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Abstract

What we have learnt in the last six or seven decades about virtual machinery, as
a result of a great deal of science and technology, enables us to offer Darwin a new
defence against critics who argued that only physical form, not mental capabilities
and consciousness could be products of evolution by natural selection. The defence
compares the mental phenomena mentioned by Darwin’s opponents with contents
of virtual machinery in computing systems. Objects, states, events, and processes
in virtual machinery which we have only recently learnt how to design and build,
and could not even have been thought about in Darwin’s time, can interact with the
physical machinery in which they are implemented, without being identical with their
physical implementation, nor mere aggregates of physical structures and processes.
The existence of various kinds of virtual machinery (including both “platform”
virtual machines that can host other virtual machines, e.g. operating systems,
and “application” virtual machines, e.g. spelling checkers, and computer games)
depends on complex webs of causal connections involving hardware and software
structures, events and processes, where the specification of such causal webs requires
concepts that cannot be defined in terms of concepts of the physical sciences. That
indefinability, plus the possibility of various kinds of self-monitoring within virtual
machinery, seems to explain some of the allegedly mysterious and irreducible features
of consciousness that motivated Darwin’s critics and also more recent philosophers
criticising AI. There are consequences for philosophy, psychology, neuroscience and
robotics.
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1 Virtual machines and causation

Have you ever wondered how a word-processor makes adjustments when you insert a new
character in an already full line? If the extra character makes the length of the line exceed
the specified text width the line is broken and some of the characters at the end are inserted
at the beginning of the next line. This can cause the same thing to happen repeatedly for
many more lines. The portion removed from the end of one or more of the affected lines
may have to be moved onto the next page, which may cause that in turn to overflow. In
some cases every subsequent page of the document, is altered, even if they only acquire
new page numbers. Similar things can happen when a spelling checker runs, discovers an
error, and corrects it by inserting one or more characters. If the corrected word is shorter,
that can cause one or more lines, and possibly pages to shrink, in some cases also absorbing
text from the next line or page.

The mechanisms producing such changes are generally very effective and reliable (most
of the time) insofar as changes that occur in the document lead to required effects in other
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parts of the document, and also in various parts of the physical machinery, including active
memory, hard drives, visual displays, and possibly also printed pages.

This all depends on interactions among very different technologies developed since the
middle of the last century, some of which are constantly changing (e.g. the materials
used and design and construction processes used to make computer processors, memories,
interfaces, networks, displays, and other physical components). Some components can
change while others remain unaltered – as a result of ingenious use of interfacing
specifications that allow developers on one side of an interface to ignore what does or
does not change on the other side. In particular, while some things change rapidly others
may remain unchanged and still work, for instance the design and program specification
of an old text editor, like the one I use, whose core code has been unchanged for nearly a
quarter century.

The development of “cloud computing” (really a re-discovery of the usefulness of
mechanisms some of us have been using for several decades) can lead to wide geographical
dispersal of processes that previously all occurred in one box. As I type this text, sitting
at a PC in my study at home I am using a text editor running on another computer some
distance away, in my department. The editor was developed in the early 1980s, though
much newer technologies (including networking technologies) allow each key I press to
cause, almost instantaneously, effects in the remote machine, followed by changes to my
screen display. If I switch to working on my own computer, the effects are indistinguishable
to me, most of the time, though I then have to arrange my own backup processes, and
later transfer the files produced to the university machines. Either way, there is no change
in the correct description of what happens to the document when I insert a character or a
spelling corrector changes the text.

That is because the document exists in a running virtual machine, or more specifically
in a specific instance of a type of virtual machine, whose instances may have very different
physical implementations. Opening up the computers involved and peering into them with
the most sophisticated available physical sensing and measuring devices will not reveal
any characters, words, pages, or spelling errors, let alone story plots, heroes, theories,
debates, exhortations, arguments, etc. Data-mining processes that detect such things do
not measure physical properties of the machines used.

Moreover, even the people who design the software will not be able to tell that it is
running on these machines by opening them up and looking at patterns of physical activity.
Often the core software was developed decades before the physical technology that now
supports it, thanks to cooperation between designers of programming languages, compilers,
interpreters, operating systems, a host of new physical devices, device drivers, networking
protocols, and advances in materials science and electronic technology.

Most of the researchers and engineers involved in all that science and technology
perceive only a tiny subset of the intricate web of mechanisms they contribute to.
Probably nobody on this planet now understands the total systems we use. Things work
because many different sorts of machinery have been designed to work together, some
concerned with transmission of power, some with power-consuming physical changes in sub-
microscopic components, some with physical links between subsystems, some with storage
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and transmission of information expressed in bit patterns (not numbers, as commonly
supposed, since all the numerical computations are implemented in bit patterns, as are
non-numerical processes like text manipulation).

Many portions of the technology are designed to preserve relationships while things
change, or to propagate changes in information structures in very specific ways.
Propagation of information structures, e.g. bit patterns, or more complex structures
implemented in bit patterns, such as sentences or images, is different from propagating
energy, as happens in power transmission lines, or transporting matter as happens in
water pipes1

Causation among patterns of change in information structures depends on, but is
different from, causation involving changes in energy and matter. (For a more detailed
discussion of the nature of information see (Sloman, 2011).)

2 Layers of virtual machinery

When text-manipulation events occur in the document you are composing, there are also
far more events that occur in the digital circuitry making up the computer you are using.
Millions of transistors may change state causing bit patterns to be moved around in a linear
array of bit patterns, triggering other collections of events that modify magnetic patterns
on a hard drive and signals sent to the screen showing you what’s going on, or in some
cases driving a speech to text system, usually motivating you to make further changes
using your mouse and keyboard.

But there is no physical linear array of bit patterns. That array, like the document and
the documentation manipulation mechanisms, is a non-physical structure that is assumed
and manipulated by mechanisms created by designers of the system. The structure can
be treated as linear by mechanisms that impose an order on its parts. All those changes
and movements of bit patterns, depend on and are implemented in even “lower level”
physical structures and processes in which transistors change their state, electrical signals
are transmitted, and power is consumed and dissipated. A quantum physicist might tell
yet another, even more complex story about what is going on. What the physicists of
future centuries will say remains unknown.

At a higher level of abstraction a linear array of text items may be imposed on the
array of bit patterns, without directly mapping into an ordered subset of the patterns.
For instance the implementation may have chunks of text scattered around the “memory”
where the structure storing each chunk includes information about where the next chunk
is (using memory pointers, or addresses). If the text processing system is able to use those
cross links, it can treat all the text as linearly ordered. In that case there is virtual machine
concerned with text processing implemented in an abstract virtual machine concerned
with manipulation of bit patterns, which is implemented in digital circuitry, which is
implemented in atoms molecules and other physical components.

1For an excellent account of some of the history of the technology of information, including use of
signals based on fires many hundreds of years ago, see (Dyson, 1997).
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Does all this imply that someone developing a spelling checker has to know all about
the movements and state changes of billions of sub-atomic particles, or of millions of bit
patterns in digital systems implemented in physical machinery? No! If specification at
that level of detail were required, the task would be impossible for a human mind, not
least because the very same change of text in the very same place in the original file with
the very same re-arrangement ramifications, and very similar alterations to what appears
on the screen or on paper could occur while making use of very different transformations
of bit patterns and physical machinery, even if the same editing process is repeated on
the same computer later on, perhaps because the previously edited file was accidentally
deleted.

So the designer of the spelling corrector does not need to be able to think about all the
many possible changes in electronic, or worse, sub-atomic, structures and processes that
can occur when a spelling mistake is detected so as to ensure that the right pattern of
changes to remedy the fault occurs each time. The designer of the spelling checker need
not know any physics at all.

A text editor with spelling checker is just one among very many different types of
information processing machine that can be implemented as a virtual machine running on
and alongside other machines, including possibly several layers of lower level machinery.
One of the important facts about many such virtual machines is that they don’t merely
compute the answer to some logical or mathematical question, a task that can be performed
without any interaction with the environment. Rather the virtual machines I have been
talking about can interact with things in the physical environment – like a spelling checker
that sometimes asks the user to choose between alternative corrections. This ability to
receive information from and to act on a physical environment is a feature of many kinds
of information-based control system, including, for example flight control systems, and
the information processing systems of robots. Later I’ll present a claim that all living
organisms make use of information in their control functions, and the more sophisticated
ones need to use virtual machinery implemented in physical machines for that purpose,
rather than merely using physical machines.

One of Turing’s achievements was the specification of a Universal Turing Machine
(UTM) within which any other Turing machine could be emulated by specifying its
properties on the tape of a UTM (A. M. Turing, 1936). This led to proofs of important
theorems, e.g. about equivalence, decidability and complexity. It can also be seen as a
precursor of what we now call virtual machinery (not to be confused with virtual reality).
I shall try to show how the combination of virtuality, causal interaction and (relative)
indefinability can produce something new to science. The next few sections explain in
more general terms what virtual machines (especially non-physically describable machines
– NPDMs) are and why they are of much greater philosophical importance than is normally
understood, and why some of them are not equivalent to any Turing machine. After that
I’ll present implications regarding evolution of mind and consciousness.
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3 Virtuality

The UTM idea established that a computing machine can run by being implemented as
a virtual machine in another machine. (I think the gist of this idea was understood by
Ada Lovelace a century earlier.) The mathematical properties of a machine’s trajectory
through its state space will not depend on whether it is run directly in physical machinery
or as a virtual machine implemented in another computation. This has proved immensely
important for theorems of meta-mathematics and computer science and for some of the
practicalities of using one computer for multiple purposes, including time-sharing. One of
the consequences is that a Turing machine implementing another Turing machine can also
be a virtual machine implemented in a UTM: so that layered implementations are possible.

In the following decades, engineering developments emerged in parallel with
mathematical developments, with some consequences that have not received much
attention, but are of great philosophical interest and potentially also biological import. I’ll
suggest later that biological evolution “discovered” many of the uses of virtual machinery
long before we did. Unfortunately, the word “virtual” suggests something “unreal” or
“non-existent”, whereas virtual machines can make things happen: they can be causes,
with many effects, including physical effects. To that extent they, and the objects and
processes that occur in them, are real not virtual!

4 Causation and computation

Causation is a crucial aspect of the engineering developments. For example, it is possible
to take any finite collection of Turing machines and emulate them running in parallel, in
synchrony, on a UTM. This demonstrates that synchronised parallelism does not produce
any qualitatively new form of computation. The proofs are theorems about relationships
between abstract mathematical structures including sequences of states of Turing machines
– and do not mention physical causation. A running physical machine can be an instance
of such an abstract mathematical structure. However, being physical it can be acted on by
physical causes, e.g. causes that alter its speed. Sloman((1996)) pointed out that theorems
can break down for physical Turing machines that are not synchronised. For example, if
TM T1 repeatedly outputs “0”, and T2 repeatedly outputs “1”, and the outputs are
merged to form a binary sequence, then if something causes the speeds of T1 and T2 to
vary randomly and they run forever, the result could (and most probably would) be a non-
computable infinite binary sequence, even though each of T1 and T2 conforms to theorems
about Turing machines.

Likewise, if a machine has physical sensors and some of its operations depend on the
sensor readings, then the sequence of states generated may not be specifiable by any TM,
if the environment is not equivalent to a TM. So the mathematical “limit” theorems do
not apply to all physically implemented information-processing systems.

Mathematical entities, such as numbers, functions, proofs, and abstract models
of computation, do not have spatio-temporal locations, whereas running instances of
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computations do, some of them distributed across networks. Likewise, there are no causal
connections, only logical/mathematical relationships, between the TM states that form the
subject matter of the mathematical theory, whereas there are causal connections in the
running instances, depending on the physical machinery used and the physical environment.

So, notions like “reliability” are relevant to the physical instances, but not the
mathematical abstractions. From a mathematical point of view there is no difference
between three separate computers running the same program, and a single computer
simulating the three computers running the program. However an engineer aiming for
reliability would choose three physically separate computers with a voting mechanism as
part of a flight control system, rather than a mathematically equivalent, equally fast,
implementation in a single computer (Sloman, (1996)).

Physical details of time-sharing of the three machines have causal consequences. When
the three separate machines running in synchrony switch states in unison, nothing happens
between the states, whereas in the time-shared implementation on one computer, the
underlying machine has to go through operations to switch from one virtual machine to
another. Such “context switching” processes have intermediate sub-states that do not
occur in the parallel implementation. A malicious intruder, or a non-malicious operating
system, will have opportunities to interfere with the time-shared systems during a context-
switching process, e.g. modifying the emulated processes, interrupting them, or copying
or modifying their internal data,

Such opportunities for intervention (e.g. checking that a sub-process does not violate
access restrictions, or transferring information between devices) are often used both
within individual computers and in networked computers causally linked to external
environments, e.g. sensing or controlling physical devices, chemical plants, air-liners,
commercial customers, social or economic systems, and many more. In some cases, analog-
to-digital and digital-to-analog devices, and direct memory access mechanisms now allow
constant interaction between processes. See also (Dyson, 1997).

The technology supporting the causal interactions includes (in no significant order):
memory management, paging, cacheing, interfaces of many kinds, interfacing protocols,
protocol converters, device drivers, interrupt handlers, schedulers, privilege mechanisms,
resource control mechanisms, file-management systems, interpreters, compilers, “run-
time systems” for various languages, garbage collectors, mechanisms supporting abstract
data types, inheritance mechanisms, debugging tools, communication channels within
and between machines (“pipes” and “sockets”), shared memory systems, firewalls, virus
checkers, software viruses, security systems, operating systems, application development
systems, name-servers, password checkers, and more. All of these can be seen as
contributing to intricate webs of causal connections in running systems, including
preventing things from happening, enabling certain things to happen in certain conditions,
ensuring that if certain things happen then other things happen, and in some cases
maintaining mappings between physical and virtual processes. The word-processing
example introduced above illustrates one of the simpler causal webs to be found in
computing systems.

7



5 Varieties of virtual machinery

A running virtual machine can have many effects, including causing itself to change.
Understanding how virtual machines can cause anything to happen requires a three-way
distinction, between: (a) Mathematical Models (MMs), e.g. numbers, sets, grammars,
proofs, etc., (b) Physical Machines (PMs), including atoms, voltages, chemical processes,
electronic switches, etc., and (c) Running Virtual Machines (RVMs), e.g. calculators,
games, formatters, provers, checking spellers, email handlers, operating systems, etc.

MMs are static abstract structures, like proofs and axiom systems. Like numbers, they
cannot do anything. They include Turing machine executions whose properties are the
subject of a mathematical proofs. Unfortunately some uses of “virtual machine” refer to
MMs, e.g. “the Java virtual machine”. These are abstract, inactive, mathematical entities,
not RVMs, whereas PMs and RVMs are active and cause things to happen.

Physical machines on our desks can now support varying collections of virtual machinery
with various kinds of concurrently interacting components whose causal powers operate in
parallel with the causal powers of underlying virtual or physical machines, and help to
control those physical machines. Some of them are application RVMs that perform specific
functions, e.g. playing chess, correcting spelling, handling email. Others are platform
RVMs, like operating systems, or run-time systems of programming languages, which are
capable of supporting many different higher level RVMs. Different RVMs have different
levels of granularity and different kinds of functionality. They all differ from the granularity
and functionality of the physical machinery.

Relatively simple transitions in a RVM can use a very much larger collection of changes
at the machine code level and an even larger collection of physical changes in the underlying
PM – far more than any human can think about. (That was not true of the earliest
virtual machines running on single-process computers with at most hundreds or thousands
of memory locations and no external interactions.) Apart from the simplest programs
even machine-code specifications are unmanageable by human programmers. Automatic
mechanisms (including compilers and interpreters) are used to ensure that machine-level
processes support the intended RVMs.

6 Self-monitoring, self-control, and self-modification

Interpreted and compiled programming languages have important differences in this
context. An interpreter ensures dynamically that the causal connections specified in
the program are maintained. If the program is changed while running, the interpreter’s
behaviour (or potential behaviour under some conditions) will change. In contrast, a
compiler statically creates machine code instructions to ensure that the specifications in
the program are subsequently adhered to, and the original program plays no role thereafter.
Changing it has no effect, unless it is recompiled (e.g. if an incremental compiler is used).
In principle the machine code instructions can be altered directly by a running program
(e.g. using the “poke” command in Basic) but this is usually feasible only for relatively
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simple changes and would probably not be suitable for altering a complex plan after new
obstacles are detected, and modifying the physical wiring would be out of the question.
So self-monitoring and self-modification are simplest if done using process descriptions
corresponding to a high level virtual machine specified in an interpreted formalism and
least feasible if done at the level of physical, structure. Processes monitoring and modifying
compiled machine code instructions are an intermediate case.

There are two different benefits of using a suitable RVM: namely the already mentioned
coarser granularity of events and states compared with a PM or low level RVM, and
the use of an ontology related to the application domain (e.g. playing chess, making
airline reservations). Both of these are indispensable for processes of design, testing,
debugging, extending, and also for run-time self-monitoring and control, which would be
impossible to specify at the level of physical atoms, molecules or even transistors (because
of explosive combinatorics, especially on time-sharing, multi-processing systems where the
mappings between virtual and physical machinery keep changing). The coarser grain,
and application-centred ontology makes self-monitoring more practical when high level
interpreted programs are run than when machine code compiled programs are run. This
relates to the third aspect of some virtual machinery: ontological irreducibility.

7 Implementable but irreducable

The two main ideas presented so far are fairly familiar, namely (a) a VM can run on
another (physical or virtual) machine, and (b) RVMs (and their components) running
in parallel can interact causally with one another and with things in the environment.
A third consequence of 20th Century technology is not so obvious, namely: some VMs
include states, processes and causal interactions whose descriptions require concepts that
cannot be defined in terms of the language of the physical sciences: they are non-physically
describable machines (NPDMs). Virtual machinery can extend our ontology of types of
causal interaction beyond physical interactions.

This is not a form of mysticism. It is related to the fact that a scientific theory can
use concepts (e.g. “gene”, “valence”) that are not definable in terms of the actions and
observations that scientists can perform. This contradicts both the “concept empiricism”
of philosophers like Berkeley and Hume, originally demolished in (Kant, 1781), and also
its modern reincarnation, the “symbol grounding” thesis popularised by (Harnad, 1990),
which also claims that all concepts have to be derived from experience of instances.

The alternative “theory tethering” thesis, explained in (Sloman, 2007), is based on
the conclusion in 20th Century philosophy of science that undefined symbols used in deep
scientific theories get their meanings primarily from the structure of the theory, though a
formalisation of such a theory need not fully determine what exactly it applies to in the
world, since any formal system can have many different (Tarskian) models.2

2For instance it is well known that any model of the axioms of projective geometry remains a model if
lines and points are swapped, and the predicate and relation symbols are reinterpreted accordingly.
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The remaining indeterminacy of meaning of a formally specified theory is partly reduced
by specifying forms of observation and experiment (sometimes called “bridging rules” or
“meaning postulates” (Carnap, 1947)) that are used in testing and applying the theory,
“tethering” the semantics of the theory to specific portions or aspects of the world. The
meanings are never uniquely determined, since it is always possible for new observations
and measurements (e.g. of charge on an electron) to be adopted as our knowledge and
technology advance.

Ontologies used in specifying VMs, e.g. concepts like “pawn”, “threat”, “capture”,
etc. used in specifying a chess VM, are also mainly defined by their role in the VM,
whose specification expresses an explanatory theory about chess. Without making use of
such concepts, which are not part of the ontology of physics, designers cannot develop
all the implementations that are currently found useful or entertaining, and users cannot
understand what the program is for, or make use of it.

So, when the VM runs, there is a physical implementation that is also running (with
changes of physical state, movements of physical matter, and transition and dissipation of
energy), but the two machines are not identical: there is an asymmetric relation between
them. The PM is an implementation of the VM, but the VM is not an implementation of
the VM, and there are many other statements that are true of one and false of the other.

A running chess VM, but not the underlying PM, may include threats, and defensive
moves. And neither “threat” nor “defence” can be defined in the language of physics.3 So,
not all the concepts used to describe objects, events and processes in a RVM are definable
in terms of concepts of physics even though the RVM is implemented in a physical machine.
The detailed description of the PM is not a specification of the VM, since the VM could be
the same even if it were implemented on a very different physical machine with different
physical processes occurring during the execution even of a particular sequence of chess
moves.

The VM description is also not equivalent to any fixed disjunction of descriptions since
the VM specification determines which PMs are adequate implementations. Programmers
can make mistakes, and bugs in the virtual machinery are detected and removed, usually
by altering a textual specification of the abstract virtual machinery not the physical
machinery. When a bug in the program is fixed it does not have to be fixed differently
for each physical implementation – different compilers or interpreters for the language can
handle the mappings between virtual machine and physical processes in different physical
machines, and those details are not part of the specification of the common virtual machine.

Neither can the VM machine states and processes be defined in terms of physical input-
output specifications (as assumed in some varieties of functionalism), since very different
technologies can be used to implement interfaces for the same virtual machine, e.g. using
mouse, keyboard, microphone or remote email for input. Moreover, some VMs perform
much richer tasks than can be fully expressed in input-output relations, e.g. the visual
system of a human (or future robot!) watching turbulent rapids in a river. (Compare the
critique of Skinner in (Chomksy, 1959)).

3This needs more discussion than I have space for.
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The indefinability of VM ontologies in terms of PM ontologies does not imply that
RVMs include some kind of “spiritual stuff” that can exist independently of the physical
implementation machinery, as assumed by those who believe in immortal minds, or souls.
Despite the indefinability there are close causal connections between VM and PM states,
but that includes things like detection of a threat causing a choice of defensive move,
which is a VM process that can cause changes in the physical display and the physical
memory contents. We thus have what is sometimes referred to as “downwards causation”,
in addition to “upwards causation” and “sideways causation”, within the RVM, or between
RVMs running concurrently.

The complex collection of hardware, firmware, and software technologies, developed
since Turing’s time has enabled us to build information-processing systems of enormous
complexity and sophistication performing many tasks that were previously performed only
by humans and some that not even humans can perform. But perhaps more important in
the long term is the new way of thinking about non-physically describable virtual machinery
with causal powers that we have begun to develop. The new conceptual tools are relevant
not only to what human designers can do but also to what self monitoring, self-controlling
systems may be able to do. This has deep significance for our understanding of evolution.

8 Darwin’s critics

Darwin’s critics, some of whom are quoted in (Sloman, 2010a), argued that his evidence
supported only the hypothesis that natural selection produces physical forms and
behaviours. Nobody could understand how physical mechanisms can produce mysterious
and externally unobservable mental states and processes: “The explanatory gap”. Since
Darwin’s time the problem has been re-invented and re-labelled several times, e.g. as
the problem of “Phenomenal Consciousness” (Block, 1995) or the “Hard Problem” of
consciousness (Chalmers, 1996). The topic was touched on and side-stepped by Turing
in (1950). It remains unclear how a genome can, as a result of physical and chemical
processes, produce the problematic, apparently non-physical, externally unobservable,
personal experiences (qualia) and processes of thinking, feeling and wanting.

Earlier I presented Universal Turing Machines as theoretical precursors of technology
supporting networks of interacting running virtual machines (RVMs) sensing and
controlling things in their environment. Such RVMs are fully implemented in underlying
physical machines (PMs) but the concepts used to describe the states and processes in some
RVMs (e.g. “pawn” and “threat” in chess VMs) are not definable in the language of the
physical sciences. We now develop the biological application of these ideas, explaining how
self-monitoring, self-modifying RVMs can include some of the features of consciousness,
such as qualia, previously thought to be mysterious, paving the way for a theory of how
mind and consciousness might have evolved.

11



9 Epigenesis: bodies, behaviours, and minds

Turing was interested in both evolution and epigenesis and made some pioneering
suggestions regarding the processes of morphogenesis – differentiation of cells to form
diverse body parts during development. As far as I know, he did not do any work on
how a genome can produce behavioural competences of the complete organism, including
behaviours with complex conditional structures so that what is done depends on internal
and external sensory information, though he briefly considered learning, in (A. Turing,
1950)4.

It is understandable that physical behaviours, such as hunting, eating, escaping
predators, and mating, should influence biological fitness and that evolution should select
brain and other modifications that produce advantageous behaviours. But there are
internal non-behavioural competences whose biological uses are not so obvious: thinking,
reminiscing, perceiving with enjoyment, finding something puzzling and attempting to
understand it. It is not obvious how biological evolution could produce mechanisms that
are able to support such mental processes.

Many species develop behavioural and internal competences that depend on the
environment during development (e.g. which language a child speaks, and which
mathematical problems are understood), so the genome-driven processes must create some
innately specified competences partly under the influence of the genome and partly under
the influence of combinations of sensorimotor signals during development ((Held & Hein,
1963; McCarthy, 2008)). For humans at least, the internal processes of competence-
formation though brain modification must go on long after birth, suggesting that the
genome continues producing, or enabling, or constraining effects (including changes in
sexual and parental motivations and behaviours) long after the main body morphology
and sensory-motor mechanisms have developed.

10 Self-transformation in biological VMs

(Karmiloff-Smith, 1992) presents many examples where after achieving behavioural
competence in some domain, learners (including some non-human species) re-organise
their understanding of the domain in such a way as to give them new abilities to think
and communicate about the domain. After children develop linguistic competences based
on known phrases they spontaneously switch to using a generative syntax that allows
derivation of solutions to novel problems, instead of having to learn empirically what does
and does not work. (Craik, 1943) pointed out the value of such mechanisms in 1943,
suggesting that they could be based on working mental models.5 (Grush, 2004) and others
suggest that such models could work as simulations or emulations. However, when used

4His suggestion about learning based on a tabula rasa can be criticised .
5I have not been able to find out whether Craik and Turing ever interacted. Turing must have known

about his work, since he was a member of the Ratio club, founded in honour of Craik, shortly after he
died in a road accident in 1945.
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for reasoning purposes, as opposed to statistical prediction, a decomposable information
structure is required, for instance when proving geometrical theorems ((Sloman, 1971)).

The mental models we use to explain and predict, include things like gear wheels,
bicycles, electric circuits and other mechanisms that are too new to have been part of our
evolutionary history. So, at least in humans, the model construction process cannot all be
encoded in the genome: the specific models need information obtained after birth from the
environment, and, in the case of creative inventors, ideas thought up by the individual.

So, the genome specifies not only physical morphology and physical behavioural
competences, but also a multi-functional information-processing architecture developed
partly in species-specific ways, over an extended time period, partly under the control of
features of the environment, and includes not only mechanisms for interpreting sensory
information and mechanisms for controlling external movements, but also mechanisms for
building and running predictive and explanatory models of structures and processes, either
found in the environment or invented by the individual6. How can a genome specify ongoing
construction processes to achieve that functionality? I don’t think anyone is close to an
answer, but I’ll offer a conjecture: evolution discovered the virtues of virtual machinery
long before human engineers.

Previous sections outlined the benefits of virtual machinery in human-designed
computing systems and their advantages compared with specifying, designing, monitoring,
controlling and debugging the physical machinery directly, because of the coarser
granularity and the use of application-relevant semantics. Perhaps biological evolution
also found the use of virtual machinery in animals advantageous for specifying types of
competence at a relatively abstract level, avoiding the horrendous complexity of specifying
all the physical and chemical details. The initial specification of behavioural competences
in the genome might be far more compact and simpler to construct or evolve if a virtual
machine specification is used, provided that other mechanisms ensure that that “high
level language” is mapped onto physical machinery in an appropriate way. The use of
self-monitoring processes required for learning and modifying competences, including de-
bugging them, may be totally intractable if the operations of atoms, molecules or even
individual neurones are monitored and modified, but more tractable if the monitoring
happens at the level of a RVM.

So something like a compiler is required for the basic epigenetic processes creating
common features across a design, and something more like an interpreter to drive
subsequent processes of learning and development.

6It is argued in (Sloman, 1979, 2008) that this requires types of “language” (in a generalised sense of
the word, including structural variability and compositional semantics) that evolved, and in young humans
develop, initially for internal information-processing, not for external communication. We can call these
“generalised languages” (GLs).
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11 The evolution of organisms with qualia

We have seen that virtual machinery can be implemented in physical machinery, and events
in virtual machines can be causally connected with other VM events and also with physical
events both within the supporting machine and in the environment, as a result of use
of complex mixtures of technology for creating and maintaining virtual/physical causal
relationships developed over the last seven decades. Some of the events and processes
in virtual machines are not identical with the underlying physical machinery and their
description requires an ontology that is not definable in terms of the ontology of physics.

The use of such virtual machinery can enormously simplify the design, debugging,
maintenance, and development of complex systems. Finally, and perhaps most importantly,
in machines that need to monitor and modify their own operations, performing the
monitoring and modifications at the level of virtual machinery can be tractable where the
corresponding tasks would he intractably complex and too inflexible if done by monitoring
and modifying physical machinery.

So, biological evolution could have gained in power, flexibility, and speed of
development by using virtual machine descriptions in the genome for specifying behavioural
competences, instead of descriptions of the physical details. Moreover if some of the
virtual machinery is not fully specified in the genome, and has to be developed after
birth or hatching by making use of new information gained by the individual from the
environment, then that post-natal construction process will be much simpler to specify,
control and modulate if done at the virtual machine level rather than specifying all the
chemical and neuronal changes required. And finally self-monitoring, self-control, and self-
modification in a sophisticated information-processing system needs to control virtual not
physical, machinery.

12 Towards an understanding of qualia

For an intelligent organism perceiving, thinking about and acting on a rich and complex
environment that contains enduring objects and processes at various locations not all
constantly in perceptual range, it will be useful to store information about the environment
using one or more appropriate virtual machines. Visual and haptic processes perceiving
the same portion of the environment could include overlapping virtual machines dealing
with different aspects of the environment processed at different levels of abstraction in
parallel (Sloman, 2009). Data-structures representing visible portions and features of the
environment, e.g. visible portions of surfaces with colour, shape, orientation, curvature,
speeds of motion or rotation, and relationships to other surface fragments (i.e. not the
specific sensory signals), will then be components of virtual machines. If the information
structures created during visual perception, are sometimes accessed by self-monitoring
processes that attend not to what is in the environment, but to the content of what is
currently being perceived, then we potentially have an explanation of the phenomena that
have led to philosophical and other puzzles about the existence and nature of sensory
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qualia, which are often regarded as defining the most difficult aspect of mind to explain in
functional terms, and whose evolution and development in organisms Huxley and others
found so difficult to explain. See also (Sloman & Chrisley, 2003).

(a) (b)

Figure 1: Each of the two figures is ambiguous and flips
between two very different views. (a) can be seen as a 3-
D wire frame cube. For most people it flips between two
different views of the cube, in which the 3-D locations,
orientations and other relationships vary. In (b), the
flip involves changes in body parts, the facing direction,
and likely motion – requiring a very different ontology.

To illustrate this point: when ambiguous figures, e.g. in Figure 1, are experienced
as switching from one view to another, that will involve a change in the contents of
some virtual machinery, and those contents will be represented at a virtual machine level,
referring to different perceptual contents, including distance, direction of slope, body-parts,
direction faced, etc. More generally, we can attempt to identify the information contents
needed in a wide variety of perceptual experiences that perform some function in enabling or
controlling behaviour or testing theories, or generating hypotheses, surprises or questions.

Attempting to redesign, test and debug, working examples of such mental processes
in robots will help us understand more clearly how it may be possible for the virtual
machinery to be extended so as to include components that can detect, record, and make
use of information about, what the contents of perceptual experiences are, i.e. what qualia
are. As argued in (Sloman & Chrisley, 2003), if the concepts used for recording such
meta-information are not all pre-programmed but are produced by internal self-organising
classifiers as proposed in (Kohonen, 1989), then the resulting concepts, though useful for
the individual concerned, may be inherently uncommunicable to others because their use
implicitly refers to the discrimination mechanisms used in their application, an example of
what (Campbell, 1994) calls “causal indexicality”.

Ryle, Dennett and others, have attempted to identify deep confusions in talk about
consciousness and qualia, but such things clearly exist, though they are hard to characterise
and to identify in other individuals and other species. Analysis of examples, including
ambiguous figures, such as Figure 1, helps to determine requirements for explanatory
mechanisms. Such pictures illustrate the intentionality of perceptual experience, i.e.
interpreting something as referring to something else and the different ontologies used by
different experiences. I suggest that that is only possible within running virtual machinery,
since concepts like “interpreting”, “referring”, “intending” and “looking”, are no more
definable in the language of physics than “pawn” or “threat”.

Many organisms can, I suspect, create and use such virtual entities without having the
meta-semantic mechanisms required to detect and represent the fact that they do. One of
the important facts relating to the diversity of kinds of mind, referred to in (Whittaker,
1884), is that not all organisms that have qualia know that they have them! We can
separate the occurrence of mental contents in an organism from their detection by the
organism, which requires additional architectural complexity to support self-observation
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and self-description mechanisms. I expect we shall need to experiment with a range of
increasingly complicated working examples, using different kinds of mechanism, in order to
understand better some of the questions to be asked about mental phenomena in biological
organisms. This is very close to Arbib’s research programme described in (Arbib, 2003).

13 Supervenience, realisation, identity and levels

This section is an attempt to connect with some of the suggestions analytical philosophers
have made about the mind body relation and how that compares with relationships between
computers and their computations. The topic is vast with many detailed ramifications, and
all I can do here is indicate some differences between the ideas presented here and a subset
of previous attempts to characterise mind-matter relationships. (I don’t claim to have
surveyed everything written or said on this topic).

The main point is that, as far as I know, no other philosopher has attempted to
characterise in detail the relationships between contents of running virtual machines in
complex computing systems and the physical technology on which they depend. Insofar as
computation has been mentioned at all in this context it is usually assumed to be either
(a) just the execution of a single program which takes some initial input and later produces
a result (e.g. calculating the value of a mathematical function for certain arguments, or
answering the question whether a proof of a specific formula exists in some formal system),
or (b) the operation of a finite state machine that at various points can select the next
action on the basis of some input received, as described in (Block, 1996), for example. Both
(a) and (b) illustrate what has been called “Atomic State Functionalism”, in contrast with
“Virtual Machine Functionalism” (Sloman & Chrisley, 2003).

Such systems do not have the characteristics I have described in running virtual
machines, namely multiple, concurrently active, non-physical (software) mechanisms
influencing one another’s behaviours while some of them are also connected with specific
internal hardware subsystems and also things going on in the environment, sensed by
or controlled by processes in the running virtual machines. Such a system can be
thought of as a complex network of causally connected subsystems in which many control
and communication functions are exercised in parallel, some of them including links to
structures and processes that are not part of the system. Moreover, during the operation
of such a system the number of sub-systems and the number and types of connections
between sub-systems can change, as can the underlying physical machinery, e.g. because
processes get relocated in the machine’s memory, or because some physical components are
repaired or replaced, or in the case of animals, temporarily modified by drugs or hormones.
Some programming systems allow the program instructions to be changed at run time,
either by changing interpreted source code or by using an incremental compiler to change
code at run time7. This could enable future robots to grow their virtual machinery while
interacting with the environment, as human infants and toddlers appear to do.

7As in Poplog http://www.cs.bham.ac.uk/research/projects/poplog/freepoplog.html
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Virtual machine supervenience is a much richer and deeper relationship than
supervenience of states or properties. Although initially developed in solutions to complex
information engineering problems, VM supervenience has considerable implications for
science as well as philosophy of mind and metaphysics.

Moreover when changes in virtual machines occur they need not all be changes in
measurable quantities, such as size, orientation, distance, current, voltage, magnetic fields,
and so on. That’s because the processes can include things like construction, transmission,
and analysis of complex structured entities such as words, sentences, paragraphs, problems,
theories, explanations, diagrams, parse-trees, graphs, topological maps, logical formulae,
proofs, intentions, plans, questions, answers to questions, proposals, decisions, and more.
(Some of these are information-bearing structures, others information contents, and some
are both.) Insofar as the variations in running virtual machines are not all quantitative,
the causal relations cannot be expressed in algebraic formulae (with variables ranging
over numerical values), as often happens in the physical sciences and some branches of
engineering. For example, causal relationships in a spelling corrector or chess playing
virtual machine are expressed in the form of algorithms and databases, not equations.
A corollary is that much philosophical discussion of how to detect causal connections by
comparing rates of change is irrelevant since in many cases there is no well-defined notion of
amount of change and therefore no measure of rate of change – though in some cases there
are partial orderings – e.g. if one set of changes subsumes another, while other sets merely
overlap. Such changes have to be described rather than measured. This has implications for
the form of psychological theories. (Similar observations are made in (Johansson, 2008),
though with the mistaken assumption that mathematics cannot cope with non-numeric
structures and processes.)

For some of the contents of virtual machinery, such as contents of sophisticated visual
systems in animals, or the changes that occur as a mathematician looking at a diagram
notices a way of modifying it to construct a proof in euclidean geometry, we do not yet know
what the entities are that the various mental subsystems construct and manipulate. I’ll
assert without argument here that what goes on in most forms of animal visual processing
remains a mystery, although many physical and physiological details are known, including
which parts of brains are involved, in some cases. It is hard to be sure exactly which parts
are involved, or what functions are performed by the active parts.

All of that complexity is usually ignored when philosophers discuss mind-brain
relationships. For example, one of the themes in recent philosophy has been discussion
of how mental states or mental properties relate to, or supervene on, brain states (or, more
generally, physical states including aspects of the environment). That’s a pale shadow
of the question I have been posing about how a complex mental machine performing a
host of perceptual, learning and control functions, is related to and supervenes on physical
machinery.

One of the important ideas goes back to a concept introduced by G.E. Moore in
connection with ethics around 1903. He said that ethical properties of actions, such as
their goodness or badness “supervene” on their non-ethical properties, such as what was
done by whom to whom and with what intention and what consequences. The relation of
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supervenience does not allow the ethical properties to be deduced logically from the other
properties. It is a weaker relation, namely that it is impossible for two actions to differ
ethically, e.g. one being good and the other bad, unless they also differ in a non-ethical
way. This idea was transferred to philosophy of mind by D.Davidson around 1970. He
asked whether mental properties and states supervene on physical properties and states in
the sense that it is impossible for a person’s mental properties or state to change unless
there is also a physical change. This and related ideas have been elaborated by various
philosophers in the last few decades, e.g. (Kim, 1993, 1998).

The idea of supervenience is useful, but covers significantly different cases. For example,
what I have been talking about can be described as “virtual machine supervenience” since
what supervenes on a physical system, or on lower level virtual machinery is not a state or a
property but a running and changing virtual machine with interacting internal components.
We can contrast this with other sorts of supervenience.

“Pattern supervenience” occurs when a pattern defined by a collection of relationships
necessarily exists when some other pattern exists: E.g. vertical columns of dots supervene
on a collection of horizontal rows of equally spaced dots.

“Agglomerative supervenience” (which could also be called “part-whole
supervenience”), exists when some property or entity is defined in terms of the
collective contribution of many parts of an object. Examples include aspects of a physical
object such as its mass, centre of gravity, angular momentum, or kinetic energy which can
be computed from the properties and arrangements of the parts. These are sometimes
described as “useful fictions”, by philosophers who misunderstand their role in science.
For example, the centre of gravity of a rigid object is not a fiction: it is a real location
defined by the distribution of matter of the object. Forces directed through the centre of
gravity (or centre of mass) produce different effects from other forces. A change in the
centre of gravity of an object can cause it to fall over.

“Mathematical supervenience” occurs if whenever something has property P1 it also has
property P2 because having P2 is mathematically derivable from having P1. For example
having an odd number of legs can supervene on having five legs. Being a polygon with five
vertices supervenes on being a polygon with five sides. In this case the supervenience is
symmetric. It is not known whether being the sum of two prime numbers supervenes on
being an even number.

The existence of shadows illustrates a kind of supervenience. A shadow cannot exist
without a light source, a partly illuminated surface and an intervening object that casts
the shadow. If the shadow changes in any way then some aspect of the light source, the
intervening object or the partly illuminated surface must have changed. This sort of thing
might be described as “causal supervenience”.

For some kinds of supervenience there is a defensible claim that the supervenience is
a type of identity. For example if a rectangular pattern consisting of horizontal evenly
spaced rows of evenly spaced dots exists, then a pattern of equally spaced vertical columns
of evenly spaced dots also necessarily exists. It could be argued that the two patterns are
the same thing viewed differently using selective attention, and described differently.

Some philosophers have attempted to solve the puzzle of how mental events can cause
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physical events if the physical world is causally closed, by arguing that mental states,
properties, events, etc. not only supervene on physical entities but are identical with them,
so that mental causation just is physical causation.

The identity claim is undermined by the existence of virtual machine processes whose
descriptions require concepts (such as “attack” or “threaten” in chess, “incorrect spelling”)
that are not definable using the concepts of the physical sciences, along with the claim that
the relationship between the virtual machinery and the physical machinery is not symmetric
(they are not each supervenient on the other), However there is no space here for a full
discussion.

Another kind of attempt to rebut claims that both physical and non-physical events
can be causes argues that the virtual machine events and processes are “epiphenomenal”,
i.e. they are incapable of being causes. However, in the case of events in virtual machinery
running in computing systems, that is just false: the whole point of designing and
constructing many virtual machines is to ensure that certain things go on in them that
cause other things to happen, and there are now vast numbers of virtual machines running
on this planet because of such effects, which are very hard to produce using only physical
machinery. Their production in virtual machinery is also non-trivial. But a great deal of
effort and ingenuity by hardware and software engineers has made that possible.

I don’t claim to have settled all the philosophical problems and disputes, though I
hope it is clear that the phenomena of virtual machine supervenience described above are
different in important ways from the much simpler cases philosophers have previously
discussed. They are different in their complexity, the richness of content of what
supervenes, and in the mappings between virtual machines and the underlying physical
machinery, which in some cases are rapidly changing relationships. I have tried to argue
that this was very important for evolution of information processing systems in organisms,
and conjectured that the evolution of virtual machines that can inspect, evaluate, remember
and otherwise make use of some of their own virtual machine contents (e.g. the intermediate
forms of representation used in visual information processing) will eventually be shown to
explain the phenomena that gave rise to philosophical discussions of qualia. We can now
specify that qualia are potentially introspectible components of virtual machinery, and by
analysing functions of vision we can see why the existence of self monitoring mechanisms
with access to the contents of qualia are, in some situations, biologically useful. (For
example, learning how visual experiences change with location makes it possible sometimes
to reason about the visual information available to others. A side effect of the human
ability to attend to internal features of visual information was making painting and drawing
possible.)

Some philosophical functionalists attempt to define various types of mental state in
terms of sets of input-output relationships. A common, and much debated objection to
this is the zombie argument: anti-functionalists claim that they can imagine zombies,
namely entities whose external features and visible behaviours in all circumstances make
them indistinguishable from human beings, even though they lack all mental states and
processes, and in particular lack consciousness. I have no doubt that many people can
imagine that and in principle such machines could be implemented – with behaviours
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indistinguishable from human behaviours, but without the internal virtual machinery I
have been describing. They might, for instance, at least in principle, have huge lookup
tables determining behaviour in all possible circumstances, instead of the kind of virtual
machinery working out what to do that I have been referring to.

But trying to use the zombie argument against virtual machine functionalism of the
sort presented here requires imagining that all the internal, invisible, non-physical causal
interactions in a human can be replicated without any mental states and processes, in a
zombie devoid of consciousness is another matter. The claim to be able to imagine that
is just philosophical bluster: no human is capable of imagining all the detailed virtual
machine processes required to replicate human functionality, and the claim to be able to
imagine it all happening in a mindless zombie should be taken no more seriously than
the incoherent claim to be able to imagine the whole universe moving west, or the claim
to imagine that it is now noon at the centre of the earth. People can imagine that they
imagine it, but that doesn’t prove they really can imagine it. In any case, the history
of mathematics shows clearly that what people think they can imagine is not a proof of
possibility.

14 Implications for the future of philosophy

Experience shows that, for many thinkers, this talk of virtual machinery whose main
features cannot be described in the language of physics will be rejected as ridiculous
mumbo-jumbo even though exactly this sort of talk has proved essential for the design and
development of ever more sophisticated information processing systems used for various
practical purposes, and may be increasingly important as we require our systems to become
better at knowing what they are doing and how they do it, and where necessary improving
what they do after detecting problems. As far as I know, the only educational process for
producing a deeper understanding of the issues is to let people have personal experience of
trying to build machines that can do things humans and other animals can do – instead of
trying to discuss these topics only on the basis of general ideas about what computation
is.

Experience also shows that for thinkers of a different sort none of this will shake belief
in an unbridgeable mind/body explanatory gap. As argued in (Sloman, 2010b), some cases
of opposition will be based on use of incoherent concepts (e.g. a concept of “phenomenal
consciousness” defined to involve no causal or functional powers – which leaves as a mystery
how people come to talk about them.). Working systems that show how different robot
designs correspond to different products of evolution may help. But it is likely that no
form of argument or practical experience of designing working systems will convince people
who simply do not wish to believe that the workings of human minds can be understood
in terms of information processing mechanisms, including possibly some that work in ways
that are very different from present day computers.

Moreover, current achievements in AI vision, motor-control, concept-formation, forms
of learning, language understanding and use, motive-generation, decision-making, plan-
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formation, problem-solving, and many others, are still (mostly) far inferior to those of
humans and other animals, in part because designers typically consider only a small subset
of the requirements for biological intelligence. For example many researchers aim only
to produce robots with the kind of competence that (Karmiloff-Smith, 1992) refers to as
“behavioural mastery”, and totally ignore the other kinds of abilities humans develop,
including the ability to reflect in advance about possible combinations of actions that are
suited to this particular environment and have never previously been proposed.

One of the abilities young humans, and also a subset of other species, develop is the
ability to work out in advance what will happen if some action is performed instead of
having to find out by trying to perform it, which could be fatal, as noticed by (Craik, 1943).
Some other species also seem to have this sort of capability. In humans it appears to be
closely related to the development of mathematical competences, which allow problems
to be solved by reasoning about abstract structures, instead of having always to examine
objects in the environment, as required for the physical sciences. At present none of the
designs being explored by roboticists (as far as I know) would allow the robots to start
noticing mathematical features of time, space and motion and begin to discover something
like euclidean geometry or even elementary topology.

Even if we omit uniquely human competences, current robots are still far inferior to
other animals. There is no easy way to close those gaps, but there are many things to try,
as long as we think clearly about what needs to be explained.

It has been clear to philosophers for some time that studying logic is necessary for a
study of philosophy of mathematics, philosophy of science, philosophy of language, and
also for epistemology. The time has come for practical experience in designing, testing,
debugging, criticising and analysing working models of various kinds of human and animal
competence also to be regarded as a necessary component of the education of professionally
competent philosophers of mind, philosophers of biology, and philosophers interested in
aspects of metaphysics concerned with varieties of causation.8 Perhaps one side effect
of such an expansion of philosophical education will be investigation of the need for
new forms of physical information processing machinery required to support aspects of
biological information processing that don’t match the kinds of virtual machinery that can
be supported by current computer technology.

For example, I suspect that we need forms of information processing that allow for more
kinds of causal interaction between virtual machines, including continuous opposition and
competition, features which are now only represented indirectly using (somewhat artificial)
numerical measures of strength or importance in selection among competing alternatives.
This fails to distinguish clearly the difference between producing a result of competition and
predicting that result. Different virtual machine components cannot directly oppose each
other at present, though they can control physical machines that oppose each other, e.g.
by pushing in opposite directions. This may make it difficult to produce accurate models
of conflicting motivation or irresistible impulses (e.g. the impulse to look at something in

8I rashly made this claim a long time ago in (Sloman, 1978). But philosophical education changes more
slowly than I had anticipated.
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the environment or to laugh, cry, sneeze or scratch an itch). I have begun to explore such
issues and have incomplete discussions on my web site9.

One thing is clear: insofar as we are talking about machines that instead of merely
deriving new information structures from old ones, also interact continuously with the
physical and social environment and which control performances of different functions in
parallel, such as walking, talking, enjoying the view and eating a sandwich, we are not
talking about Turing machines, even if some of Turing’s ideas are relevant to the task.
Turing machines were designed to study possible forms of transformation of information
structure according to fixed rules. What we now need are machines designed (like biological
information processing systems) to have a variety of control functions.

I believe we have so far only begun to study a small subset of the variety of information
processing systems that are used by plants and other animals. It may take a surprisingly
long time to design robots that learn and develop as humans do, including developing
strong interests and competences in mathematics and philosophy. No doubt when we
produce them, they will disagree as much among themselves about answers to philosophical
questions as we do, including the question whether machines can have minds.
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