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Abstract

Despite AI’s enormous practical successes, some researchers focus on its potential as
science and philosophy: providing answers to ancient questions about what minds are, how
they work, how multiple varieties of minds can be produced by biological evolution, includ-
ing minds at different stages of evolution, and different stages of development in individual
organisms. AI cannot yet replicate or faithfully model most of these, including ancient, but
still widely used, mathematical discoveries described by Kant as non-empirical, non-logical
and non-contingent. Automated geometric theorem provers start from externally provided
logical axioms, whereas for ancient mathematicians the axioms in Euclid’s Elements were
major discoveries, not arbitrary starting points. Human toddlers and other animals sponta-
neously make similar but simpler topological and geometrical discoveries, and use them in
forming intentions and planning or controlling actions. The ancient mathematical discover-
ies were not results of statistical/probabilistic learning, because, as noted by Kant, they pro-
vide non-empirical knowledge of possibilities, impossibilities and necessary connections.
Can gaps between natural and artificial reasoning in topology and geometry be bridged if
future AI systems use previously unknown forms of information processing machinery –
perhaps “Super-Turing Multi-Membrane” machinery?
Keywords/phrases:
AI as science and philosophy; Can AI model ancient geometers? Can AI model human tod-
dlers? Gaps and limitations of current AI; Super-Turing membrane machines; Replicating
mathematical consciousness; Research needed.

1 The Meta-Morphogenesis Project
This paper opens a small window into a large project, begun over half a century ago, in
my DPhil thesis (Sloman, 1962) defending Kant’s claims (Kant, 1781) about the nature of
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mathematical discoveries: they are non-empirical, non-contingent, and they are synthetic,
i.e. not based purely on logic plus definitions.

Around 1969 Max Clowes introduced me to AI. The project then grew into an attempt
to use AI to explain many aspects of minds (Sloman, 1978 Revised 2018), including their
abilities to make mathematical discoveries, especially the geometrical and topological dis-
coveries made by ancient mathematicians.

A new strand began in 2011, inspired by Turing’s work on morphogenesis (Turing, 1952),
namely the Meta-Morphogenesis (M-M) project1, investigating evolution of biological in-
formation processing mechanisms and capabilities, including an outline theory of evolved
construction-kits.2,3 That provides a framework for new attempts to identify ancient pro-
cesses and mechanisms of mathematical discovery, especially precursors of mechanisms
involved in topological and geometric discovery, illustrated by the work of Archimedes, Eu-
clid, Zeno and many others. I conjecture that this will require discovery of some of the
simpler intermediate cases in the evolution of the mechanisms involved. Early developmen-
tal stages may also give clues.

Studying spatial reasoning in other intelligent species, e.g. squirrels and crows, and pre-
verbal human toddlers, may give clues regarding mechanisms used by ancient adult human
mathematicians, including clues indicating their reasoning about possible and impossible
spatial structures and processes in solving practical problems, where those processes use
subsets of the mechanisms involved in ancient mathematical discoveries.

There’s no evidence that ancient mathematicians and intelligent non-human animals use
axiomatic, logical, forms of representation and reasoning based on Cartesian coordinates,
such as Hilbert’s axiomatization of Euclid (Hilbert, 1899), and geometry theorem provers,
e.g. (Chou, Gao, & Zhang, 1994). My claim could be challenged by evidence showing
that brains of some non-human species, and humans who have never encountered modern
logic include genetically specified formalisms and mechanisms for doing what logic theorem
provers do. (Merely showing that activity in certain brain regions is correlated with perform-
ing a task does not explain how brains perform that task – unlike specifying the algorithms
and data-structures used by a robot to perform the task.)

Analysing examples of related, simpler, mathematical and proto-mathematical discover-
ies in humans and other animals4, suggests that intelligent animals use types of information
processing machinery that are not included in currently understood logical, algebraic, or sta-
tistical, reasoning mechanisms, including neural-nets. For example, no learning mechanism
based on probabilistic inference can discover impossibilities or necessities, which are key
features of mathematical discovery, as pointed out in (Kant, 1781).

Virtual machines running on digital computers closely coupled with the environment
could be richer than a Turing machine, e.g. if the environment includes non-digital or truly

1 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-morphogenesis
.html

2 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/construction-kits
.html

3An invited video talk at IJCAI 2017, is available online, with extended notes:
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/ijcai-2017-cog.html

4 Pre-verbal toddler topology is illustrated in this 4.5min video:
http:www.cs.bham.ac.uk/research/projects/cogaff/movies/ijcai-17/small-pencil
-vid.webm
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random phenomena). If the environment with which a digital computer interacts is not a
discrete-state machine, the coupled system, including any virtual machinery used, cannot
be modelled with perfect precision on a Turing machine, since no discrete machine can
model perfectly a processes that runs through all the real numbers between 1 and 2, in or-
der, whereas a continuously changing chemical structure might be able to.5 (Moving only
through the rationals in order would be far more complex. Why?)

2 Limited progress, despite spectacular successes
The practical uses of AI, and the rate at which they are now multiplying are so impressive
that some serious thinkers have begun to fear that we are in danger of building monsters that
will take over the planet and do various kinds of harm to humans, that we may be unable to
prevent because we don’t match their intelligence. For some reason most such thinkers don’t
consider the more optimistic possibility, suggested many years ago6, that truly superhuman
intelligence will include a kind of wisdom that rejects the selfish, thoughtless, competitive,
destructive, gullible, superstitious, and other objectionable features that lead to so much
harm done by humans to other humans and other species. But “singularity risks” are not my
concern: this paper is about how little progress has been made in philosophical and scientific
aspects of AI that motivated the early researchers who hoped, as I still do, that AI can give
us powerful new ways of modelling and understanding natural intelligence: AI as science
and philosophy not just engineering.

Alas, AI as engineering dominates AI education (and publicity) nowadays, in contrast
with the concerns of early researchers in the field, including some philosophers, who no-
ticed the potential of research in AI to contribute to a new deep understanding of natural
intelligence. For a survey see Margaret Boden’s two-volume masterpiece (2006).

Recent spectacular engineering successes mask (current) limited scientific and philo-
sophical progress in AI. Two results of this masking (at present) are a shortage of good
researchers focusing on the long term issues, and a shortage of funds for long term scientific
research. Most funded AI research at present aims at demonstrable practical successes, leav-
ing some of the important scientific questions unanswered, and to some extent un-noticed!

I do not claim that progress is impossible, only that it is very difficult and requires deep
integration across disciplines. It also depends on an educational system producing high
calibre multi-disciplinary researchers.

Despite its enormous practical importance, some AI researchers, like Turing, are more
interested in the potential of AI as science and philosophy than its practical applications.
E.g. AI (along with computer science) has begun to advance science and philosophy by
providing new forms of explanation for aspects of natural intelligence and new answers to
ancient philosophical questions about the nature of minds, their activities, and their products.

In particular, as explained in Chapter 2 of (Sloman, 1978 Revised 2018), the deepest aim
of science (not always acknowledged as such) is to discover what sorts of things are possible,

5 For further discussion of “virtual machine functionalism” see
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/vm-functionalism.html

6E.g. in the epilogue to my 1978 book, The Computer Revolution in Philosophy, here
http://www.cs.bham.ac.uk/research/projects/cogaff/crp/#epilogue
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and what makes, or could make, them possible, not to discover regularities. In contrast, many
science students are (unfortunately) taught to regard science as primarily concerned with
finding, explaining and using observed correlations: a shallow view of science criticised
vehemently in (Deutsch, 2011). Deep scientific theories all contribute to the study of what
is possible and how it is possible, including ancient atomic theory, Newton’s mechanics,
chemistry, Darwin’s theory of natural selection, quantum mechanics, e.g. (Schrödinger,
1944), computer science, AI and theoretical linguistics.

The Turing-inspired Meta-Morphogenesis project mentioned in Note 1 has addressed
such issues since 2012. AI, including future forms of AI, must be an essential part of any
deep study of “the space of possible minds” (Sloman, 1984), which may be far richer than
anyone currently suspects.

3 AI as Science and Philosophy
For most people, AI is primarily an engineering activity, whereas my interest, since around
1969, inspired by Max Clowes, and AI founders such as Minsky e.g. (1963, 1968, 2006),
McCarthy e.g. (1979, 2008), and Simon, e.g. (1967, 1969), is focused mainly on the po-
tential of AI to trigger and eventually to answer scientific and philosophical questions, e.g.
about what minds and mental states and processes are, and how they work, including how
they evolved, how they develop, how they can vary, with potential applications in education
and therapy.

A long term goal is to explain how biological evolution is able to produce so many
different forms of information-processing, in humans and non-human organisms, at dif-
ferent stages of development, in different physical and cultural contexts, and in different
cooperating subsystems within complex individuals (e.g. information processing subsys-
tems involved in: internal languages7, language development, visual perception, motiva-
tional processes, and mathematical discovery). Explaining all this requires major progress in
understanding varieties of information processing. Clues may come from many evolutionary
stages, including: microbe minds, insect minds, and other precursors of the most complex
minds we hope to understand and model. This is the Meta-Morphogenesis project mentioned
in Note 1.

Unfortunately much “standard” research, seeking experimental or naturally occurring
regularities, fails to identify what needs to be explained, because most animal information
processing is far richer than observable and repeatable input-output relationships – e.g. your
mental processes as you read this. No amount of laboratory testing can exhaust the responses
you could possibly give to possible questions about what you are reading here, and there is
no reason to assume that all humans, even from the same social group, or even the same
research department, will give the same answers. Compare how different the outputs of
great composers, or poets, or novelists are, even if they live in the same location. A standard
response is to regard all that diversity as irrelevant to a science of mind. One consequence is
narrowly focused research using experiments, e.g. in developmental psychology, designed to
constrain subjects artificially to support repeatability. This can conceal their true potential,
requiring long term studies of individuals, which would have to accommodate enormous

7 http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#talk111
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variability in developmental trajectories.
There are exceptions, e.g. Piaget’s pioneering work on children’s understanding of Possi-

bility and Necessity, published posthumously (1981,1983). But he lacked adequate theories
of information processing mechanisms (as he admitted at a workshop I attended, shortly
before he died). Piaget’s earlier work inspired the proposals in (Sauvy & Sauvy, 1974). It
could also suggest useful goals for future, more human-like, robots.

4 Aim for generative power not data summaries
Overcoming the limitations of “standard” empirical research on how minds work requires
setting explanatory goals at the level of generative powers rather than observed regularities,
as Chomsky and others pointed out long ago (1965). (For historical detail see (Boden, 2006);
Compare the claim that deep science is more concerned with discovery and explanation of
possibilities than laws, in (Sloman, 1978 Revised 2018, Chap2).

Even in the physical sciences, modelling observed regularities can often be achieved
without accurate modelling of the mechanisms that happened, on that occasion, to produce
those regularities, e.g. the apparent successes of the Ptolemaic theory of planetary motion,
and many other well supported then later abandoned regularities in physics – including New-
tonian dynamics.

Problems of reliance only on observed and repeatable regularities are far worse in the
science of mind. Overcoming them requires application of deep multi-disciplinary knowl-
edge and expertise, including designing, testing and debugging complex virtual machines
interacting with complex environments. This helps to debunk the myth that AI is dependent
on Turing machines: TMs are defined to run disconnected from any environment, rendering
them useless for working AI systems, despite their great theoretical importance for computer
science (Sloman, 2002). Preliminary ideas regarding a “Super Turing membrane machine”
are in (Sloman, 2017b),8 related to ideas about affordances in (Sloman, 2008) and McClel-
land’s work on affordances for mental action, e.g. (2017). This requires substantial long
term research.

Insights can often be gained by studying naturally occurring, but relatively rare phenom-
ena, for example when attempts to teach deaf children in Nicaragua to use sign language
demonstrated that children do not merely learn pre-existing languages: they can also create
new languages cooperatively, though this is cloaked by the fact that they are usually in a
minority, so that collaborative construction looks like learning (Senghas, 2005).

4.1 Human/animal mathematical competences
A particular generative aspect of human intelligence that has been of interest to philosophers
for centuries, and discussed by Kant (1781, 1783), is the ability to make mathematical dis-
coveries, including the amazing discoveries in geometry presented in Euclid’s Elements over

8 For a detailed example see
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/deform-triangle.html
and
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/apollonius.html
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two thousand years ago that are still in use world-wide every day by scientists, engineers and
mathematicians (though unfortunately now often taught only as facts to be memorised rather
than rediscovered by learners).

I suspect that Kant understood that those abilities were deeply connected with practical
abilities in non-mathematicians such as weaver birds, squirrels, elephants, and pre-verbal
toddlers (my examples, not his), as illustrated in the video presentation in (Sloman, 2017b).
Young children don’t have to be taught topology in order to understand that something is
wrong when a stage magician appears to link and unlink a pair of solid metal rings. Online
documents exploring some of the details are referenced in Note 8 and the work on evolved
construction-kits in Note 2.

Despite the popular assumption that computers are particularly good at doing mathe-
matics, because they can calculate so fast, run mathematical simulations, and even discover
new theorems and new proofs of old theorems using AI theorem-proving packages, they still
cannot replicate the ancient geometric and topological discoveries, or related discoveries of
aspects of geometry and topology made unwittingly by human toddlers (illustrated in the
video referenced in Note 4. and related achievements of other species, e.g. birds that weave
nests from twigs or leaves, and squirrels that defeat “squirrel-proof” bird feeders. (Search
online for videos.)

These limits of computers are of far deeper significance for the science of minds than de-
bates about whether computer-based systems can understand proofs of incompleteness the-
orems by Gödel and others, e.g. (Penrose, 1994) (who recognizes the importance of ancient
geometric competences, but gives no plausible reasons to think they cannot be replicated in
AI systems, although they have not been replicated so far.)

4.2 AI theorem provers do something different
There are impressive AI geometry theorem provers, but they start from logical formalisa-
tions of Euclid’s axioms and postulates, e.g. using Hilbert’s (1899) version. They derive
theorems using methods of modern logic, algebra, and arithmetic (e.g. pruning search paths
by using numerical checks). Those methods are at most a few hundred years old, and some
much newer. They were not known to or used by great ancient mathematicians, such as
Archimedes, Euclid, Pythagoras and Zeno, or children of my generation learning to prove
statements in Euclidean geometry. How did their brains work?

A major unsolved problem for AI is to understand and replicate the relevant ancient
reasoning powers.

In Fig. 1 (below) what happens to the size of the angle at A if A is moved further from BC
along a straight line through the opposite side BC? Answering the question involves thinking
about two continua (the continuum of positions of the top vertex, and the continuum of angle
sizes) and their relations. Many people with no mathematical training can do this easily, in
my experience. What are their brains doing? How do brains represent impossibility or
necessity? If the line of motion of A intersects the base outside the triangle the situation
is more complicated, and Apollonius’ construction becomes relevant, as Diana Sofronieva
pointed out to me.

The postulates and axioms in Euclid’s Elements, e.g. concerning congruency, were stated
without proof, but were not arbitrary assumptions adopted as starting points to define a
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Figure 1:

mathematical domain, as in modern axiomatic systems. Rather, Euclid’s axioms and postu-
lates were major discoveries, and various mathematicians and philosophers have investigated
ways of deriving them from supposedly more primitive assumptions, e.g. deriving notions
like point and line from more primitive spatial/topological notions, as demonstrated by Dana
Scott (2014). A simpler example, from (Sloman, 2017b), referenced in Note 8 is in Fig. 1.

If you start with an arbitrary planar triangle, like the blue one in Fig. 1, then continuously
move one vertex further from the opposite side, along a line through the opposite side, e.g.
producing the red triangle, and then continuing, what happens to the size of the angle at the
top as it moves: how do you know? What enables you to know that it is impossible for the
angle to get larger? Investigation of how the problem changes if the line of motion changes
is left as an exercise for the reader (see Note 8).

Euclid’s starting points require mathematical discovery mechanisms that seem to have
gone unnoticed, and are not easily implementable in current AI systems without using some-
thing like a Cartesian-coordinate-based arithmetic model for geometry, which was not used
by the ancient mathematicians making discoveries thousands of years before Descartes.

Moreover, for reasons given by Kant, they cannot be empirical discovery methods based
only on finding regularities in many trial cases, since that cannot prove necessity or impos-
sibility: mathematics is concerned with necessary truths and impossibilities not empirical
generalisations. This feature is is ignored by much psychological research on mathemati-
cal competences and cannot be explained by statistics-based neural theories of mathematical
reasoning. This does not imply infallibility, as shown by (Lakatos, 1976). Any practising
mathematician knows that mathematicians can make mistakes. I did at first when reasoning
about the stretched triangle problem above, which is what led to the exploration reported in
(Sloman, 2017b).

5 Robots with ancient mathematical competences?
Can current computing technology support ancient mathematical discovery mechanisms,
or are new kinds of computers required, e.g. perhaps chemical computers replicating ill-
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understood brain mechanisms? (I suspect Turing was thinking about such mechanisms
around the time he died (suggested by reading (Turing, 1952)). There is evidence in (Craik,
1943) that Kenneth Craik, another who died tragically young, was also thinking about such
matters, perhaps inspiring Turing posthumously? Does anything in current neuroscience
explain how biological brain mechanisms represent and reason about perfectly straight, per-
fectly thin lines, and their intersections? Or reason about impossibilities, and necessary
consequences of certain kinds of motion?

Future work needs to dig deeper into differences between the forms of logical/mathematical
reasoning that computers can and cannot cope with, e.g. because the former use manipula-
tion of discrete structures or discrete search spaces, and the latter require new forms of
computation, e.g. the structures and processes used in ancient proofs of geometrical and
topological theorems. (Compare the procedures for deriving Euclid’s ontology from ge-
ometry without points presented in a recorded lecture by Dana Scott (Scott, 2014). The
presentation clearly uses a great deal of spatial/diagrammatic reasoning rather than purely
logical and algebraic reasoning.)

The required new mechanisms are not restricted to esoteric activities of mathematicians:
e.g. many non-mathematicians, including young children, find it obvious that two linked
rings made of rigid impenetrable material cannot become unlinked without producing a gap
in one of the rings.

6 Representing impossibility and necessity
What brain mechanisms can represent impossibility? How can impossibilities bederived
from perceived structural relationships? Young children don’t have to study topology to re-
alise that something is wrong when a stage magician appears to link and unlink solid rings.
What mechanisms do their brains use? Or the brains of squirrels mentioned above?9 There
are many more examples, including aspects of everyday reasoning about clothing, furniture,
effects of various kinds of motion, etc. and selection between possible actions (affordances)
by using partial orderings in space during visual feedback rather than numerical measures
of spatial relationships or the kinds of statistical/probabilistic reasoning that now (unfortu-
nately) dominate AI work in vision and robotics. An alternative approach uses semi-metrical
reasoning, including topological structures and partial orderings, was suggested in (Sloman,
2007). I have not been able to persuade any AI/Robotics researchers, however, possibly
because using that approach would require massive changes to Robot vision and reasoning
mechanisms. How can such mechanisms be implemented in brains?

Current computers can produce realistic simulations of particular spatial processes but
that’s very different from understanding generic constraints on classes of processes, like the
regularity linking two dimensions of continuous variation mentioned in Fig. 1.

No amount of repetition of such processes using a drawing package on a computer will
enable the computer to understand why the angle gets smaller, or to think of asking whether
the monotonicity depends both on the choice of the line of motion of the vertex and the
starting point. See Note 8 and (Sloman, 2017b). I did not notice this until Auke Booij

9 Many additional examples are presented in
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/impossible.html.
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pointed it out to me.
Such geometric reasoning about partial orderings is very different from understanding

why an expression in boolean logic is unsatisfiable or why a logical formula is not derivable
from a given set of axioms, both of which can be achieved (in some cases) by current AI
systems, but only after the problem is rephrased in terms of possible sequences of logical
formulae in a proof system, or possible solutions to numerical equations, using something
like Hilbert’s logic-based formulation of Euclidean geometry. Ancient geometric reasoning
was very different from reasoning about arithmetical formulae by using Cartesian coordi-
nates. (Claims by John Searle and others that computers are purely syntactic engines, with
no semantic competences, have been adequately refuted elsewhere.)

7 Gaps in theories of consciousness

7.1 What is mathematical consciousness?
Can we give the required sort of consciousness of geometrical necessity to future robots?
The lack of any discussion of mathematical consciousness, e.g. “topological impossibility
qualia”, in all contemporary theories of consciousness that I have encountered, seems to me
to suggest that those theories are at best incomplete, and probably deeply mistaken, at least
as regards spatial consciousness.

The tendency for philosophers of mind to ignore mathematical discovery is particularly
puzzling given the importance Kant attributed to the problem as long ago as 1781. (And long
before him Socrates and Plato?)

Perhaps this omission is a result of a widely held, but mistaken, belief that Kant was
proved wrong when empirical support was found for Einstein’s claim that physical space is
non-Euclidean. Had Kant known about non-Euclidean geometries, he could have given as
his example of non-empirical discovery of non-analytic mathematical truths the discovery
that a subset of Euclidean geometry can be extended in different ways, yielding different
geometries with different properties. Kant had no need to claim that human mathematicians
are infallible, and as far as I know, never did claim that. His deep insights were qualified, not
refuted, by Lakatos (Lakatos, 1976). This was also discussed in my 1962 thesis (Sloman,
1962). “Proto-mathematical” discoveries of various kinds are also made, and put to practical
uses, by pre-verbal human toddlers.10

Whether AI can be extended in the foreseeable future to accommodate the ancient math-
ematical competences using current computers depends on whether we can implement the
required virtual machinery in digital computers or whether, like brains, future human-like
computers will have to make significant use of chemical information processing, perhaps us-
ing molecules rather than neurons as processing units, as discussed by Grant (Grant, 2010),
Trettenbrein (Trettenbrein, 2016), Gallistel (Gallistel & Matzel, 2012), Newport (Newport,
2015) (citing von Neumann) and others.

As long ago as 1944 Schrödinger (Schrödinger, 1944) pointed out the importance for

10Several examples of various kinds are presented in
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/impossible.html
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life of the fact that quantum physics explains how chemistry can support both discrete pro-
cesses (structural changes in chemical bonds) and continuous changes (folding, twisting,
etc.) The possibility that biological information processing is implemented not at the neural
level but at the molecular level was also considered by John von Neumann in his 1958 book
The computer and the brain, written while he was dying. If true this implies that current
calculations regarding how soon digital computers will replicate brain functionality are out
by many orders of magnitude (e.g. many centuries rather than decades). See also (Newport,
2015).

7.2 Probabilistic reasoning vs impossibility/necessity
AI researchers who have not studied Kant’s views on the nature of mathematical knowledge
as non-analytic (synthetic, i.e. not derivable using only definitions and pure logic), non-
contingent (concerned with what’s possible, necessarily the case, or impossible) may find it
hard to understand what’s missing from AI. In particular, I have found that some believe that
eventually deep learning mechanisms will suffice.

But mechanisms using only statistical information and probabilistic reasoning are con-
stitutionally incapable of learning about necessary truths and falsehoods, as Kant noticed,
long ago, when he objected to Hume’s claim that there are only two kinds of knowledge:
empirical knowledge and analytic knowledge (definitional relations between ideas, and their
logical consequences).

Hume’s view of causation as being of the first sort (concerned with observed regularities)
is contradicted by mathematical examples including the triangle deformation example above:
motion of a vertex of a triangle away from the opposite side causes the angle to decrease,
just as adding three apples to a collection of five apples causes the number in the collection
to increase to eight. Examples of Humean and Kantian causal reasoning in humans and
other animals were presented (in collaboration with Jackie Chappell) in (Chappell & Sloman,
2007b).

7.3 Can we give robots geometric reasoning abilities?
Possible lines of enquiry about what’s missing from current AI are suggested by (Turing,
1952), leading to a new theory regarding the variety of mechanisms and transitions in bio-
logical evolution, including evolution of new kinds of construction kit (Sloman, 2017a).11

Evolution repeatedly produced new biological construction kits for new kinds of informa-
tion processing mechanism. This may explain the evolution of epigenetic processes that pro-
duce young potential mathematicians. Ideas about “meta-configured competences” are being
developed in collaboration with biologist Jackie Chappell (Chappell & Sloman, 2007a),12

extending Karmiloff-Smith’s theories of “Representational Redescription” (1992), and hy-
potheses about non-linear, structured, extendable, internal languages required for percepts,

11 The work on construction kits is still being extended in
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/construction-kits
.html

12 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-configured
-genome.html
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intentions, plans, usable generalisations, and reasoning, long before external languages were
used for communication (Sloman, 2015).

One consequence of these investigations is rejection of the popular “Possible worlds se-
mantics” as an analysis of (alethic) modal operators (“impossible”, “possible”, “contingent”,
and “necessary”, in favour of (Kant-inspired) semantics related to variations in configura-
tions of fragments of this world, as illustrated in the stretched triangle example, and many
other examples of geometrical and topological reasoning.

8 Conclusion, and further work
This paper opens a small window into a large, complex, still growing project. (See Note 1.)
There are many implications for AI as Science, AI as engineering and AI as philosophy,
and also deep implications for psychology and neuroscience, insofar as they have not yet
addressed the problem of how minds or brains are able to make discoveries concerning nec-
essary truths and impossibilities that are not merely logical truths or falsehoods. There are
also hard biological problems to be solved, concerning evolutionary histories of the features
of human brains and minds that have these amazing capabilities. Perhaps only after these
non-AI questions have been answered will AI engineers be able to design artificial minds
with ancient mathematical capabilities of Archimedes and others. Not all psychologists and
neuroscientists notice that the task of explaining mathematical cognition is not merely the
task of explaining numerical competences, on which they tend to focus, while ignoring the
richness of numerical competences such as the central role of transitivity of one-one corre-
spondence. (Piaget was an exception.)

On-going work investigates requirements for a Super-Turing membrane computer,13 able
to acquire and use information about spatial structures and relationships in performing prac-
tical tasks, for instance understanding how available information and affordances necessarily
change as viewpoints change, or objects rotate or move – because visual information nor-
mally travels in straight lines. If these ideas can be used in future designs, we may be able to
produce robots that replicate the discoveries made by great ancient mathematicians as well
as the deep but unnoticed spatial reasoning abilities developed by pre-verbal humans and
many other intelligent species.

This should help to stifle distracting and impoverished theories of embodied cognition,
mistakenly giving the impression that there is no requirement for deep and complex inter-
nal information-processing engines produced by biological evolution, but not yet replicated
in AI systems. And if, as I suspect (and perhaps Turing suspected), these mechanisms are
implemented in sub-synaptic chemical mechanisms, then since there are many orders of
magnitude more molecules than neurones, this suggests that hopes or fears about comput-
ers soon reaching or overtaking human intelligence are time-wasting distractions from the
hard task of trying to understand and model human intelligence, or more generally animal
intelligence.

The Meta-Morphogenesis web site is expected to continue growing.14 But there are

13http://www.cs.bham.ac.uk/research/projects/cogaff/misc/super-turing-geom
.html

14See Note 1, and also
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many unsolved problems, including problems about mechanisms underlying ancient forms
of mathematical consciousness.
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