two element list

['foo', 1].-
Each key structure contains information about the class of objects

which it defines, including functions defined for that data type: e.g.

constructol accessor and print functions' A large number of data types

are provided, and the user is free to create new compound types of

vectirs or records, and to change some of the class-specific functions,

6. POPLOG

Sring

Fig. 6.3. Schematic diagram showing the representation of the two element list.

e.g. functions for printing, equality testing, or the "class_apply" function
which determines what is to happen if a structure is treated as a
procedure and executed.

The advantages ofthe current scheme ofobject representation are:

o A pointer to an object (including the tag bits) is equivalent to the
address of the third longword of that object, and thus no tag
manipulation is required in this case. Additionally, only the least
significant bit of the reference need be tested to determine if a
reference is a pointer or a simple object.

r Most architectures can test, insert and extract the 2 least
signifi cant bits effrciently with quick arithmetic/logical instructions.
Other tagging schemes generally require shift operations to
implement, which are generally slower.

o The 2 tagbits ofa pointer reference are available to the garbage
collector to hold the mark and shift bits during garbage collection.

2'IO SMITH ETAL.

+ deno@s dimtion of growth of daa ro

+ denots dietion of expansion of cntirc rcgim

Fig. 6.4. The Poplog Datia Areas.

r The key field of an object can be used to hold the new address of
that object during the compaction phase of garbage collection.

Some implementations of AI languages on 32 bit machines have used
tags larger than two bits, to enable fast identification of frequently used
data-types. This strateg'y was rejected for Poplog on the grounds that
the reduction in available address space would be intolerable for some
of the larger potential applications.

2.2 Data Areas and Control Mechanisms

There are five data areas in Poplog, which are contained in two segments
of contiguous memory as shown in Fig. 6.4. Ttre base of the heap is
positioned after the shared Poplog system code and data, which has not
been shown in the diagram. The segment containing the call stack need
not grow towards the base of memory as shown, its orientation being
determined by that of the call stack.

The "heap" contains all the dynamically allocated objects in the
system. The heap is shown as a single entity but in fact it can be
segmented, and this allows for the dynamic allocation of memory for
"externally loaded" procedures. (For simplicity, the possibility of
external segments in the heap is not shown in the diagram.)

Although all live structures in the heap will be scanned during
garbage collection, only those above a certain point are eligible for
compaction (or removal if dead). The ability to set this point to be the

6. POPLOG 211

current top of the heap-called locking,'the heap-provides a method
ofreducing the garbage collection overhead. This is usually done after
a large program has been loaded, when all its procedures and data are
required to remain live.

In the system data area at the base ofthe heap is the "dictionary". It
per{orms the role of the symbol table of the conventional batch compiler,
which in an interactive system must exist at run time. unlike strings
there must be a unique structure, a'word", for each distinct source
language identifier. The dictionary is a hash table which maintains
these. Each word record may point to an associated identifier record
whieh defines the run time identifrer to which that word (nqms) is
currently bound. The identifrer record contains syntactic information
about the identifier, and its value, if any. For program modularity, a
given word can point to different identifiers in different "sections,, of a
program.

The "user stack" is used for stacking references to objects. In pop-ll
it is directly accessible from the language, and can be used to build
elegant programming solutions. It is used by all languages for passing
arguments and results between procedures and for holding temporary
values during expression evaluation.

An implementation dependent aspect of maintaining the heap and
user stack is that ofoverflow detection ofboth entities and underflow
detection of the user stack. In operating systems that allow arbitrary
memory pages to be made inaccessible, such as VMS and SunOS 4.0,
the solution is to create an inaccessible memory page between the two
areas and at the base of the user stack. Thus these conditions are
detected automatically, and the relevant action is invoked on receipt of
the memory violation signal.

Unfortunately this cannot be done with most Unix systems, but
aligning the base of the user stack at the end of the data segment makes
automatic detection of stack underflow possible. Explicit checks must
still be used for overflow detection however, but the overhead of these
is not large.

The "call stack" is the conventional call stack ofthe processor. To allow
compatibility with either upward or downward direction of growth of
the call stack, Poplog allows the whole segment to be implemented in
either direction. However, Poplog enforces its own stacli protocol for
several reasons:

. Poplog procedures support not only lexically scoped but also
dynamic binding of local variables, and the host prolocol will not
normally cater for this;

212 SMITH ET AL.

. arguments and results are passed on the user stack thus

mechanism" ro" pi"i"g ttt"'" o" ih" call stack are not required;

. and most importantly, various parts of Poplog (e'g' garbage

collector, abnormal procedure exit mechanisms) work with stack

frames as e"pticitlaia ti"otl"""t' and therefore a standard machine

irrJ"putta".t format is required for these'

Besides the normal call stack discipline supported by most languages

poplog provides .,;;;;i uaattiottut *u.huttirms for manipulating

the call stack, withoui which it would have been impossible to

implement Common LisP or PoP-11'

A commonly used mechanism permits abnormal exit from a

procedure, fo"
""uro"i"

if th; h"t b"u" tt' error internrpt' or if it is

required to abort the current procedure and replace it by a call of

urrotfr"", a facility provided bv "-ct-rai1" in Pop-11' User prograrns can

;;;;tft ilJnu .J,ttck should be "unwoun?'up to a specifred point

and then a new pt";;J;; invoked at that point' and so on' Avarietv of

types of condition-handlers can use such mechanisms' including the

"catch" and "throw" of LisP'
It is possible for a p"ot"do'" t9 lraf

such abnormal exits and take

action to ensure tt ai necessary tidyingup is done' using "dynamic local

expressions" u, a"r.JU"a U"lo*' I speciai case ofthis is the provision of

dynamic to.ur uuJuUi"' i" l'itp and Pop-11' which are essentially

globally u.."r.iUt" uuitUl"'*t'o'" values are always restored on exit

from procedotus tf,al d"clare them as local' a technique that is useful

for temporarily altering the intermpt behaviour' or the standard

printing chtnrr"I, oi a-coonter that records the current depth of

procedure calls, etc.
In addition, eoiiog, like a number of other AI systems' supports a

"lightweighf'pro.'"r,?echanism' That is to say' it is possible to create

a process in which a procedure is run' which may call other procedures

andthenbesuspended.Theprocessrecordwi l l include|nformation
about the state oi^-tt

"
.rtt stack and local variables at the time of

suspension. L"t";i;;;;;;"jt can be resumed' then suspended again'

resumedagain,andsoon'Thisallowsco-routining'andinconjunction
with timed irrt""r.ipt, p"r-it, a scheduler to control a collection of

sub-processessharingadata-en.oironment_afeatureofPoplogthat
has been,rr"a f* l"?ching undergraduates operating system design

techniques. It can also b"e used-in AI systems r-equiring several

communicatirrg r;b-p";cesses simulating different independent agents

or different parts ofa single agent'

6. POPLOG 2't3

An unusual, and possibly unique, feature of the poplog VM is the
support for "d5mamic local e:rpressions" in conjunction with the above
mechanisms for abnormal procedure re-entry and exit. A special case of
the mechanism is requiredfor the lunwind protect"facility oflisp which
can trap abnormal procedure exit, but a more general version is
available via the "dlocal" construct of pop-l1 in conjunction with the
process mechanism as well as abnormal procedure exits.

The "dlocal" construct allows the user to define entry and exit actions
to be performed whenever a procedure is entered or re-entered, or
exitted. For example, the contents of some datastructure can be stored
on entry and restored on exit, or special trace printing can be done to
h-9lp with debugging of complex control structures. In a system that
allows "abnormal" procedure entry or exit these effects cannot be
achieved simply by including appropriate instructions in the procedure
body since exit or re-entry may be the result of actions invoked by other
procedures, such as a scheduler suspending or resuming a process.

Dlocal expressions can distinguish several different kinds of entry
and exit, as described above, and vary their behaviour accord.ingly. An
extreme example would be two Pop-11 processes which run separate
Prolog systems which would have to be set up on re-entry to the
processes and saved on suspension, all of which could be done within a
single Poplog process. In simpler cases, the syntax for dlocal, combined
with the fact that Pop-11 procedures have updaters, allows very clear
and economical expression. For example a procedure that requires the
15th element ofa vector v always to be saved on entry and restored on
exit, could simply have the following declaration, which will cause the
vector access procedure -subscrv- to be run on entry, and its updaterrun
on exit:

dlocal 7o subscrv(15,Y) Vo;

The dlocal construct can be used for saving on entry and restoring on
exit the value ofany expression. Thus even a lexically scoped variable,
e.g' declared lexically local to a file or an encrosing p"o.ud*", can be
treated dynamically by a procedure using it. Most languages that
distinguish dynamic and lexical variables treat them as mutually
exclusive, whereas Poplog treats the lexicavnon-lexical and
static/dynamic distinctions as orthogonal.

Additional control facilities are provided by the "continuation stack,,
and "trail", both required for Prolog. The continuation stack holds
"backtrack" information i.e. records describing states ofexecution that
must be restored if a Prolog clause fails. The trail is a stack of references
to Prolog variables that have been bound by unification, and thus at
some later stage may need to be unbound during backtracking. The

214 SMITH ETAL.

continuation stack and trail are located at the base ofthe call stack,
and they can be allocated more space by translating the trail and the
call stack in the direction of growth of the call stack.

Although the continuation stack is currently used only by prolog it
could be used by other languages, and some Pop-ll programmers have
invoked the mechanisms directly, as is done in the Pop-11 programs used
to implement the Poplog Prolog compiler.

2.3 The High Levet Virtuat Machine (VM)

Like many other compiler intermediate virtual machines, the poprog vM
is stack based. However, it is higher level than most and thus the prodoction
of code for it by a compiler front end is straightforward. some of the most
notable features of this high level yirtual machine language are:

' Arithmetic operations do not exist as distinct vM instructions. For
example, an addition would be represented as a CALL of the
procedure whose name is "+". This is because in pop-11 new operators
and syntactic constructs may be defined (along with their operational
semantics) as well as existing ones changed, thus at the source
language level no operation can be considered primitive. When
producing code for this call at the vM level, the procedure associated
with the name "+" will be fetched using the dictionary, and the
relevant call planted or inline routine substituted. Note that the
dictionary is used only at compile time, not when the procedure call
is executed.

. References to addresses do not appear in the VM language. This
is due to the fact that most structures are relocatable heap-based
objects, and the requirements of incremental compilation. ihus at
the vM level, objects are referred to either by name or directly by
object references. It is the responsibility of the lower levels of thl
compiler, using the dictionary, to substitute identifier names with
runtime object references.

In total there are 46 vM instructions. To describe them all in detail
would require more space than we have, but the following is a brief
description of some of the instructions that will hopefully give the
flavour ofthe language.

1. Stack operations:
PUSH <word>

Push the value of the identifier associated with the word <word>
onto the user stack.

6. POPLOG 215

PUSHS
Duplicate the item on the top of the user stack.

POP <word>
Pop the item from the top of stack into the value of the identifier

associated with <word>.
2. Procedure calls:

CALL <word>
Call the procedure that is the value associated with <word>.

UCALL <word>
Call the updater of the procedure. All procedures may have an

updater, e.g. 'hd" called norrnally returns the head of a list, and
when called in update mode it updates the head of a list (cf "setf
in Lisp).

3. Conditional and Boolean instructions:
IFSO dab>

Jumpto thelabel dab> ifthetop item onthe stackis not thePoplog
item "false". Remove the item from the stack in any case.

AND dab>
Jump to the label dab> if the top item on the stack is the Poplog

item "false", otherwise remove the item from the stack and
continue. Leaving the item on the stack allows boolean
expressions to return values.

4- Directives:
LVARS <word> <idprops>

Define <word> to be a lexically scoped local variable, with given
property <idprops>.

PROCEDURE <props> <nargs>
Start code generation for a new procedure whose printname is

<props> and with <nargs> arguments.
ENDPROCEDURE

Terminate compilation of a procedure expression and create a
procedure record which is then pushed on the user stack.

EXECUTE
Execute any instructions currently planted at execute level, i.e.

commands entered to the top level which are not procedure
defrnitions.

5. Miscellaneous:
LABEL dab>

Define the label of the next instruction planted to be <lab>.
FIELDVAL <num> <spec>

Access field number <num> of object whose structure is defined by
<spec>.

216 SMITH ETAL.

2.4 Compilation Using the Two Virtual Machines

In this section we show the relationship between the two virtual
machines, the PVM and PIM, by examining what happens when a
procedure is compiled using the interactive incremental compiler. There
are actually two versions of the PIM known as I-codes ("f' can be taken
as standing for "intermediate", "incremental" or "interactive") which are
the intermediate form for user (i.e. normal) procedures and M-codes
(think of 'M" as referring to "machine"). The latter is only used when
compiling the sysPOP system sources and will be discussed further in
section 3.1. The rest of this section is concerned only with the
incremental compiler and I-codes.

The result of procedure compilation is a procedure object containing
executable code which will reside in the heap. These procedures can then
either be invoked directly by user commands, or by other procedures
compiled before or after them. Commands entered at the top level are
also formed into heap-based procedures. However these will be executed
immediately after being formed, and as they are not referred to by any
other object the space used will be reclaimed when necessary by the
garbage collector.

The production of a procedure record involves three stages of
compilation as was shown in Fig. 6.1. The function of the
language-specifrc compiler front ends is to plant VM code, which they
do by calling VM code procedures: there is one procedure for each VM
instruction. The method for achieving this varies between the
languages, and this is mainly determined by the characteristics of the
language. At one extreme there is the MLfront endwhich creates aparse
tree for each function definition and then plants VM instructions whilst
walking the parse tree. At the other extreme there is Pop-11 whose
compiler plants VM instructions as it reads in Pop-1l expressions, and
whose only state information is contained in the local variables of the
currently active compiler procedures.

The scheme for compiling Pop-11 to VM code could be very restrictive
on the s5rntax permitted, and so a one-deep VM instruction buffer is
maintained which allows for reinterpretation of the sou.rce code based
on context. Thus when compiling the source code for:

a * b(1) -> c;
;;; multiply "a" by "b" applied to 1 and
;;; assign result to "c"

at the point that the opening parenthesis is found, the VM code emitted
is:

6. POPLOG 217

PUSH "a"
PUSH "b"

However, the presence of the opening parenthesis indicates a
procedure call, so the second instruction (stiil in the buffer) is retracted,
and the code planted after the closing parenthesis is found is:

PUSH "a"
PUSHQ 1
CALL "b"

To allow lexically scoped procedures, a stack of procedures in
compilation is maintained. when an enclosed procedure diefinition ends,
the stete of compilation of the enclosing procedure is restored and
compilation of the outer procedure can continue.

As each vM procedure is called, the correspondingvM instruction is
appended to the list of instructions being compiled for the current source
procedure. The vM code produced by the front ends will obviously be
inefficient, and so the vM code must be optimised, but rather than
having this as a separate pass which would slow down the compiler, it
is performed as the code is planted. For example, when a user stack pop
instruction is planted using the Pop procedure, the compiler will check
for a preceding PUSH, and if found the pusH will be overwritten and
the two instructions replaced with a MOVE instruction.

There is no MovE instruction at the pvM code level however, but
such instructions are available in the pIM. The incremental compiler
translates programs to the PIM via instructions referred to as I-cJdes.
There are about 5? I-codes, some of which play an intemediate role in
the se-nse that they are transformed into lower level I-codes during
compilation. some I-codes represent specialisations of the vM
instructions which are differentiated according to their actual
arguments, e.g. I-CALLPQ for a CALL to a constant procedure (and
thus the type ofthe called object need not be checked). other I-codes
exist for non-checking structure access and arithmetic, procedure
prologue and epilogue code, multiway branches, etc.

Jhe trpe of optimisations performed when the pvM instructions are
called are:

' Removing redundant stack usage, e.g. replacing a "push" followed
by a "pop" with a "move".

218 SMITH ETAL.

' Replacing certain procedures with inline code, e.g. non-checking
integer arithmetic and non-checking object field access.

r optimising conditional and boolean expressions to use inline
comparisons.

' collapsing branch chains, i.e. if a branch target is another branch
instruction, then the target of the first is the target of the second.

From version 14 a number of compile time flags will be made available
to users allowing further optimisations to be made at the cost of safety,
for instance turning off procedure entry checks, or backygrd juml
checks.

upon reaching the end of a procedure definition the result is a list of
I-codes together with some extra information such as local and global
variables used. At this point it may not be possible to produce code for
the procedure, e.g. if it contains a jump to a lexically encl-osing procedure,
in which case code generation must be delayed until the enclosing
procedure has been compiled.

when all such references have been satisfied, the I-code list plus
declarative information are passed on to the routine which is

"esporrJibl"for planting machine code in a procedure record. This routine makes two
or more passes through the I-code list, and for each l-code calls a
corresponding function that will emit binary code for that instruction.
The first pass allows labels to be translated into an offset from the start
of the proced're, and at this point source language variables are
translated to their runtime representations. During the second pass the
machine instructions are planted in the procedure record. If there is a
choice of instruction branch sizes or displacement address operand
sizes, then an extra pass will be required if assumptions about the
required size are proved incorrect in the first pass.

The dependence of displacement addr"* opu"u.rd size on the
procedure object size is due to the presence of a literal table in each
p_rocedure object. This table holds pointers to all the heap-based objects
that the procedure references. During garbage collectioir, the collector
can mark from this table, and after compaction the contents are updated
to reflect the new state of the heap. Thus all heap accesses performed
by the procedure must go indirectly via this table. if heap u..ir.". *""u
done directly then the garbage collector would have to locate and change
all embedded pointers in procedures, which would considerably slow
down garbage collection.

6. POPLOG

3. Porting Poplog
Before explaining the work involved in porting Poplog to a new
architecture it is necessary to describe how the system code
implementing the base Poplog system is compiled using POPC, the
compiler for sysPoP system sources. This has to be treated differently
from the interactive compiler (a) because, for effrciency, some additional
facilities are provided for the dialect of Pop-ll used to implement Poplog
and (b) because instead of compiling executable procedure records, the
system compiler has to produce files of assembly language instructions
that can be used for rebuilding the system. This means that some
problems can be left to the assembler and linker provided with the host
machine whereas they have to be resolved immediately by the
incremental compiler.

Moreover, a requirement for interactive development and testing of
programs is that compilation be very fast, whereas re-building a Poplog
system can be a slower process, allowing scope for additional levels of
optimisation. Other differences are explained below.

3.1 Compilation of System Code

The code production route using I-codes as described in section 2.4 is
taken by all user code, including all explicit and autoloadable libraries,
most of the Prolog and Lisp compilers and all of the ML compiler.
However, when Poplog is re-built or ported to a new machine, the core
of the Poplog system is compiled by a different route to form assembler
sources which will form mainly static objects at the base of the heap.

There are several differences from compilation of normal user
progTams:

. As previously explained, an extended language sysPOp is provided
for system sources, with its own compiler POPC. POPC is an
augmented version of Pop-l1, built using the compiler tools available
to the user.

. Instead of generating executable procedure records containing
machine instructions, POPC outputs assembler frles for the target
machine (which may be the same as the machine on which it is
running or a different machine).
r A different intermediate language, M-code, is used for the low level
PIM.

. A different compilation stratery is used to generate M-codes,
perrnitting considerably more optimisation than for user procedures.

220 SMITH ETAL.

. A small subset of the system is written in hand-coded assembler.

r Several of the requirements for system compilation are different
from those for normal compilation of user procedures. For example,
greater effrciency is required, and in many cases possible, and system
procedures and structures cannot be re-located by the garbage
collector, so more efficient accessing methods are possible.

The remainder of this section elaborates on these points.

The majority of the system sources are written in sysPOP. This is a
dialect ofPop-1l that has been extended to allow the representation of
and the operation on: machine integers, addresses, C-like structures,
call stack frames, etc. Other additions include only allowing garbage
collection and checks for internrpts at specified points, access to
operating system calls and calls to assembly language routines.

The compiler for sysPOP, POPC, uses the normal Pop-ll front end
(extended to accept the sysPOP language) to produce Poplog VM code.
However, rather than this being rewritten down into I-code, the
resulting VM-code list is passed almost unadulterated to the
optimisation and code generation routines in POPC which generate
M-code PIM instructions as follows.

The VM-code list is optimised in a more thorough manner than that
for the incremental compiler, and tables of translations between
operations (such as machine integer addition) and low level M-code
instructions that implement those operations are used to create a list of
equivalent M-code instructions.

M-code is similar to the ISPlike "register transfer expressions" that
many retargetable compilers use to represent their low-level
machine-independent code (Davidson & Fraser t1g80l). Some examples
are:

M-code
M-ADD 3rlr2

Equivalent register transfer
r [2]=r[1]+3

M-ADD CMP a b EQ lab if M[a] -= M[b] then PC <- lab

There arc 47 M-code instructions. A few are more complex than
register transfers, e.g. those to create and unwind stack frames on
procedure entry and exit respectively and one implementing multi-way
branch tables.

The complete M-code list corresponding to a procedure definition is
passed to a procedure which steps through the list, and for each
M-instruction calls the relevant routine which will emit assembler to

6. POPLOG 221

implement that instruction. Additional routines also exist to create
assembler representations ofPoplog objects such as lists and properties.

A small fraction of the system is implemented as subroutines written
in hand-coded assembler. These perform operations which are either too
primitive or too machine or operating system dependent to be written
in sysPOP, or which are so time critical that hand-coding gives a
significant overall speed increase.

The first implementation of Poplog was based on the VrA,X, whose
architecture makes it relatively easy for a human programmer to
produce good code, and there were quite a large number ofhand-coded
assembler routines. With a move towards ever simpler architectures,
which are harder to program efficiently at the machine level, the
sophistication of the sysPOP compiler has been increased, and so more
and more ofthe assemblerroutines have been replacedbyroutines coded
in sysPOP which are then automatically optimised. However, there
remain some which must be written in assembler, for example routines
which manipulate the Poplog call stack and therefore cannot be Poplog
procedures that would themselves use the call stack.

The hand-coded assembler frles are also processed by POPC, and this
allows them to use defrnitions from sysPOP "included'files providing
standard definitions and compile time constants, analogous to the use
of the "#include" facility in C.

As each source frle is compiled, all the names used in the source file,
along with their attributes, are recorded in a separate file. When all the
source files have been compiled the information about names is
processed by a utility called Poplink which is responsible for checking
consistency across source files and creating an assembler representation
ofthe Poplog dictionary, and associated word and identifier records. This
is necessary because after the new system has been created, access to
system identifiers is required at run time, e.g. when user procedures are
compiled and refer to system procedures or system global variables. A
subset of the narnes, not required after the system is built, will be
marked as not for export, and will not go into this dictionary.

All the assembler frles produced by POPC and Poplink are then
assembled and linked in the normal manner.

3.2 Work Required to Port Poplog

The architectures to which Poplog has been ported are: DEC Vr\X,
Motorola MC68000 family, GEC Series 63, Intergraph Clipper, Intel
80386 and Sun SPARC. At the time of writing a port to the MIPS
processor is nearing completion. Architectures lacking large uniform
address spaces (e.g. Intel 80286) are not suitable hosts for Poplog.

SMITH ETAL.

The operating systems underwhich Poplogruns areVMS and several
different flavours of UND! including Berkeley 4.2,4.3, SunOS, Dynix,
and HP-IIX. The four major elements requiring change when Poplog is
ported to a new architecture are:

1. System code generator (for POPC, the batch compiler). The
routines which produce assembler for M-code instructions must be
rewritten. Other changes may be necessary such as producing a routine
to emit the binary representation of floating point numbers if a
non-standard format is used. In some cases porting involves producing
output for a new assembler even though the processor is the same, since
different suppliers don't all use the same assembly language fomat.

2. User code generator (for the run time assembler of the
incremental compilers). The routines which produce target binary for
I-code instructions must be rewritten for each new architecture.
Closures and arrays are held as procedures, and thus routines to plant
machine code for them must be rewritten. Arrays could be held as
conventional data structures but are held as procedures to make access
effrcient and also because it is often convenient and elegant to treat
arrays as functions.

3. Hand-coded assembler. Roughly 1500 lines of assembler must be
rewritten to implement routines which either cannot be implemented
in sysPOP or are too time-critical for sysPOP.

4. Operating system interface. Up to 25 sysPOP frles may need
modifying when porting to a new operating system. The amount of
change required depends mainly on the amount of difference between
the new operating system and one on which Poplog already runs. (Ttre
number of files is larger than might be expected because the system has
been deliberately fragmented so that unwanted facilities can be omitted
if not required in a "delivery" system.)

The time required to perform the frrst three tasks can be anywhere
between 3 and 8 man months depending on the target architecture and
the experience of the implementor. It is not so easy to estimate the time
required by the fourth task, but writing for another flavour of Unix
would probably take only be a day or so. The initial port to Sequent
Symmetry, the first Poplog host with an Intel processor, took just over
four months, done by someone who had previously worked on poplog
but had never ported it. After that porting to the Sun386i took about
two weeks.

6. POPLOG

This may seem a long time to perform a port when compared with
other systems of comparable complexity that are, say, implemented in
C, and can simply be re-compiled, but it must be remembered that
porting Poplog includes the production oftwo back end code generators
(tasks 1 and 2). The porting time of a system written in C would not
include the time taken to produce the C compiler.

This obviously raises the question why Poplog is not implemented in
C. The reasons that this is not so are:

o Various elements of Poplog require direct access to the call stack,
which is not possible in C. ..:... r f
r The presence of a garbage collector demands that registers be
partitioned into those that can contain pointers to Poplog objects
(from which the garbage collector will mark) and those that do not.
Such tight control over register usage is not possible in C.

. Poplog requires a global register to point at the top of the user
stack. C does not allow global register variables.

r There are benefits in having the system implementation language
very similar to Pop-ll such as ease of migrating programs between
user and system code, and implementors having one less language to
learn.

r The POPC compiler performs optimisations suited to Poplog that
could not be expected of a C compiler.

The ease of porting Poplog to an architecture and the quality of the
code produced depend on the presence or absence offeatures in that
architecture. Some machine features and their impacts on portability
and effrciency are listed below.

. All current Poplog hosts have byte addressing. Whilst a machine
without this can supporb Poplog (indeed, in sysPOP, pointer and
machine arithmetic use different operators even though the actions
are equivalent for existing machines) the resulting system may be
less efiicient, e.g. because accessing individual bytes will be more
complex.

. Early Poplog ports were all to machines with about 16 registers.
Having too small a number of registers (e.g. Intel80386) can preclude

SMITH ETAL.

the advantage of register based variables, whereas having a large
number of registers (e.g. AMD Am2g000) would .roru p"oil"-, io
trlnng to use all the registers effectively.

' A significant proportioa of the system's time is spent performing
user stack operations and tag manipulation, thus the availability o?
facilities such as autoincrement/decrlment addressing mode (or stack
operations using a_general purpose register as the stack pointer) and
quick forrrs of arithmetic and logical operations are imp-ortant.

o Both of Poplog's low level virtual machines have three-operand
instructio_ns. Implementations on a two operand machine, which
necessarily destroy one source operand, must introduce extra code to
save values. An orthogonal instruction set can reduce this problem,
and generally makes all code production easier.

' Heap-based procedures must be position independent. Machines
without PC-relative branches and dat. access modes therefore
require a procedure base register to be maintained at extra cost.
Alternatively garbage collection procedures have to be far more
complicated as procedure records will need to be altered when they
are re-located.

' Pipelined machines often have delayed branches (the instruction
following the control flow change is always executed before the branch
target instruction is executed) or delays between loading a register
from merrory and the point at which the register contentls are valid.
To produce good code for these machines requires careful scheduling
of instructions.

4. THE COMPILER TOOLKIT
A collection of built-in procedures give users tools for building new
incremental compilers, or_ extending the syntax of the existing
languages. These tools are also used foittt" d"uutop-"rriofPoplog itself
including the implementation of the four poplog larrguages.

The lowest level of access, and the one thai ai.o-"pit&. *ill use, are
the Poplog vM code planting procedures that were described in section
2.4.

Languages created by extending pop-1l use two main mechanisms:
macros and syntax procedures. Macros are words that when
encountered by the itemiser will read in source program text from theinput stream and then replace it with modinea

"rop-ritu*t
that is

6. POPLOG

subsequently compiled in the norrnal way. syntax procedures are what
drive most of the compilation of a Pop-ll program. For example, the
"if...endif' construct is compiled to vM code by a syntax procedure whose
narne is "if. whenever a word is encountered in the sourcecode stream
whose value is a syntax procedure, that procedure is invoked to handle
the compilation of the construct. The provision of user-definable synta(
procedures, unique to Pop-l1, allows a wider range of language
extensions than macros, since macros must produce code that is legal
according to the rules of the language, whereas syntax procedures neid
only plant legitimate sequences of VM instructions.

several languages have been implemented in this fashion including
sysPoP, the extended dialect of Pop-11 accepted by popc, the compiler
for the system source code of Poplog. To help in defining new s)mtax
procedures, the user is given access to a collection ofprocedures which
recognise and produce vM code for certain syntactic units ofpop-11 such
as expressions, statements, sequences of statements, etc.

of more general use is the itemiser which has procedures for
returning the next item from the compilation stream, checking that an
item is present in the stream and replacing an item on the stream by
invoking a macro. The itemiser itself is modifiable through the use of
character class tables. Thus, for example, one could define ,,$" to be of
class alphabetic, which would then allow "foo$baz" to be recognised as
a word. one of the character t5pes, which the pop-ll compiler assigns
to the underscore character, allows alphanumeric characters to be
combined with characters of other t5pes, e.g. ,,class_=".

To implement a new language it is not necessary and sometimes not
possible to use the built in mechanisms for analysing the input stream.
H-owever, Poplog allows a more conventional parser to be implemented
which then plants vM code whilst traversing the parse tree as is done
in the case of ML. one of the existing languages could be used to write
this, and Pop-11 has proved very suitable for this purpose.

5. THE POPLOG ENVIRONMENT
Poplog provides a host offacilities for teaching and research, and for
developing and testing versatile professional software. Examples of
such facilities include the following.

o Macro definitions allow conditional compilation, "include" files
and textual substitution. As well as aiding software development,
command languages can be implemented using this facility.

226 SMITH ETAL.

. A library mechanism allows both explicitly loaded and
autoloadable libraries. The latter are automatically loaded when the
compiler encounters a name that is not currently defrned. This allows
systems to be kept small (unnecessary procedures are not loaded) but
does not force the user to remember to load a long list of libraries that
he requires, as this mechanism is transparent. The list of directories
to search for both types of libraries can be modified if required,
facilitating user-specific or group-specific extensions to the system.

. Interfaces to operating system facilities, dynamic store
management, garbage collection, and a rich variety of data-types
including indefinite precision integers, ratios, complex numbers, bit
vectors, byte vectors, hashed property arrays, and so on, are all
automatically provided, and may be accessed by a new compiler via
procedure calls to Pop-11 system procedures.

. There are two garbage collection mechanisms. When sufficient
memory and./or swap space are available a "stop and copy" garbage
collector can be most efficient. However, if there is not enough space
available the non-copying garbage collector is invoked automatically.
users can specify that only the copying garbage collector is to be used,
and can control garbage collection by directly invoking it at
appropriate times, and by locking the heap to reduce the amount of
copying required.

o Poplog contains an integrated editor, VED, which can do much
more than just edit files. Programs can be compiled from the edit
buffer comprising the whole frle, a marked range or the procedure
containing the current cursor position. on error the cursor will be
positioned at the point oferror. Programs can also be executedin an
edit buffer allowing the examination of output and the reentering of
commands.

. A VED buffer is a datastructure that is readable and writeable by
both users and programs, with all changes immediately visible on the
screen. This enables the editor to be used as a general purpose,
terminal independent, user-interface mechanism. This is not so easy
when the editor is a separate process communicating with the AI
language system via a pipe. Among other things, the editor has been
used to provide an electronic mail interface, an electronic
news-reader and a simple character-based graphical program e.g. for
displaying parse trees etc.

6. POPLOG

r On-line help and tutorial files exist for the current system and can
be inspected using VED, as can program library files. With the aid of
search lists, these can readily be augmented by the individual user
or by a teacher for a group of students. Because the editor is
integrated with the system, it is easy to include executable examples
in the teaching files, including examples that users can modifu and
experiment with.

. Large programs, once debugged, do not have to be recompiled each
time Poplog is restarted, but rather "saved images" can be made.
Moreover saved images can be'layered" so that a single saved image
can be shared by a group ofusers, and several different saved images
created relative to it, containing code compiled after it is run. This is
typically how different Poplog languages are implemented as
shareable saved images.

. The efiiciency of Poplog as compared with some interpreted AI
language systems allows it to be used for a whole range of system
development, in addition to AI applications. For example a user
developed a fast troff previewer written in Pop-L1, enabling
formatting to be checked without wasteful printing. For procedures
requiring even greater effrciency, e.g. for AI vision research, an
interface to C or Fortran is available. Arecent change to make poplog
pointers address the first data item after the key will simplify this
interface (see Fig. 7.3).

. A"lightweight" process mechanism is provided, which can be used
in conjunction with timed internrpts to simulate multiple processes.
In conjunction with the section mechanism it allows two prolog
processes to be run in tandem, sharing datastructures.
. The Poplog "Flavours" library implements a powerfinl object
oriented programming system, including demons and multiple
inheritance.

o There is a Poplog window manager for certain workstations. This
is being replaced by an interface to the X window system, in order to
reduce machine dependence.

o For expert system development, toolkits implemented in poplog
are available.

' In future the sysPoP dialect and POPC compiler for it will be made
available to users. This "delivery" mechanism will enable them to

SMITH ETAL.

build reduced versions of Poplog containing only what is required for
their applications. It will also be possible to compile user programs
to objectmodules which canbe linkedas requiredin combinationwith
other programs. In some cases it will permit cross-compilation.

All the main features are automatically made available for any new
language added to Poplog. Moreover, when Poplog is ported to a new
machine, all the development facilities are immediately available, and
because Poplog is so portable users are not locked into specialised
machines but can take advantage ofthe increased speed and low cost
provided by new general purpose computers, for instance RISC-based
workstations.

6. CONCLUSTON
Although all the mechanisms described above work on a range of
machines and operating systems, there is a price that is paid for the
flexibility and generality of Poplog as compared with a single-language
system. A compiler and store manager dealing with only one language
can often make optimising assumptions that are not valid for a mixed
language system. For example in a pure Prolog system programs can be
optimised to run faster than Poplog Prolog which has to allow for mixed
language interactions.

However, this is counterbalanced by the fact that Poplog Prolog users
have the option to identify key portions of their programs that could be
re-written in Pop- 11, often thereby achieving far greater speed increases
than using a stand alone Prolog system. Similarly, programs written in
a stand alone Lisp system will often run faster than programs
implemented using a more general virtual machine. However, most of
the commercially available Common Lisp systems require considerably
more memory than Poplog Common Lisp, which initially requires a
process size of under 2 Mbytes-including the editor and the Pop-l1
system as well as Common Lisp. For those using only Pop-11 and the
editor the initial size is well under a megabyte on most machines. One
reason for the compactness is that many facilities are provided in
autoloadable libraries instead of the main system, which means that
users are not encumbered with facilities they are not using.

Pop-1l programs in Poplog seem to run at speeds comparable to
programs written using the best Common Lisp compilers. Poplog
Common Lisp is not yet (Poplog V13.6) as fast, but further optimisations
should remedy this, and in any case the small size can make programs
much faster simply by reducing the need for paging.

6. POPLOG

The fact that the Poplog vM uses a stack for passing arguments and
results, allows procedures to take variable numbers of arguments and
return variable numbers of results. But this means that it is not
generally possible to use optimising techniques that transfer arguments
and results via registers. However, the fact that modern processors have
increasingly large caches implies that if the top elements of the stack
are accessed frequently then that portion of memory will be cache
resident. This should considerably reduce the overhead resulting from
use of a stack, without any complicated and time-consuming compiler
optimisations being required.

The success of Poplog's two-level architecture is attested by the
following facts:

r Its use for AI teaching, research and development is continuing to
grow, in the UK and elsewhere. For instance, in one UK university it
is used in six different departments and in another it is used in four
different schools. At the university of New south wales, in Australia
it is the basis of a new MSc degree in cognitive science and is used for
teaching undergraduates at Griffrths University.

r It is being used in both commercial and academic organisations.

r Its use for AI purposes ranges over such things as speech and
image analysis, natural language processing, theorem proving and
expert systems, including real-time expert systems. commercially
available tools have been implemented using it.

o Its use is not restricted to AI - e.g. it is being used to develop a
variety of software tools such as text-editors, mail front ends,
previewers, compilers for new languages, and the ML system is being
used for teaching and research in computer science and software
engineering.

o A commercial organisation (PVL) is marketing a program
validation system based on Poplog.
' It has proved comparatively easy to add incremental compilers for
new languages, e.g. the ML compiler, without having to pioduce a
new development environment for each one including editor, help
system, etc.

' It has proved relatively easy to port to new architectures. E.g. the
initial SPARC (Suna) port took under three man-months.

SMITH ET AL.

The development and maintenance of the whole system, including all
four compilers the editor and the window manager, with
implementations on a range of machines and operating systems, has
required far less effort than would be required for four separate
language systems. The team at Sussex University responsible for Poplog
has varied between four and eight full time programmers, with part time
help from a few others.

For some users a Lisp machine, with its high performance processor
and more sophisticated Lisp development environment might be
preferable to Poplog. However, for those with more limited resources
and more varied needs, a portable multi language system that runs on
generally available hardware can be more attractive. For some
University departments and some commercial users, Poploghas played
an essential role in making it possible to get on with teaching, research
and development in AI. In particular, for experienced programmers in
languages like Pascal and Fortran, the Pop-ll sub-language of Poplog
has proved a convenient bridge from more conventional languages to AI
languages.

7. ACKNOWLEDGEMENTS
This paper was written (in 1989) by the first two authors, but the main
architect of the two-level virtual machine architecture was the third
author. Steve Hardy contributed to the initial design of a common virtual
machine. Staff and students at Sussex University designed and
implemented other aspects of Poplog, and Integral Solutions Ltd ported
it to some of the host machines. The Pop-11 language and some of the
core features of the Poplog system owe an intellectual debt to the
developers of Pop2, Pop-10 and WPOP in Edinburgh, including Robin
Popplestone, Rod Burstall, Julian Davies, Ray Dunn and Robert Rae.

The work was supported in part by grants from the UK Science and
Engineering Research Council and the Alvey Directorate.

UND(is a trademark of AT&T.
CLIPPER is a trademark of Intergraph Ltd.
VAX, PDP11 and VMS are trademarks of Digital Equipment Corp.
68000 is a trademark of Motorola Semiconductor Corp.
80386 is a trademark of Intel Corp.
SPARC and SunOS are trademarks of Sun Microsystems.
X window system is a trademark of the Massachusetts Institute of

Technolory
POPLOG is a trademark of the University of Sussex

6. POPLOG 231

8. REFERENCES
J. W. Davidson and C. W. Fraser: The Design and Application of Retargetable

Peephole Optimisey''inACM Tfans. Prog. Lang. & Sys. uol.2,no.2, April 1980,
pp. 191-202.

Aaron sloman and the Poplog development team: ?oplog: a portable interactive
software development environment', Cogrdtive Science Research paper No
100, School ofOognitive and Computing Sciences, University ofSussex, 1g88.

T. B. Steel, Jr.: UNCOL: the Myth and the Fact" inAnn. Rev. Auto. prog. Goodman,
R. (ed.), vol. 2, 1960, pp 325-344.

A. S. Tbnenbaum, H. van Staveren, E. G. Keizer and J. W. Stevenson: "practical
Toolkit for making portable Compilers" in Comrnunicatians of the ACM uol. 26,
no 9, September 1983, pp. 654-662.

