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1 Introduction

Instead of attempting to sum up the achievements of the field, this chapter complements
the review of requirements for work on integrated systems in Chapter 1, by presenting
a personal view of some of the major unsolved problems, and obstacles to solving them.
In principle, this book should soon be out of date, as a result of world-wide growth
in research on cognitive systems. However, it is relatively easy to identify long-term
ambitions in vague terms, e.g. the aim of modelling human flexibility, human learning,
human cognitive development, human language understanding or human creativity;
but taking steps to achieve those goals is fraught with difficulties. So progress in
modelling human and animal cognition is very slow despite many impressive narrow-
focus successes, including those reported in earlier chapters.

An attempt is made to explain why progress in producing realistic models of human
and animal competences is slow, namely, (1) the great difficulty of the problems;
(2) failure to understand the breadth, depth and diversity of the problems; (3) the
fragmentation of the research community; and (4) social and institutional pressures
against risky multidisciplinary, long-term research. Advances in computing power,
theory and techniques will not suffice to overcome these difficulties. Partial remedies
will be offered, namely identifying some of the unrecognised problems and suggesting
how to plan research on the basis of ‘backward-chaining’ from long term goals, in ways
that may, perhaps, help warring factions to collaborate and provide new ways to select
targets and assess progress.



1.1 The scope of cognitive modelling

Although Artificial Intelligence (AI) and Cognitive Science have different aims, AI has
always had two overlapping, mutually-supporting strands, namely science (concerned
with understanding what is and is not possible in natural and artificial intelligent
systems), and engineering (concerned mainly with producing new useful kinds of
machines). ‘Cognitive science’ and ‘cognitive modelling’ overlap significantly with the
science strand of AI (as documented in great detail in M. Boden (2006)). However, the
majority of AI researchers have a strong engineering orientation. In contrast, those who
were responsible for many of the key ideas in AI were all interested in AI primarily as
a contribution to the general ‘science of mind’, including, for example, Turing (1950),
McCarthy (2004), Minsky (2006), Simon (1997), and Newell (1990). Some people
wish to restrict cognitive science to a subset of AI as science, namely the study of
‘natural’ systems. Many are even more narrow and study only human cognition. Such
restrictions reduce opportunities to understand how systems produced by evolution
relate to the space of possible behaving systems – as if physicists restricted their
studies to naturally occurring physical entities (e.g. plants and planets) while ignoring
physical phenomena in artefacts like prisms, plasma lamps and power stations. So, a full
understanding of how minds work, deep enough to support realistic modelling, requires
a broad multi-disciplinary approach combining neuroscience, psychiatry, developmental
psychology, linguistics, animal behaviour studies (including insects and microbes),
biology, computer science, mathematics, robotics, linguistics, and philosophy. It may
also require physics and chemistry for reasons explained later. We need all those
disciplines in order to understand the variety of possible ways of combining different
kinds of competence within an integrated, embodied, organism-like agent, able to learn
and develop as ants, antelopes and humans do.

We cannot expect everyone working on highly focused research problems to switch
immediately to long term research on integrated biologically inspired systems combining
multiple competences. But more researchers should think about these issues. In
particular, we should inspire some of the brightest young researchers to do so, despite
all the institutional and financial pressures to focus on narrow, more practical, goals,
and despite the deep intellectual difficulties discussed in the following sections.

1.2 Levels of analysis and explanation

Different kinds of commonality link natural and artificial systems, some concerned with
physical mechanisms, some with high level (virtual machine) design features, and some
with task requirements. Organisms use many different physical mechanisms in their
sensors, effectors and internal information-processing systems. Not all of them have
brains or nervous systems, though all acquire and use information from the environment
in controlling behaviour, e.g. determining direction of movement in microbes, of growth
of shoots or roots, or orientation of leaves in plants. Likewise, artificial behaving
systems differ in processor design and materials used, and at present use totally different
physical mechanisms from those used in organisms, although those differences may be
reduced in future.
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Progress will depend not only on analysis of the variety of physical substrates
and their trade-offs, but also investigation of types of form of representation, types
of algorithm, types of dynamical system, and types of architectural decomposition –
independently of how they are implemented in physical substrates. Many researchers
ignore details in the hope of capturing important features of biological systems. For
instance, people developing neural net models tend to ignore the roles of the many
chemicals involved in biological information-processing, such as neurotransmitters and
hormones. It could turn out that such omissions seriously undermine the long-term
significance of their models, so more needs to be understood about the roles of physical
and chemical information-processing in organisms. (Compare the chapter by Stellan
Ohlsson, this volume – Chapter 13).

In addition to research on underlying mechanisms, and research on high level virtual
machine specifications, there is also a type of research that involves identifying the
diverse requirements that the mechanisms and designs need to satisfy. This is sometimes
called ‘task analysis’, though organisms do not merely perform one type of task. Tasks
that cognitive scientists need to analyse are more like the collection of requirements
for travel to remote planets, compounded with use of diverse bodily forms in diverse
environments. Requirements for a whole organism include a specification of the niche,
or sequence of niches, in which it evolved or developed.

2 Difficulties and how to address them.

Previous chapters have said much about explanatory mechanisms and architectures.
Most of this chapter is about requirements (i.e. niches) and how to learn about them: a
much harder task than many suppose. Contributing to a field like this requires several
years of multidisciplinary post-graduate study in order to understand the problems.
Unfortunately, both institutional features of current academic research environments
and intrinsic features of the research problems make this difficult.

2.1 Institutional obstacles

Severe institutional and financial deterrents obstruct multidisciplinary research, even
when lip-service is paid to the idea. It is especially risky for untenured researchers
worried about getting research grants and building up publication lists – achieved
more easily in work that focuses only on minor extensions or new applications of
old techniques. That pressure prevents researchers from taking time to acquire the
multidisciplinary knowledge required to investigate integrated systems (whole animals,
whole robots) and makes them choose less risky research strategies. It also produces
factions working on different sub-problems who compete for funds, students, and
attention, instead of collaborating, and whose teaching produces only partly educated
students who believe myths such as that symbolic AI ‘failed’, or, at the other extreme,
that neural mechanisms are merely aspects of implementation. Although many funding
agencies promote research that integrates subfields and disciplines (Hendler 2005),
because of the career risks, research on integrated multifunctional (‘whole-animal’)
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systems remains impossible for younger researchers. (That is in addition to the
intrinsic difficulties described in Section 2.2.) Reducing institutional pressures causing
individuals to focus narrowly will require the academic community to teach politicians
and managers that assessment by measurable results is no way to foster deep, high-
calibre research or teaching. Sections 7 and 8 present a new research framework
that may help to integrate future research communities, although that will require
exceptionally able researchers.

2.2 Intrinsic difficulties in making progress

Many researchers have identified detailed obstacles to progress. Some very high-level
obstacles, however, appear not to have received much attention. The first difficulty
arises because rival researchers argue about whose algorithm, architecture or form of
representation is best, instead of studying the structure of the space of alternatives and
the trade-offs involving those options. There usually is no ‘best’ alternative.

A related difficulty comes from studying only normal adult human capabilities in
a specific community, ignoring not only the deep genetic heritage humans share with
many other animals, but also the variations in human capabilities across ages, cultures,
and personality types, and the varied consequences of brain damage or deterioration.
Many of the facts that need to be explained are not even noticed.

Research planning is hard because identifying good ways to make progress toward
very distant goals is hard when we do not yet have a clear vision of the intermediate
research stages that can lead to those goals. A partial solution is suggested in
Section 9.2.

Many further difficulties arise from limitations of our conceptual tools: After
less than a century of intense investigation of mechanisable varieties of information-
processing, what we still understand about forms of representation, about mechanisms
for processing information, and about designs for architectures, is only a tiny fragment
of what evolution produced over billions of years. Limitations of current materials
science and mechatronic engineering capabilities may also have deep implications
regarding still unknown requirements for varieties of information processing underlying
animal intelligence, for example sharing of functions between hardware and software
as described in Berthoz(2000).

3 Failing to see problems: ontological blindness

Funding and institutional problems, and inadequacies of our concepts and tools have
been listed as brakes on progress. A deeper hindrance is the difficulty of identifying
what needs to be explained or modelled, often arising from ‘ontological blindness’
discussed in (Sloman & Chrisley, 2005). Any information-user must use an ontology,
which to a first approximation is the set of types of entities the user can refer to. Gaps
or spurious types in the ontology can cause researchers to mis-identify what organisms
are doing. So they fail to identify the various subfunctions that need to be modelled.
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Section 4 illustrates this in connection with modelling human vision, although the
points are also applicable to other animals and other aspects of cognition.

Another common mis-identification concerns varieties of learning. It is often
assumed that humans, and therefore human-like robots, necessarily start with very
limited innate knowledge about the environment and have to use very general,
knowledge-free forms of learning. This assumption ignores the fact that most organisms
start with almost all the knowledge and competence they will require, because of
their need to be independent from birth or hatching (like deer that walk to their
mother’s nipple and run with the herd very soon after birth). If evolution can
produce so much information in the genome, for some species, why does it apparently
produce helpless and ignorant infants in altricial species, for example humans and
hunting mammals. Chappell and Sloman (2007) propose that such animals start with
deep meta-competences using generic information about the environment, including
information about how to use the body to explore and learn about the details of a 3-D
environment. This is an old idea as regards language learning (Chomsky, 1965), but
language learning could be just a special case of the use of partly innately specified
meta-competences that generate both new competences and new meta-competences
through active investigation of the environment.

Other misrepresentations of the requirements for human-like systems include the
assumption that intelligent agents must use a sense-think-act cycle. E.g. the web
page of a leading AI department states: “An intelligent agent should also learn to
improve its performance over time, as it repeatedly performs this sense-think-act cycle”,
ignoring the fact that in humans and most other animals many kinds of information
processing proceed in parallel, e.g. simultaneously walking, planning where to walk,
enjoying the view and listening to what a companion is saying, concurrently with
many bodily control functions. Different misrepresentations of requirements come from
paying close attention to implementation details and concluding that all intelligence is
to be explained in terms of the dynamics of sensorimotor control loops, ignoring the
fact that many humans can listen to and understand a story, or look at and appreciate
a complex scene without producing any relevant motor responses, and some can even
prove theorems in their heads about transfinite ordinals, or plan a musical composition
without producing any sounds.

4 What are the functions of vision?

Marr (1982) suggested that the function of vision was to provide information about
geometrical and physical properties of the environment, e.g. shape, size, location,
motion, and colour of objects. Many readers thought this obviously correct. However,
in 1979, Gibson had pointed out that there are far more subtle functions of perception,
namely providing information about “affordances” that are abstract properties of the
environment related to possible actions and goals of the perceiver. This was generalised
in Sloman (1982, 1989), by drawing attention to human abilities to learn to see states
of mind and to read writing, music, and various other formal notations.

On the first view, vision is the same for a lion and a lamb surveying the same terrain,

5



whereas the biological requirements and action capabilities are so different in hunting
and grazing mammals that they need to perceive very different affordances, for which
they have different genetically determined or learnt visual mechanisms and capabilities.
Requirements for catching and eating meat are very different from requirements for
grazing: vegetable matter does not attempt to escape, and grass does not require
peeling or breaking open. Similar differences exist between birds that build nests from
twigs and those that build nests using only mud, or between birds that fly and birds
that do not, birds that dive for fish and birds that catch insects, and so on, suggesting
that what is seen by two different animals looking at a scene can differ as much as what
is seen by people who know different languages looking a page showing texts written
in different languages.

4.1 The importance of mobile hands

More subtle differences in requirements for vision depend on having hands that can
move and manipulate objects. Animals that can manipulate things only using a mouth
or beak will have very strong correlations between grasping actions and patterns of
optical flow, because of the rigid link between eyes and mouth or beak, whereas
animals with mobile hands or claws must be able to represent actions that move
things without changing the viewpoint. Independently movable hands can perform
essentially similar grasping actions producing vastly different visual feedback, so using
only sensorimotor relationships will make it difficult to represent what is common to
many ways of grasping, namely:

Two (or more) surfaces facing each other move together in 3-D
space until they are in contact with opposite sides of some other
object that can then be lifted, rotated, or moved horizontally.

An ‘exosomatic’ ontology, referring to changing relationships in the external
environment, is required for this, rather than a ‘somatic’ ontology that refers only
to changing sensory and motor signals. An exosomatic ontology makes it much simpler
to transfer facts learned about grasping in one situation to grasping in another.

If grasping is represented amodally in terms of changing relations between 3-D
surfaces, with changing causal consequences, then how the process is represented is
independent of how it is sensed or what motor signals are required to produce it.
Not representing the process in terms of “sensori-motor contingencies” has useful
consequences. One is that information about the occurrence of such processes can be
stored compactly if what needs to be remembered is that grasping defined as a process
in 3-D space occurred, not how it was done or what sensor or motor signals were
produced during the process. That allows generalisations to be learnt at a high level of
abstraction, applicable to wide ranges of cases, e.g. grasping with the left hand, with
the right hand, with both hands, or with teeth. Such amodal generalisations include
such facts as:

(a) a tightly grasped object undergoes the same translation and rotation as the
two grasping surfaces,
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(b) the grasped object may fall if the pressure applied by the two surfaces is
reduced,

(c) when a grasped object is released it accelerates downwards, and
(d) grasping changes the shape of non-rigid objects.

How such generalisations are encoded, how they are learnt, how they are retrieved
when relevant, how they are used in making predictions, explaining facts, or forming
plans, all need to be explained: and if the need is unnoticed then the models of the
role of vision and cognition will be inadequate.

Another advantage of representing processes independently of the sensory and
motor signals involved is that plans for future actions can be formed without considering
details that can only be determined in the context of action. Information about
previous actions or previously observed processes can also be stored in a more abstract
form.

An amodal ontology allows what an individual learns by grasping to be transferred
to grasping done by another individual, and vice versa. So actions done by others
can be predicted, failures understood, and preventive measures taken (e.g. when a
predator threatens, or a child is about to fail to reach a goal). Moreover, processes
that are observed but produced by nobody (e.g. an apple falling) can suggest goals
to be achieved. So-called ‘mirror neurons’ might best be construed in terms of use of
an ontology that abstracts from sensorimotor details. Perhaps ‘abstraction neurons’
would have been a better label. Actor-independent representations of certain actions
can allow parents to perceive ‘vicarious affordances’ for offspring or predators, enabling
them to use causal reasoning to help or protect offspring and to obstruct or avoid
predators. This makes possible the ‘scaffolding’ of learners by parents and teachers
discussed by developmental psychologists. As noted in Chappell and Sloman (2007),
there are hunting birds and mammals that give their young practice in dealing with
prey, in a manner that suggests that they understand what their offspring need to do.
Grasping is merely an example: use of landmarks, observed in ants and wasps, may be
another. Use of amodal, exosomatic, representations of processes involved in actions
is not a feature of all animal vision: but it is certainly a human competence and the
extent to which other animals have it requires research.

All this imposes strong constraints on models of visual cognition that aim for
completeness. Other constraints include the need to explain how visual servoing
works, where precise, continuous motion is constantly monitored and modulated in
sensorimotor feedback and feedforward loops.

This distinction between the use of vision in ‘online’ control of fine details of actions
and its use in acquiring more abstract reusable information applicable to many different
situations, using dorsal and ventral pathways respectively, has, in recent years, been
wrongly described as a difference in perception of ‘what’ vs. ‘where’ or ‘what’ vs.
‘how’, and related to ventral and dorsal pathways. The mistake was corrected in
Goodale and Milner (1992), albeit using a misleading contrast between perception and
action, as opposed to two perceptual (visual) functions. Both kinds of perception can
be used in actions, though their roles are different.

An ‘objective’ (exosomatic, amodal) ontology can also be used to represent a hand
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moving to grasp an object that is not in view because the eyes have moved to get a
view of something else, or the grasped object is obscured by something. Absence of
sensorimotor details also allows representations to be useful in planning or predicting
future actions where what motor and sensory signals will be involved can be left
unspecified – because that can vary according to detailed circumstances at the time
of action. Without use of amodal abstractions, the combinatorial complexity of the
process of searching for a plan or prediction or explanation would be far greater.

Grasping is, of course, just one example. All this still leaves unexplained how a
visual system manages to derive amodal descriptions of 3-D structures and processes
from sensory input, but research on that is in progress in AI, psychology and
neuroscience e.g. (Hayworth & Biederman, 2006).

Ontological blindness to these possibilities leads some researchers to suppose that
vision is merely (or mostly) object recognition, or that vision uses only image-based or
more generally sensori-motor representations. There is now a vast amount of research
on models of sensorimotor learning, using architectures that cannot do anything else,
e.g. (Lungarella & Sporns, 2006). Such models cannot explain most of the uses of
vision.

4.2 Seeing processes, affordances and empty spaces

Most vision researchers (including me for many years) have concentrated on perception
of static scenes – blind to the fact that perception occurs in an environment that is in
motion much of the time, with constantly changing viewpoints as animals move. So a
major function of a vision is to provide information about which processes are occurring,
not just about structures and relationships. In that case, viewing static scenes is
a special case of perceiving processes in which nothing much happens. So perhaps
the primary form of representation for visual information should be representations of
processes extended in time and space, whereas many researchers (an exception being
Grush, 2004), assume that vision produces information about objects, properties and
relationships. Of course, that is part of what needs to be explained, but only part.
If vision uses representations of processes including affordances concerned with what
can and cannot happen or be done the representations must be rich in conditional
information about processes.

One test for whether a vision system perceives affordances is how it sees empty 3-D
or 2-D spaces. If all the functions of a visual system are concerned with perception
of objects, then empty space cannot be seen, whereas humans can see an empty space
as full of potential for various kinds of occurrences, depending on where the space is,
how big it is, how close we are to it, what other things are in the vicinity, and what
our current capabilities and concerns are. A bird holding a twig to be added to its
partially built nest needs to see places where that twig would be useful, and a route
by which it can be inserted. Someone like Picasso can see potential in a blank surface
that most people cannot. Harold Cohen’s AARON program, described in M. A. Boden
(1990) and accessible at http://www.kurzweilcyberart.com, also has some grasp of 2-D
affordances and how they change as a painting grows. A mathematician wondering how
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to calculate the area of a circle may see the potential for inscribing and circumscribing
an unending succession of regular polygons with ever-increasing numbers of sides just
inside and just outside the circle – one of many cases of mathematical use of the
visual ability to represent processes. Other cases are discussed in Sloman (1978) and
Anderson, Meyer, and Olivier (2001).)

So, vision researchers who focus only the task of extracting from the optic array
information about things that exist in the scene, exhibit ontological blindness insofar
as they ignore the role of vision in seeing what does not yet exist but could exist, that
is, the positive and negative affordances. Many also ignore the importance of seeing
ongoing processes in which both structures and affordances are changed over time.

4.3 Seeing without recognising objects

A vast amount of vision research is concerned with recognition. But that fails to
address seeing without recognising objects, which involves acquiring information about
spatial structure, relationships, affordances and processes. Perception of structure
involves recognition, not of whole objects, but of image and scene fragments, such as
occluding edges, bumps, dents in surfaces, partially visible edges, changing curvature,
and specularities. Perception of spatial structures and relations can be the basis of
recognition, and may sometimes be facilitated by recognition. But systems designed
only for recognition of ‘whole’ objects must fail when confronted with new things!
Nearly 30 years ago, Barrow and Tenenbaum (1978) drew attention to aspects of
perception of shape properties and spatial relations of 3-D surface fragments that seem
to be independent of object recognition, e.g. seeing the shape of the portion of the
surface where a cup’s handle meets the bowl, or seeing how the 3-D orientation of
parts of the rim of a cup or jug vary around the rim, including the pouring lip if there
is one. Range-finders have been used to obtain 3-D structure, but usually the aim
of such work is to produce only the kind of mathematically precise 3-D information
that suffices for generating images of the scene from multiple viewpoints, rather than
the kind of ‘qualitative’ information about surface shape and structure that supports
perception of affordances. A useful survey is in Várady and Martin (1997).

Many animals appear to be able to see and make use of surface structure and shapes
of fragments of objects they do not necessarily recognise (e.g. consider a carnivore’s
task in tearing open and eating its prey). Likewise, when Jackie Chappell presented
parakeets with cardboard ‘polyflaps’ (Sloman, 2006a), they played with, manipulated,
and chewed them, despite never having seen them previously.

Infants spend much time developing competences related to various aspects of shape
perception, including competences such as pushing, pulling, picking up, putting down,
throwing, inserting, stacking, bending, twisting, breaking, assembling, disassembling,
opening, shutting, etc., much of which precedes learning to talk, and often does not
require the whole objects to be classified or recognised.

A good theory might explain ways in which brain damage can differentially affect
abilities to see various kinds of surface features and affordances, without removing
the ability to see, as illustrated by prosopagnosia, an affliction in which the ability to
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recognize faces is lost.
In summary: there are deep and general forms of perception and learning that we

need to understand in order to understand important aspects of vision on which many
other competences build, in humans and other animals, including spatial and causal
reasoning capabilities.

4.4 Many developmental routes to related cognitive compe-
tences

We should not assume that human visual competence (or any cognitive competence)
depends on having a specific bodily form, e.g. having hands that can manipulate
things. Babies born without arms, as occurred in the thalidomide tragedy in the
1960s, can grow up into intelligent adults. This may depend on a powerful mixture
of genetic endowments shared with normal humans, including a kind of vicarious
learning capability used when watching others do things we cannot do ourselves, using
an exosomatic ontology, as discussed in Section 4.1. Perhaps a shared evolutionary
heritage provides the ability to develop a core set of amodal forms of representation that
enables severely disabled children to learn about structures, processes and affordances
through watching others do things they cannot do. This ability to learn about, perceive
and make use of vicarious affordances undermines some claims about cognition as
intimately tied up with embodiment. It is arguable that having a human mind depends
more on having had embodied ancestors than on being embodied.

4.5 The role of perception in ontology extension

At any particular time, an animal or child will have developed an ontology that is
used in percepts, predictions and plans, all of which represent entities, relationships,
processes and affordances in the environment. But things can go wrong: plans can
fail and predictions can turn out false. The infant who takes a cut-out picture of an
animal out of its recess and then later tries to replace it can fail, being surprised when it
doesn’t fit the recess. Such failures could trigger ‘debugging’ processes that sometimes
lead the child to extend the high-level ontology, e.g. using low-level sensory features
that were previously disregarded. For example the child may, somehow, extend its
ontology to include the concept of the boundary of a flat object and the concept of two
boundaries being aligned. After that change, the failure to get the puzzle piece into its
recess may be overcome by performing additional actions to align the two boundaries.
For this, the ontology will need to include processes like sliding, rotating and coming
into alignment.

Some toys are cleverly designed to require a less complex ontology. For stacking
cups that are symmetrical, boundaries need not be aligned during insertion. Making
cups conical allows small bases to be inserted into larger openings, reducing the need for
precision in placing. Careful observation of actions of infants and toddlers at various
stages of development reveals subtle ways in which they encounter difficulties that
seem to be based on not yet having a rich enough ontology that they later extend –
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perhaps driven by detecting differences between actions previously seen as similar, or by
modifying preconditions or consequences of actions to include relationships previously
not representable. An 11 month old child is described in Sloman, Chappell, and
CoSyTeam (2006) who was able to feed himself yogurt from a tub using a spoon
to transfer the yogurt to his mouth, but failed to transfer yogurt to his leg because
he merely placed the bowl of the spoon on his leg, apparently not realizing that
it needed to be rotated. There are probably hundreds, or even thousands, of such
processes of self-debugging leading to ontology extension in the first few years of life
of a human child. Those extensions depend on types of objects (including types of
food and clothing) in the environment, whose properties and behaviours can vary
enormously from one part of the world to another and sometimes change as a result
of cultural development. For example, many children born recently have acquired an
ontology appropriate for interacting with a computer using a mouse, which none of
their ancestors encountered. Some of the transitions in which new competences are
acquired were studied by Piaget many years ago (1954), but the time may be ripe
for renewed systematic study facilitated by the ability to use video recordings so that
many different people can examine the same episode. Researchers with expertise in
designing robots should have richer ontologies with which to perceive and think about
what infants do, or fail to do.

5 Representational capabilities

In order to explain how a child extends an ontology we need to know what
representations are used. What sort of representation does a child or chimp have
of a three dimensional curved surface such as various parts of a spoon? How are the
causal capabilities represented? There are many mathematical ways of representing
shapes, for instance using differential equations, or using very large vectors of point
features. But those representations may not be adequate for cognitive purposes if they
are too difficult to derive from the available sensory information (e.g. because of noise,
low resolution of the parts of the visual field, or lack of suitable algorithms). The
mathematical representations may also be unsuited to the derivation of affordances,
and hard to use in planning or in controlling actions. Explaining cognitive competences
in dealing with a 3-D environment may require new forms of representation that
capture spatial structure in a manner that abstracts from the precise details that
would be represented in differential equations and collections of point features, and are
better tailored to facilitating action selection and control. It is likely that evolution
‘discovered’ many more forms of representation and corresponding mechanisms than
human mathematicians, scientists and engineers have so far thought of.

Besides the difficulty of specifying the forms of representation used, there is the
problem of explaining how they are implemented in brain mechanisms. My impression
is that despite vast advances in detailed tracing of neuronal connections, the study
of chemical brain process, and the recent development of more and more fine-grained
brain imaging devices, there is still very little understanding of how the mechanisms
so far discovered are capable of supporting most of the cognitive functions we believe
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humans and other animals are capable of. For example, standard neural models assume
that all structures and processes can be represented in the contents of large vectors of
values of sensory and motor signals, possibly at different levels of abstraction. We seem
to need different sorts of computations, involving different information structures, in
order to make progress in modelling cognitive processes. Some of the requirements are
identified in Trehub (1991) and some hypothetical neural mechanisms proposed. But
it is not clear whether they can meet all the requirements.

Research on these topics is extremely difficult. Perhaps that explains why the
tasks identified by Barrow and Tenenbaum (mentioned in 4.3) have largely been
forgotten, while most vision researchers work on other tasks that do not involve
detailed understanding of spatial structure and affordances. Great progress has been
made in developing mechanisms with narrow competences, like object recognition or
classification, object tracking, trajectory prediction, pushing or grasping simple objects
(e.g. Saxena, Driemeyer, Kearns, Osondu, & Ng, 2006) and path traversal – all of which
are worthy research topics, of course, but form only a relatively small subset of functions
of vision. Other functions, not discussed here, include the role of vision in fine-grained
control of actions (visual servoing), posture-control, perceiving varieties of motion,
developing many kinds of athletic capabilities using vision, parking a car or other
vehicle, perceiving causal relationships, understanding the operation of a machine,
perceiving social interactions, aesthetic appreciation of natural and artificial scenes
and objects, communication, learning to read text first laboriously then later fluently,
sight-reading music, and many more.

Some distinct visual capabilities can be exercised in parallel, e.g. when walking on
difficult terrain whilst enjoying the view, or judging how to hit a moving tennis ball
while seeing what the opponent is doing. This probably depends on the concurrent
operation of mechanisms that perform fast and fluent well-learnt tasks reactively and
mechanisms that have more abstract and flexible deliberative capabilities (Sloman,
2006b).

It might be fruitful to set up a multi-disciplinary project to expand our ontology
for thinking about vision, including a comprehensive taxonomy of functions of vision,
along with requirements for mechanisms, forms of representation, types of learning and
architectures to support such functions, especially under the constraint of having only
one or two eyes that have to be used to serve multiple concurrently active processes that
perform different tasks while sharing lower-level resources. Similar things could be done
for other major cognitive functions. Such projects will benefit from the scenario-driven
research described in Section 7.

5.1 Is language for communication?

Similar kinds of ontological blindness can afflict students of language. A common
assumption is that the sole function of language is communication: meanings are
assumed to exist and language is used to convey them. But many are blind to the
deeper problem of how it is possible for a person, animal or machine to have meanings
to communicate. Thoughts, percepts, memories, suppositions, desires, puzzles, and
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intentions all have semantic content, and can therefore exist only where there is
something that encodes or expresses their content.

Many animals clearly perceive things, want things, try to do things, and learn
things, despite not having human language capabilities. Similarly, very young children
have intentions, desires, information gained from the environment, and things they
want to communicate before they have learnt how to communicate in language
(compare Halliday, 1975). They can be very creative, e.g. before having learnt to say
“Look here”, a child may move an adult’s head to face something requiring attention.

Moreover, other animals can be attentive, afraid, puzzled, surprised, or repeatedly
trying to do something, all of which involve states with semantic content. A dog that
brings a stick to be thrown for it to catch need not have in its head a translation of
the English sentence ‘Please throw this so that I can catch it’, for it may not use the
same ontology as we do nor the same mode of composition of meanings, nor the same
varieties of speech-act. All we can be sure of is that they must have some internal
states, processes or structures that express or encode semantic content, and that allow
the specific content to have consequences for internal and external behavior, even if
the semantic content is not in a propositional form, or expressible in a language like
English.

Many scientists now use ‘language’ in a general sense referring to anything that
expresses semantic content, whether for oneself or another agent, especially if it allows
both structural variability and compositional semantics, providing the ability to cope
with novel information items of varying complexity (Sloman, 2006b). Sloman and
Chappell (2007) use “g(generalised)-language” to refer to such forms of representation,
including propositional and analogical representations (Sloman, 1971). So the previous
paragraph implies that many animals and prelinguistic children use g-languages. G-
languages capable of expressing meanings with complex structures must therefore have
evolved before communicative languages (Sloman, 1979), for use within individual
animals, rather than for communication between animals. From this viewpoint, the
functions of language include perceiving, thinking, wanting, intending, reasoning,
planning, learning, deciding, and not just communication. (Unlike Fodor, 1975 we
are not claiming that individuals use a fixed innate language into which they translate
everything else.)

This leaves open what those inner languages are like. Despite the claims of
Brooks (1991), intelligent systems must use representations, at least in the widely-
used sense of ‘representation’ that refers to something that provides, stores, or conveys
usable information for some user. The requirements for g-languages are met by the
forms of representation used in computational work on high-level vision, reasoning,
planning, learning, problem solving, and are also met by external human languages;
including both structural variability and compositional semantics, allowing fragments
of information to be combined in different ways to form more complex information
items that can then be combined with further information. Such representations can
be used to express facts, hypotheses, conjectures, predictions, explanations, questions,
problems, goals, and plans of varying form and complexity (Sloman, 2006b).

Not all mechanisms and architectures are capable of meeting the requirements:
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structural variability, for example, rules out forms of meaning that are expressed
only in fixed size vectors with atomic components, such as are often used as inputs
and outputs of neural nets. Although no human can actually cope with unbounded
complexity, we can argue, echoing Chomsky’s (1965) distinction between competence
and performance, that humans have virtual machines with unbounded complexity but
their implementations in physical machines impose limits. This is also true of most
programming formalisms (Scheutz, 2002; Sloman, 2002).

We need more investigation of both the variety of requirements for forms of
representation and the variety of possible representations, instead of assuming that
known forms will suffice. We also need to stop assuming that human languages and
linguistic meanings are sui generis and ask whether they are outgrowths of rich forms of
syntactic and semantic competence provided by internal g-languages in other animals
and in prelinguistic children. This is not to deny that external languages (including
pictorial and other forms of communication) allowed rapid acceleration of both learning
in individuals and cultural evolution that are unique to humans. In particular,
individuals who have learnt to use a human language for external communication are
able to enrich the semantic contents expressed internally for their own purposes, e.g.
in categorising their thoughts as confused, their desires as selfish, or their knowledge
as incomplete. (Cultural learning is discussed further in Section 6.2.)

5.2 Varieties of complexity: ‘Scaling up’ and ‘scaling out’

Another common kind of ontological blindness involves varieties of complexity. Early
AI researchers discovered that combinatorial explosions threatened progress. If the
solution to a problem involves n actions and for every action there are k options,
then there are kn possible action sequences, a number that grows exponentially with
n. Because this quickly makes problems intractable, a common demand is that
models should ‘scale up’, namely continue to perform with reasonable space and time
requirements as the complexity of the task increases. But another kind of complexity
requirement often goes unnoticed, which requires what we call ‘scaling out’. Vision
and language illustrate this: Particular capabilities often depend on and contribute to
other capabilities with which they can be combined. We have seen how impoverished
theories of vision result from missing the role of vision in satisfying requirements for
action and thought. Similarly, work on language that focuses entirely on linguistic
phenomena, such as phonemics, morphology, syntax, and semantics, may fail to address
such problems as:

• how language is used for non-communicative purposes (e.g., thinking, reasoning,
having goals, desires, intentions, and puzzles);

• how it relates to and builds on capabilities that exist in young children or other
animals that cannot use language;

• how it relates to forms of representations and mechanisms that evolved prior to
human language; and
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• how the process of learning a language relates to the evolutionary and
developmental precursors of language.

A requirement for a model of how language or vision works, how plans are made and
executed, how mathematical or other reasoning works, and how learning works, is
that the proposed mechanisms should be able to form a usefully functioning part of
an integrated complete agent combining many other capabilities in different ways at
different times.

That ‘scaling out’ requirement looks obvious once stated, but its implications for the
various components of the system are not obvious, and are often ignored. The kinds of
combination required can vary. In simple models, sub-modules are given tasks or other
input, and run for a while (as ‘black boxes’), then produce results that can be used
by other modules. (Like the modules in (Fodor, 1983).) Many proposed architectures
assume that sort of structure: they are represented by diagrams with arrows showing
unidirectional flow of information between modules. As mentioned in Section 3 some
designers assume that there is a sense-think-act cycle, in which a chunk of input comes
in via the senses, is processed by sending packets of derived information through various
modules (some of which may be changed as a result) until some external behavior is
produced, and then the cycle repeats, as in the TOTE (Test-Operate-Test-Exit) units
of Miller, Galanter, and Pribram (1960), and many more recent designs.

This is clearly wrong. A deeper integration is required: different competences can
interact while they are running in parallel and before specific tasks are complete. For
humans, many other animals, and robots with complex bodies and multiple sensors
acting in a fast changing environment, the sense-think-act model fails to account for
the variety of extended, concurrent, interacting, processes that are capable of mutual
support and mutual modulation. (Compare chapter 6 in Sloman, 1978.)

For instance, while looking for an object, if you hear someone say “Further to
the left”, what you hear can interact with how you see and help you recognise what
you were looking for. Someone looking at the well-known puzzle picture of a dappled
dalmation may become able to see the animal on hearing “It’s a dog”. Likewise, while
you are trying to work out what someone means by saying “Put the bigger box on
the shelf with more room, after making space for it” you may notice three shelves one
of which is less cluttered than the others, and work out which shelf is being referred
to and what might be meant by “making space for it” in the light of the perceived
size of the bigger box. Some of these interactions were demonstrated several decades
ago (Winograd, 1972). Others are explored in the work of Grice (e.g. Grice, 1975).
The interactions need not be produced by first fully analysing the sentence, deciding
it is ambiguous, then setting up and acting on a goal to find more information to
disambiguate it. What you see can help the interpretation of a heard sentence even
before it is complete.

There are well-documented examples of close interaction between vision and spoken
language comprehension, including the ‘McGurk effect’ (McGurk & MacDonald, 1976)
in which the same recorded utterance is heard to include different words when played
with videos of speakers making different mouth movements. Interactions can also occur
between active and currently suspended processes: Something you see or think of while
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doing one task may give you an idea about how to finish another task on which you
are stuck, a common phenomenon in scientific and mathematical discovery.

That sort of interaction can even cause the current task to be dropped, with
attention switching to a much more important, previously suspended task. ‘Anytime’
planners, which can take account of time pressures and deliver partial results on
request, are another well-studied example. There is growing interest in ‘incremental’
processing in natural language, which may help to support such deep interactions
between linguistic and non-linguistic capabilities. For example, see this 2004 workshop
on incremental parsing: http://homepages.inf.ed.ac.uk/keller/acl04 workshop/ .

Yet another example is combining expert chess competence with knowledge of
capabilities of a young opponent to produce chess moves and verbal comments suited to
helping the youngster learn. Much teaching requires that sort of mixing of competences:
another example of the ability to scale out.

The ability to “scale up” has received far more attention from cognitive modellers,
who often try to design mechanisms that are able to cope with increasingly complex
inputs without being defeated by a combinatorial explosion. But that is not a
requirement for modelling human competence: humans do not scale up!

5.3 Humans scale out, not up

There are many human capabilities that are nowhere near being matched by current
machines, yet all of them seem to be complexity-limited, a point related to what
Donald Michie (1991) called “the human window”. Moreover, there are already many
specialised forms of competence where machines far outperform most, or all, humans.
Such models scale up, but not out: They have only very narrowly focused competence.
Suitably programmed computers can do complex numerical calculations that would
defeat all or most humans, but that does not enable those machines to explain what a
number is or why it is useful to be able to do arithmetic. Chess programs, like Deep
Blue, that use brute force mechanisms, can beat the vast majority of humans, but
cannot teach a child to play chess, help a beginner think about his mistakes, modify
its play so as to encourage a weaker player by losing sometimes, explain why it did not
capture a piece, explain what its strategy is, or discuss the similarities and differences
between playing chess and building something out of meccano.

Is any artificial chess system capable of being puzzled as to why its opponent did
not make an obviously strong move? What are the requirements for being puzzled?
Compare being surprised. Some of the representational and architectural requirements
for such states are discussed in Sloman, Chrisley, and Scheutz (2005).

Occurrences of different competences interacting are part of our everyday life,
but we may be blind to them when planning our research. Solving the problems
of deep integration of cognitive systems with multiple functions may turn out to be
much more difficult than anyone anticipates. For example, it is at least conceivable
that some powerful forms of information-processing were discovered and used long
ago by biological evolution that have not yet been understood by human scientists
and engineers. Investigation of this issue is included in one of the UK Computing
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Research grand challenges on new forms of computation, summarised at this web site
http://www.cs.york.ac.uk/nature/gc7/.

6 Are humans unique?

One of the curious facts about this question is that even among scientists who are
supposed to be dispassionate seekers after knowledge there are both passionate claims
that humans are unique, e.g. because of their use of language, their self-consciousness,
their ability to produce and appreciate art, their ability to share goals, or some other
characteristics, and also equally passionate claims (some of them from champions of
animal rights) that the continuity of evolution implies that we are not unique, merely
slightly different from other animals, such as chimpanzees, or foxes. It seems that
both kinds of passion come from an unscientific commitment, e.g. to religious (or
‘romantic’?) reasons for wanting to think of humans as unique, or from a concern for
animal welfare that uses Darwinian theory as a basis for claims that the similarity of
other animals to humans gives them similar rights.
The debate is misguided because the correct answer is obviously “Yes and No”.

• Yes: Humans are unique because there are things humans do that no other
(known) animals can do, such as prove theorems about infinite structures,
compose poems, utter communications using subjunctive conditionals, send
people and machines to the moon and outer space, or make tools to make tools
to make tools to make tools ... to make things we use for their own sake.

• No: Humans are not unique because there are huge numbers of facts about their
bodies, their behavior, their needs, their modes of reproduction and development,
and how they process information, that are also facts about other animals.

This is a shallow response, however, because there is so much we do not yet know
about how humans and other animals work, and what the similarities and differences
actually are, and what the implications of those differences are. We still understand
relatively little about how most animals work, partly because we do not have clear
and accurate knowledge about what their capabilities, especially their information-
processing capabilities, actually are, and partly because many of the mechanisms and
architectures supporting such capabilities are still unknown. Instead of wasting effort
on spurious debates, we should try to deepen our understanding of the facts.

If we had a deep theory of the variety of types of information-processing
architectures in nature and what capabilities they do and do not support, and if we
knew which animals have which sorts, then such emotion-charged debates might give
way to reasoned analysis and collection of relevant evidence to settle questions, or
acknowledgement that many questions use concepts that are partly indeterminate (e.g.
‘cluster concepts’) so that there are no answers. Similar comments can be made about
the question whether a foetus is conscious or feels pain, whether various kinds of animals
suffer, etc. Consequently the correct descriptions of future machines will be equally
problematic.
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6.1 Altricial and precocial skills in animals and robots

Many people are unaware of the great differences between

(a) the vast majority of species that seem to have their main
competences determined genetically, e.g. grazing mammals that can run
with the herd shortly after birth, and birds such as chickens that can peck
for food soon after hatching, and

(b) the small subset of species that are born helpless, physiologically
under-developed, and apparently cognitively incompetent, yet end up as
adults with capabilities (e.g. nest-building in trees, hunting other mammals,
use of hands to pick berries, and various kinds of tool use) that appear to
be far more cognitively complex than those achieved by the former group.

The former species are labelled ‘precocial’ species by biologists, and the latter
‘altricial’. However, there is a spectrum of cases with different mixtures of
precocial skills (genetically determined, preconfigured), and altricial skills (‘meta-
configured’ competences generated by the individual and the environment through
play, exploration and learning, using powerful meta-level bootstrapping mechanisms).
The nature/nurture trade-offs between different design options are not well understood,
although a preliminary analysis was offered in Sloman and Chappell (2005) and refined
in Chappell and Sloman (2007) and (Sloman & Chappell, 2007). That analysis suggests
that just as there is a spectrum of combinations of preconfigured (precocial) and
meta-configured (altricial) skills in biological organisms, so will there also be such
a spectrum in future robots, including robots developed as models of human cognition.
Robots placed in environments where complex and unpredictable changes can occur
over time will, like altricial animals, need to be able to bootstrap meta-configured
competences their designers know nothing about, even though they start with a large
collection of preconfigured skills, like precocial species. Where most of the environment
is predictable in advance, a fully precocial design may function well, but it will not be
a model of human, primate, or corvid cognition.

Some altricial species, especially humans, learn both very rapidly and in a wide
range of environments, to cope with those environments. As a result, some young
children have competences none of their ancestors had. In contrast, skills of precocial
species (e.g. deer, chickens) are shaped only in minor ways by the environment in which
they live, and altered mainly by slow, laborious training (e.g. circus training), unlike
the spontaneous and rapid learning through play, in primates and some other species.
At present the mechanisms supporting the latter learning are not well understood, and
there are no learning mechanisms or self-constructing architectures under investigation
that can account for this, although an idea suggested over 20 years ago by Oliver
Selfridge is presented in Sloman and Chappell (2005). 1.

Philipona, O’Regan, and Nadal (2003) present a type of learning-by-doing through
finding invariants in sensorimotor patterns. This may explain some ontological

1Illustrated in this PDF presentation http://www.cs.bham.ac.uk/research/projects/cosy/papers/#pr0506
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extensions, but does not account for the human-like exosomatic, amodal ontology
discussed in Section 4. Another important process may be selection of actions and
percepts as ‘interesting’ (Colton, Bundy, & Walsh, 2000). This requires architectural
support for varieties of purely cognitive motivation as opposed to motivation based on
physical and reproductive needs. We need to look closely at a variety of phenomena
found in the animal world, including recent work on animal tool-making and use (e.g.
Chappell & Kacelnik, 2002 and Chappell & Kacelnik, 2004). Related discussions and
empirical data can be found in Cummins and Cummins (2005), Csibra and Gergely
(2006) and Tomasello, Carpenter, Call, Behne, and Moll (2005). Perhaps future work
on altricial robots will enable us to rewrite Piaget’s (1954) theories.

6.2 Meta-semantic competence

Another feature important in humans and possibly some other animals is meta-
semantic competence: the ability not merely to perceive, think about, or have intentions
involving physical things, such as rocks, trees, routes, food, and the bodies of animals
(including one’s own), but also to have semantic states that represent entities, states
and processes that themselves have semantic content, such as one’s own thoughts,
intentions or planning strategies, or those of others. The label ‘meta-management’ for
an architectural layer with meta-semantic competence applied to the system itself was
coined by Luc Beaudoin in his PhD thesis (1994). (The word ‘reflective’ is sometimes
used, but also often has other meanings – one of many examples of confused terminology
in the study of architectures.) Closely related ideas have been developed in Minsky
(2006), and Singh (2005), focusing mainly on attempts to model human competence.
Sloman and Chrisley (2003) relate this to the concept of having qualia.

It seems that humans are not alone in having meta-semantic competence, but the
richness of their meta-semantic competence, whether directed inwardly or outwardly is
unmatched. We still do not know what sorts of forms of representation, mechanisms and
architectures support this, nor how far they are genetically determined and how far a
product of the environment, based, for example, on cultural learning. Late development
does not rule out genetic determination, as should be clear from developments in
puberty.

There is much discussion in many disciplines (e.g. philosophy, sociology,
anthropology, psychology, ethology) of the ability of one individual to think about other
intelligent individuals, to communicate with them, and to engage with them in various
kinds of shared activities. There are deep problems concerned with referential opacity
that need to be solved by such theories. For instance, normal modes of reasoning break
down because things referred to in beliefs, desires, intentions, etc. need not exist. You
cannot kick or eat something that does not exist, but you can think about it, talk about
it or run away from it. Moreover, a stone or tree cannot be correct or mistaken – it
just exists – but a thought or belief can be true or false. Developmental psychologists
study growth of understanding of these matters in children, but do not explain the
mechanisms. Perhaps roboticists will one day. Multidisciplinary research is needed to
investigate when meta-semantic capabilities evolved, why they evolved, how much they
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depend on learning as opposed to being preconfigured or meta-configured, how they are
influenced by a culture, and what their behavioral consequences are. There are very
few discussions of architectural and representational requirements for an organism or
machine to represent, refer to, or reason about, semantic contents. Exceptions include
McCarthy (1995) and Minsky (2006). Further work is needed for progress on integrated
cognitive systems that scale out.

7 Using detailed scenarios to sharpen vision

One way to reduce ontological blindness to some of the functions of natural cognition,
is to formulate design goals in terms of very detailed scenarios, an idea being taken up
in the euCognition network’s Research Roadmap project. If scenarios are described
in minute detail, e.g. using imaginary ‘film-scripts’ for future demonstrations of
human-like robots, then close attention to individual steps in the scenario can generate
questions of the form: ‘How could it do that?’ that might not be noticed if a competence
is described at too general a level. Moreover, we must not focus only on scenarios
involving useful ‘adult’ robots. A three-year-old child who is well able to hold a pencil
and make spirals and other things on a sheet of paper may be unable to copy a square
drawn on the paper despite being able to trace a square, and to join up dots forming
the corners of a square. This could inspire a scenario in which a robot learns to perceive
and produce pictures of various sorts on a blank sheet. By trying to design a robot
that starts with the abilities and limitations of the three-year-old, and later extends
its abilities, we may hope to gain new insights into hidden complexities in the original
copying task. (Incidentally, this is one of many examples where the core issues could
be studied using a simulated robot: the cognitive development is not dependent on
physical embodiment.)

7.1 Sample Competences to be Modelled

As mentioned in Section 4.5 a young child may be able to lift ‘cut-out’ pictures of
various animals (a cat, a cow, an elephant) from a sheet of plywood, but be unable to
replace them in their recesses until concepts like ‘boundary’ and ‘alignment’ have been
added to his or her ontology. We can extend the example by analysing a sequence of
intermediate competences, each of which can be achieved without going on to the next
step:

• being able to lift a picture from its recess (using its attached knob),

• being able to put down a picture,

• being able lift a picture from its recess and put it somewhere else,

• being able to lift a picture from the table and put it on the plywood sheet,

• being able to put the picture down in the general location of its recess,
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• being able to see that the picture is not yet in its recess,

• being able to randomly move and rotate the picture until the picture drops into
its recess,

• seeing that the explanation of the picture’s not going into its recess is that its
boundary is not aligned with the boundary of the recess,

• being able to use the perceived mismatch between the boundaries, to slide and
rotate the picture till it drops into the recess,

• being able to say which picture should go into which recess,

• being able to explain why the non-aligned picture will not fit into its recess, and

• being able to help a younger child understand how to get the pictures back into
their recesses.

This partially ordered collection of competences leaves out much of the fine detail in the
progression, but indicates possible stages about which we can ask: What mechanisms,
forms of representation, algorithms, or architectures, can account for this competence?
What needs to be added to the child’s ontology at each stage to enable competence to
improve (e.g. boundary of a shape, alignment and misalignment of two boundaries)?
What mechanisms can account for the development of the competence from precursor
competences? What mechanisms can enable successor competences to develop from
this competence? What sort of architecture can combine all these competences and
the required forms of representation?

We should not assume that there is some uniform learning mechanism that is
involved at all stages. Nor should we assume that all required forms of learning
are present from the start: some kinds of learning may themselves be learnt. We
need to distinguish kinds of meta-competence and ask which are learnt, and how
they are learnt. The last example, the ability to help a younger child, has many
precursor competences not in the list, that would need to be unpacked as part of a
detailed analysis, including meta-semantic competences, such as being able to see and
think about another individual as having goals, as perceiving objects, as performing
intentional actions, as making mistakes, or as not knowing something.

7.2 Fine-grained Scenarios are Important

The need for ‘fine grain’ in scenario specifications is not always appreciated. Merely
specifying that a robot will help infirm humans in their own homes does not generate
as many questions as specifying that the robot will be able to see wine glasses on a
table after a meal and put the used ones into a dishwasher without breaking them.
How will it tell which have been used? Compare the differences between red and white
wine. Will it also be able to do that for coffee cups? How will it control its movements
in picking up the glasses? What difference does the design of its hand make? E.g.
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does the task require force feedback? Will it pick up only one thing at a time or more
than one in the same hand? How will it avoid bumping a glass against other objects
in a partly loaded dishwasher? Under what conditions will it make a mistake and
break a glass, and why? Can it improve its competence by practice, and if so, how
will that happen, and what sorts of improvement will occur? Will it be able to modify
its behavior appropriately if the lights are dimmed, or if its vision becomes blurred
through camera damage, or if part of its hand is not functioning? Will it be able to
explain why it picked up only two glasses at a time and not more? Can it explain how
it would have changed its behavior if the glasses had been twice as big, or if they had
had wine left in them?

Each question leads to bifurcations in the possible scenarios to be addressed,
depending on whether the answer is “yes” or “no”. If this attention to detail seems
tedious, we need to remember that we are attempting to understand results of many
millions of years of evolution.

7.3 Behavior specifications are not enough

Merely specifying a form of behavior to be demonstrated does not specify research goals,
for, at one extreme, it may be that the behavior is largely pre-programmed by genetic
mechanisms in an animal or by explicit programming in a robot (as in precocial species),
or, at another extreme, it may be a result of a process of learning and development that
is capable of producing a wide variety of end results depending on the environment
in which it occurs (as in so-called altricial species). The scenario-based methodology
avoids arguments over ‘best’ target scenarios or ‘best’ designs, allowing both extremes
and also a variety of intermediate cases to be studied, so that we learn the detailed
requirements for various combinations of competences, and their trade-offs.

Another way of generating task requirements is to bring people from different
disciplines together to discuss one another’s problems and results. A theory
of ontological and representational development crying out for new research in
computational models is presented in Karmiloff-Smith (1994). Compare the analysis of
learning to count, in Chapter 8 of Sloman (1978). Cognitive robotics researchers should
attend to discoveries of psychologists, students of animal behavior, neuroscientists,
and clinicians who identify failures of competence arising out of various kinds of brain
damage or deterioration. Examples of ‘ritual behaviours’ providing hints about the
architecture are presented in Boyer and Lienard (2006).

8 Resolving fruitless disputes by methodological

‘lifting’

Many choices have to be made when designing explanatory models, including
selecting forms of representation, algorithms, architectures, kinds of information to
be used, types of hardware, design and testing procedures, programming languages,
development environments and other software tools, and, in recent years, debating
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whether robots can or cannot, should or should not have emotions: See (H. A. Simon,
1967; Sloman & Croucher, 1981; Arbib & Fellous, 2005). Too often the disagreements
become pointless squabbles about which design option is right or best. They are
pointless if the terms used are ill defined, or if there is no best option, only a collection
of trade-offs, as argued in the online presentation on whether intelligence requires
emotions, at this web site: http://www.cs.bham.ac.uk/research/cogaff/talks/#cafe04.

8.1 Analyse before you choose

Instead of continuing these debates, we can shift the questions to a higher level,
encouraging former opponents to become collaborators in a deeper project. Instead
of debating whether neural or symbolic forms of representations should be used, we
can instead explore the space of possible forms of representation, trying to understand
the dimensions in which the formalisms differ, while trying to understand what the
individual types are and are not good for, what mechanisms they require, and how they
differ in relation to a range of meta-requirements, such as speed, accuracy, reliability,
extendability and generality. Usually, the answers are not obvious, so if the options and
trade-offs can be made clear by research addressing such ‘meta-level’ questions, then
future researchers can choose options wisely on the basis of detailed task requirements,
instead of following fashions or prejudice. When we understand the trade-offs fully we
shall be in a much better position to do empirical and theoretic research to support
various design choices.

An example is Minsky’s ‘Causal diversity’ depiction of trade-offs between symbolic
and neural mechanisms (Minsky, 1992). His much older paper (Minsky, 1963) also
includes many relevant observations about trade-offs between design alternatives.
Another influential meta-level paper (McCarthy & Hayes, 1969) produced a first draft
list of criteria for adequacy of forms of representation, namely, metaphysical adequacy,
epistemological adequacy, and heuristic adequacy (to which, e.g., learnability and
evolvability in various environments could be added). That paper’s emphasis on logic
provoked a charge of narrowness in Sloman (1971), and a rebuttal in Hayes (1984). A
recent development of this thread is a PhD thesis on proofs using continuous diagrams
Winterstein (2005). Some steps toward a more general overview of the space of possible
forms of representation are in Sloman (1993, 1996). However, the analysis of varieties
of information processing in biological systems still has a long way to go.

Many discussions of representations and mechanisms fail to take account of
requirements for an integrated agent with a complex body embedded in a partially
unknown and continuously changing richly structured environment. Such an agent will
typically have concurrently active processes concerned with managing the state of the
body, including controlling ongoing actions and continuously sensing the environment,
in parallel with other internal processes, such as reminiscing, deliberating, thinking
about what someone is saying, and planning a response, as well as aesthetic and
emotional responses. Work on requirements for complete architectures in systems
interacting with a rich dynamic environment has begun to address this complexity,
but such work is still in its infancy. Gaps in our knowledge are easily revealed by
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analysis of requirements for detailed scenarios. For example, requirements for a robot
to see its hand grasping and moving a complex object in the proximity of other complex
objects include representing ‘multi-strand processes’, in which different relationships
between parts of different objects change concurrently, some continuously (e.g. getting
closer) and some discretely (e.g. coming into contact, and changing affordances).

8.2 The need to survey spaces of possibilities

‘Meta-level’ analysis of a space of possibilities (for forms of representation, for
mechanisms, for architectures, etc.) should help to end fruitless debates over such
questions as to whether representations are needed in intelligent systems, or which
sorts of representations are best. Some debates are inherently muddled because what
one faction offers as an alternative to using representations another will describe as
merely using a different sort of representation. If we have a deep understanding of
the structure of the space of possibilities containing the proposed alternatives, and
their trade-offs, then how we label the options is of lesser consequence. Agreeing on
labels may sometimes arise from agreement on what variety of things we are labelling.
(Compare the importance of the periodic table of the elements in the history of the
physical sciences.)

The current state of teaching regarding whether to use symbolic forms of
representation, or artificial neural nets and numerical/statistical formalisms and
methods causes harm. Learners often simply pick up the prejudices of their teachers
and, in some cases, do not even learn about the existence of alternatives to the
approach they are taught. This became very clear when we were attempting to select
candidates for a robotics research position: several applicants with MSc or PhD degrees
in AI/Robotics had never encountered a symbolic parser, problem solver, or planning
system and had apparently never heard of STRIPS or any other planning system. (An
excellent introduction is Ghallab, Nau, and Traverso (2004).)

Similarly, although there have been many proposed architectures, some of them
surveyed in Langley and Laird (2006), students who learn about a particular sort
of architecture may never learn about very different alternatives. A generation of
researchers trained with blinkered vision will not achieve the major advances in such
a difficult field, even if different subgroups have different blinkers. To summarise:

• Before choosing the best X, try to understand the space of possible Xs

• Often there is no best X, but a collection of trade-offs

• Instead of trying to determine precise boundaries between Xs and non-Xs, it
is often more fruitful to investigate varieties of X-like things, the dimensions in
which they vary, and the trade-offs: often the X/non-X distinction evaporates
and is replaced by a rich taxonomy of cases.

8.3 Towards an ontology for types of architectures

Over the last two decades, there has been a shift of emphasis in research on
computational models from investigations of algorithms and representations for specific
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tasks, to the study of architectures combining many components performing different
tasks. Various specific architectures have been proposed, some of them surveyed in
Langley and Laird (2006).2 That survey illustrates how unfortunate definitions can
blinker vision, for it defines an architecture as something that cannot change, thereby
excluding research into whether infants start with a limited architecture extended under
the influence of the environment (Chappell & Sloman, 2007; Petters, 2006).

The research community has so far not developed an agreed analysis of requirements
for different sorts of architectures nor an adequate ontology for describing and
comparing alternatives. Moreover, the existing terminology that is widely used
for labelling components, e.g. as ‘reactive’, ‘deliberative’, ‘reflective’, ‘affective’,
‘symbolic’, ‘sub-symbolic’, is not based on well-defined, clearly specified categories.
For example, some will label as deliberative any system in which sensory inputs can
activate rival responses, one of which is selected by a competitive process; whereas
Sloman (2006b) calls that proto-deliberative, following AI tradition in reserving the
label deliberative for mechanisms that search for and manipulate representations of
variable structure and complexity, using compositional semantics. A richer meta-
level ontology for types of architectures would allow a variety of intermediate cases.
Some researchers use the label ‘reactive’ to exclude internal state change, whereas
others allow reactive systems to learn and have changing goals, as long as they lack
deliberative mechanisms for constructing and comparing hypothetical alternatives. As
indicated in Section 6.2, the word “reflective” is also used with different meanings when
describing architectures or components of architectures. Papers in the Cognition and
Affect project http://www.cs.bham.ac.uk/research/cogaff/ present the CogAff schema
as a first draft attempt to provide a more principled ontology for possible architectures,
which will need to be related to niche space, the space of possible sets of requirements.

Researchers wishing to move beyond the present terminological mess can assume
that biological evolution produced many intermediate cases not yet understood,
some occurring during early stages of human infant and child development, though
observing processes in virtual machines that bootstrap themselves is a task fraught
with difficulties (Sloman & Chappell, 2005). We need to understand intermediate
cases that occurred in nature if we are to match designs for working models to the
variety produced by evolution, whether for scientific or for practical purposes. A better
ontology for architectures may also help us develop better tools to support cognitive
modelling (cf. Ritter, 2002; Kramer & Scheutz, 2007).

2Occasionally, architectures are confused with tools used for implementing them. For instance
‘SOAR’ can refer to an abstract specification of an architecture defined in terms of a collection of
competences relevant to certain kinds of reasoning and learning, or it can refer to a toolkit that
supports the development of instances of the SOAR architecture. But the abstract architecture could
be implemented in many other tools, or even in different programming languages. This section is not
concerned with tools.
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9 Assessing scientific progress

A psychologist once commented that whenever he heard researchers giving seminars
on computational models, they talked about what they were going to do, and
occasionally what they had done, but rarely about what they had discovered. Can
the cognitive modelling research community map out intended advances in knowledge
– as opposed to merely forming plans for doing things, however worthwhile? A partial
answer was given in Sections 7 and 8: There is scientific work to be done producing
systematic meta-level theories about varieties of forms of representation, mechanisms,
architectures, functions, and requirements, that define the spaces from which we can
choose components of designs and explanatory theories. That can provide a framework
for further work on substantive questions about how human vision works, or how crows
build nests, or how children learn language, or how capabilities found in nature may be
replicated or improved on in artificial systems. For scientific purposes, merely building
systems that work is of limited value, if we do not understand how they work and why
they are better or worse than other possible designs, etc., or better in some contexts
and worse in others.

Much funded applied research is defined in terms of specific practical goals,
for example producing a system that will do something that no machine has
done before, whether it be attending a conference and giving a talk Simmons
et al. (2003), performing well at soccer (www.robocup.org), helping with rescue
operations after a disaster (www.rescuesystem.org), helping with domestic chores
(www.ai.rug.nl/robocupathome) or identifying potential terrorists at airports. In
addition to identifying specific, somewhat arbitrary, target systems, however interesting
and important, we should attempt to identify a structured set of scientific goals that
advance our knowledge and understanding, as opposed to merely advancing our practical
capabilities (however important that may be).

We cannot expect there to be anything as simple and clear as Hilbert’s list of
unsolved mathematical problems in a field as complex and diverse as the study of
intelligence, which will probably never have the clarity and rigour of mathematics at the
start of the 20th Century, because cognitive science encompasses the study of all forms
of cognition, including future products of evolution and human-machine integration.
But we can attempt to identify important questions that need to be answered.

9.1 Organising questions

Just as mathematicians showed that answering some questions will enable others to be
answered, or at least simplified, so should cognitive modellers try to identify relations
between unsolved problems. For example, if we can describe in detail some of the
competences displayed by young children at different stages of development in different
cultures, and if we analyse in detail the architectural and representational requirements
for those competences, that will give us insight into the variety of developmental paths
available to humans. That in turn may give us clues regarding the mechanisms that are
capable of generating such patterns of learning and development. In particular, instead
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of doing only research with a narrow focus, such as language learning, visual learning,
or development of motor control, we can look at typical interactions between these
kinds of learning and other things such as varieties of play, growth of ontologies, kinds
of enjoyment, kinds of social interaction, and kinds of self-understanding. This may
help us overcome the difficulty of identifying what needs to be explained, referred to
as “ontological blindness” in Section 3. It can also address a further difficulty, namely
that different sub-communities disagree as to what is important or interesting, partly
because they are in competition for limited funds, or simply because of limitations in
what they have learned.

So instead of trying only to propose specific scientific goals, over which there is
likely to be strong disagreement regarding priorities, perhaps researchers can agree on
a principled methodology for generating and analysing relations between structured
collections of goals that can provide milestones and criteria for success, allowing new
goals to be set as we continue to apply the method. One such method is based on the
use of detailed scenarios described in Section 7.

9.2 Scenario-based backward chaining research

Suppose we describe in great detail a variety of scenarios involving various kinds of
human-like or animal-like behavior whose achievement is far beyond the current state
of the art. The dishwasher-loading, and picture-puzzle scenarios in Section 7 are
examples, but we could produce hundreds more, relating to everyday competences
of humans of different ages and sorts as well as other animals. If we then analyse
requirements for producing the detailed behaviors, this may enable us to generate
‘precursor scenarios’ for those scenarios, and precursors for the precursors, where a
precursor to a distant scenario at least prima facie involves competences that are likely
to play a role in that scenario.

9.3 Assessing (measuring?) progress

By careful analysis of long-term and intermediate goals, and working backward from
them, we can expect to identify a partially ordered set of scenarios. Those scenarios
can be annotated with hypotheses to be tested regarding kinds of knowledge, kinds
of learning, forms of representation, mechanisms and architectures that may enable
the scenarios to be achieved. That will define milestones for measuring progress. The
‘measure’ will not be a number, but a location in a partially ordered collection of
initially unexplained capabilities. Of course, as the research proceeds, the collection
of scenarios, the presupposition/precursor links, and the hypothesised components of
adequate models and explanations will change.

Sometimes rival hypotheses will be proposed, and that will help to sharpen some of
the research goals associated with the scenarios, by suggesting variants of the scenarios,
or constraints on implementation. That should lead to tests that can show which
hypothesis is better, or whether each is better only for a subset of cases. Sometimes one
hypothesis will eventually turn out to be better at defining a long-term “progressive”
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research program in the sense of Lakatos (1980).
We can also work forward from the current state of the art, identifying new

competences selected on the basis of their apparent relevance to the more remote
scenarios, but we are likely to make better short-term choices after we have sketched
at least some of the terrain a long way ahead: otherwise more attractive short term
goals will be selected.3

9.4 Replacing rivalry with collaboration

We can separate two kinds of meta-level tasks involved in planning research:

• the task of describing and analysing research problems, their relationships to other
problems, the evidence required to determine whether they have been solved, the
methods that might be relevant to solving them, and the possible consequences
of solving them; and

• the prioritising, justification, or selection of research problems: deciding what is
important and should be funded.

People can collaborate and reach agreement on the former while disagreeing about
the latter. The process of collaborating on the first should lead researchers to be
less intensely committed to answers to the second question: Questions about what
is important are not usually themselves important in the grand scheme of advancing
knowledge. (The philosopher J.L. Austin is rumoured to have silenced an objector by
saying ‘Truth is more important than importance’.)

Understanding the science better will enable us to discuss the benefits of different
ways of allocating scarce research resources. Work on clarifying and analysing a
problem can contribute to a decision to postpone research on the problem, by revealing
a hard prior problem, or by clarifying the relative costs and benefits of different
options. Meta-level theoretical work revealing good routes to intermediate goals can
be a significant contribution to knowledge about a hard problem, especially analysis
of which mechanisms, formalisms, architectures, or knowledge systems, will or will not
be sufficient to support particular types of scenarios (compare the role of complexity
theory in software engineering.)

By making construction, analysis and ordering of possible scenarios, along with
analysis of corresponding design options and trade-offs, an explicit community-wide
task (like the Human Genome project), we separate the task of identifying research
problems and their relationships, a task that can be done collaboratively, from projects
aiming to solve the problems or aiming to test specific rival hypotheses, which may be

3The analysis of the role of ordered scenarios in defining research milestones arose from discussions
with John Salasin and Push Singh in connection with the DARPA Cognitive Systems project, and
was later refined in the context of the EU-funded CoSy robotic project. There is now a Research
Roadmap project in the EU. See
http://www.cs.bham.ac.uk/research/cogaff/gc/targets.html,
http://www.eucognition.org/wiki/index.php?title=Research Roadmap
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done competitively. This can also reduce the tendency for research groups or sub-
communities to specify their own evaluation criteria independently of what others are
doing, a symptom of an immature and fragmented science. This can also provide
a means of evaluating research proposals. Computational modelling researchers often
propose to do what previous researchers had proposed to do, but failed to do, provoking
the question: Why should the new proposals be taken seriously? New proposals are
too often ‘forward chaining’ proposals regarding how known techniques, formalisms,
and architectures will be used to solve hard problems: a well-tried recipe for failure.
Perhaps, if more research is selected on the basis of detailed ‘backward-chaining’
analysis of long-term task requirements for integrated systems, a major change in the
fortunes of research projects will follow.

10 Conclusion

Previous chapters have mainly focused on achievements. This one has reviewed some
gaps that still need to be filled, outlining some ways of accelerating progress toward the
development of models that are more human-like, using deeper and more comprehensive
theories of human and animal cognitive competences and their development. There are
many gaps and much work still to be done. For instance, most of what can be done
by one- to two-year old toddlers is far beyond anything we can now model. We also
cannot yet model finding something funny or aesthetically pleasing, neither of which is
a matter of producing any behaviour.

Perhaps this partial overview will help provoke researchers to address new problems,
such as how ‘scaling out’ happens, and new ways of thinking about the long-term
challenge of integrating multiple competences. Perhaps documents like this will provoke
some very bright young researchers to strike out in new directions that in future years
will be seen to have transformed the research landscape, leading to deep new scientific
understanding and many new applications that are now far beyond the state of the art.
This will require overcoming serious institutional impediments to such developments.
It may also require the invention of new forms of computation.4
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