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Abstract. In contrast with ontology developers concerned with a
symbolic or digital environment (e.g. the internet), I draw attention to
some features of our 3-D spatio-temporal environment that challenge
young humans and other intelligent animals and will also challenge
future robots. Evolution provides most animals with an ontology
that suffices for life, whereas some animals, including humans also
have mechanisms for substantive ontology extension based on results
of interacting with the environment. Future human-like robots will
also need this. Since pre-verbal human children and many intelligent
non-human animals, including hunting mammals, nest-building birds
and primates can interact, often creatively, with complex structures
and processes in a 3-D environment, that suggests (a) that they use
ontologies that include kinds of material (stuff), kinds of structure,
kinds of relationship, kinds of process and kinds of causal interaction
and (b) since they don’t use a human communicative language they
must use information encoded in some form that existed prior to
human communicative languages both in our evolutionary history
and in individual development. Since evolution could not have
anticipated the ontologies required for all human cultures, including
advanced scientific cultures, individuals must have ways of achieving
substantive ontology extension. The research reported here aims
mainly to develop requirements for explanatory designs. Developing
forms of representation, mechanisms and architectures that meet
those requirements will have to come later.

1 INTRODUCTION: THE PROBLEM
Current machine perceptual and manipulative abilities are extremely
limited compared with what humans and many other animals can do,
despite vast amounts of effort that have gone into work on vision,
learning, planning, reasoning and robotics. I try to show that the
reasons for the inadequacies are not at all obvious and to indicate
some research directions that may be worth pursuing in order to

bridge the gaps. A major part of the research task is identifying
requirements to be met.

Any information processing system that interacts with some
portion of reality by acquiring and making use of information about
that reality, needs an ontology if it is to be able to acquire and use
new information. It needs an extendable ontology if it is to be able
to acquire and use new kinds of information. What this means is not
easy to explain.

An ontology can be explicit or implicit. It is explicit if the contents
are specified in some formalism that can be manipulated, stored,
transmitted, used to make inferences, etc. (Intermediate cases would
have only a subset of these capabilities.)

The ontology is implicit if there is no such formal specification,
only a set of mechanisms that deal with instances of the ontology. For
example, a common thermostat uses an implicit ontology in which
there are temperatures that can vary continuously in one dimension
and a control circuit that is either on or off. A washing machine
controller has an implicit ontology which allows different washing
programmes to be selected, a programme to be started, running or
finished, and to go through a sequence of states while running. The
designers and human users will make use of an explicit ontology, but
the machine has no idea what users are doing or thinking, or what it
has done or could do.

It is very likely that most of the ontologies used in most animal
brains are implicit. Humans are an exception, at least for some
parts of the ontology, and there may be other animals with explicit
ontologies. Future human-like robots will probably need explicit
ontologies for some of their activities. The designers of such robots
will almost certainly need explicit ontologies (and meta-ontologies)
even if the things they design use only implicit ontologies.

Biological evolution is a designer with only implicit ontologies
and meta-ontologies – unless something is encoded in genomes that
nobody has discovered.
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An (explicit or implicit) ontology is an (explicit or implicit)
specification of what sorts of things can be referred to or represented,
what kinds of larger configurations they can be part of, what kinds of
things can be part of them, what sorts of properties and relationships
can categorise them, in what sorts of ways they can change (i.e. what
processes can occur) what kinds of things can be known about them,
what kinds of information can be missing about them, what sorts of
inferences can be made, and how information about them can used
in interacting with them.

An ontology need not be discrete, so it need not be representable
with a tree-structured taxonomy: types of existent may be spread out
in continuous spaces. Entities may be capable of existing in different
sets of relationships, e.g. temporal, spatial, causal, functional, social,
and economic, and therefore an ontology can be a tangled high-
dimensional network – or more likely it will have a structure for
which the notion of dimension is not relevant since its complexity
instead of everywhere being factored into N independently variable
components may be different in different parts of the network. (This
is true of spaces defined by grammars, for example: the set of
sentences in English does not have a dimension. Neither does the
set of biological organisms.)

If the ontology is extendable, allowing for the discovery, or
conjecture, of previously unknown types of reality, then it will not
have a fixed structure. A system that can extend its ontology may
have an explicit meta-ontology, specifying the ways in which the
ontology can change or develop. Alternatively the meta-ontology
may be implicit in mechanisms that perform those changes.

Investigating what sort of ontology, fixed or changeable, with or
without an explicit meta-ontology, is required for an animal, human,
or robot of a particular sort to function in our world is a hard research
problem. At present I cannot specify the form of ontology in any
detail, so this paper will be very vague in some respects. It is hoped
that it will not be too vague to drive some directed research towards
removing the vagueness.

2 OTHER KINDS OF ONTOLOGY RESEARCH

Many researchers, some of them labelled as “ontology engineers” are
attempting to develop ontologies, or mechanisms for automatically
generating ontologies, for use in connection with symbolic or digital
environments, such as the internet or a set of corporate databases in a
company or government organisation. (E.g. see[6] [8]) In contrast,
this paper is not about the development, management, or use of
artificial ontologies, but about ontologies used in certain animals. If
we can understand the requirements to be met by such ontologies and
can find good ways of creating and using them in artificial systems,
then perhaps, at some future date, we shall be able to create robots
that develop and use them, thereby overcoming one of the serious
obstacles to producing robots with human-like intelligence. It could
also inform educationalists, and reduce the obstacles schools and
other institutions present to development of humans with human-like
intelligence.

It may also turn out that biologically inspired ontologies and
ontology-related mechanisms are also needed if machines are to
understand many of the contents of the internet and other information
stores in the same ways as humans do – since most of the contents of
the internet are created by humans and are understood by humans,
using their biological information-processing systems. So there is
no apriori reason why any machine should be able to develop an
appropriate understanding without using ontologies and mechanisms
that are similar (at some level of abstraction) to those used by

humans. That is left as an open question in this paper.
I should make it clear that I do not yet know how to design

systems that meet the requirements discussed in this paper, and
I don’t think anyone else does either. However, in the long run,
the common practice of starting from things we know how to do
and then looking for minor variants may not, on its own, lead to
significant progress, any more than looking for your lost keys where
the lamplight is. However, combining that with research on more
detailed requirements specifications may eventually reveal new ways
to make progress.

3 WHAT ARE ONTOLOGIES FOR?

In many systems for which ontologies are being developed by
software engineers, the purpose of the ontology is to facilitate a
collection of symbolic operations, e.g. translating documents from
one formalism or format to another, or to support data-mining
operations in documents and databases from different sources.
However, those applications are designed to interact only with
symbolic structures, addressing problems that are very different
from the problems that confront some organisms (or future robots)
interacting with a 3-D environment. The software may produce
graphical displays to help human users, e.g. showing a tree or graph
on a screen, but typically the machine does not perceive the display,
and works only on a symbolic description of the display. Even if it
could see and reason about the visual display, that would not be the
same as seeing, reasoning about and manipulating 3-D structures and
processes in a physical environment.

There are some AI vision and robotic systems that perform
impressively in very restricted 2-D or 3-D physical task domains,
requiring little understanding of what they are doing or why it works.
Examples include balancing a pole, repeatedly welding identical car
bodies, or assembling components on a production line.

Some mobile robots are very impressive as hardware+software
engineering products, e.g. BigDog – the Boston dynamics
robot http://www.bostondynamics.com/content/sec.php?

section=BigDog and some other mobile robots that are able to keep
moving in fairly rough terrain, including, in some cases, moving up
stairs or over very irregular obstacles, and, in the case of BigDog,
recovering automatically from being pushed off balance, by sticking
out a leg to prevent a fall.

However, like a river that very successfully gets water from
mountains to the sea, they lack understanding of what they are
doing, what they have done, what they could have done, what
goals they could achieve in different circumstances, why some goals
should be abandoned, etc. though they can sometimes react as if
they understood, either because a programmer designed the control
software to act appropriately, or because a training regime caused
a learning mechanism to adjust the control parameters to perform
as needed. It is possible to combine a variety of programmed or
trained condition-action rules that together give the appearance of
understanding, but hide underlying rigidity – like a paint spraying
robot that uses only previously learnt movements to spray a piece of
furniture even if confronted with an item whose shape is different
and needs different spray movements.

Such machines cannot, and have no need to, explain or think about
what they are doing, why they are doing it, whether there is any other
way of doing it, why they are not doing that, etc. They cannot watch
someone else doing similar things and make suggestions for avoiding
errors or improving performance. They cannot hypothesise that
something is happening that they have never previously encountered
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that may require their ontology to be extended.
Existing robots that manipulate objects can be triggered to perform

an action, but cannot perceive processes, notice new possibilities, or
reason about what the result would be if something were to happen,
except in very simple cases.

Neither can they reason about why something is not possible. I.e.
they lack abilities to perceive and reason about positive and negative
affordances.

They cannot wonder why an action failed; wonder what would
have happened if they had done something differently; notice that
their action might have failed if so and so had occurred part way
through, etc.; or realise after the event that some information was
available that they did not notice at the time.

Those robots have implicit ontologies. An agent with an implicit
ontology has mechanisms that are driven by what happens and
in what circumstances, which causes chains of reactions that lead
to behaviours responding to those happenings in those situations.
In the case of many organisms, e.g. microbes, insects and many
others, this type of restricted competence based on an implicit
ontology is adequate for the species to continue existing – even if
many individuals die “prematurely” because of the rigidity of their
responses.

But not all organisms are like that. Some of them (certainly
humans, and arguably some others) have the ability to generate
information structures representing things that do not exist, including
processes that could occur, situations that could arise, things
that might have happened in the past, and things that the agent
hypothesises might exist, but cannot be perceived either because they
are too far away, or obscured by intervening matter, or because they
cannot be detected by the agent’s sensors, even though when present
they can, under some conditions, have effects that are perceived –
like the invisible molecular structure that causes sugar, but not sand,
to dissolve in water when stirred.

The ability to generate such hypothetical information structures
involves having a store of meanings (concepts) that can be combined
in various ways to represent possible objects or object parts, states
of affairs, events or processes – without having to be driven by
sensory inputs. This requires having some form of representation,
namely something like a medium that can be interpreted as
expressing information, and which allows meaningful structures to
be constructed, manipulated, stored, combined, disassembled, and
used for various purposes.

Some of the flexibility of explicit ontologies comes from the fact
that the expressive medium need not be physical: in many cases it
is more convenient to use symbols or representations composed of
entities in virtual machines [17] [14] [12] [9]. Putting such pieces of
meaning together is a kind of creativity, which provides the ability
to deal with novel situations as well as the ability to represent non-
existent situations. (Compare Boden [1] and [11, Chap 2].)

4 ONTOLOGIES FOR SEEING

It is not always noticed that perception can involve similar creativity,
in unfamiliar situations. The possession of a suitable ontology,
with appropriate generative forms of representation able to express
possibilities within the ontology, is required for seeing a novel
situation, insofar as such perception involves creating a new
usable information structure, either transiently or, if the situation is
remembered, in a medium or long term information store. (Compare
understanding a sentence you have never heard or read previously,
like some of the sentences here.)

Familiarity with roles of low level pictorial cues in representing 3-
D edges, orientation, curvature of surfaces, joins between two objects
or surfaces, etc., allows you to use compositional capabilities to
see 3-D structure, and some causal and functional relationships, in
pictures (even static, monocular pictures) never previously seen.

How many features, relationships (topological, semi-metrical,
metrical, causal) can you see in these pictures, taken from
http://www.cs.bham.ac.uk/research/projects/
cosy/photos/crane?

No AI vision system comes close to being able to see these.

The combinatoric creativity involved in perceiving and
understanding spatial structures is very different from that involved
in doing algebraic or logical operations, because whereas individual
components of an algebraic or logical formula retain their syntactic
and semantic functions when the elements are rearranged, or when
the formula is embedded in a larger formula, that is not true of
“analogical” representations of spatial configurations, as pointed out
in [10] and [11, Chapter 7].

For example what you see in the above pictures? Only 2-D
configurations? Or do you see them as involving 3-D structures and
relationships. Do you interpret the same things always in the same
way, or are the 3-D relations you see between two parts of the
scene dependent on what else is in the image? Notice how context
can influence interpretation of parts. Perceptual compositional
semantics is highly context-sensitive, as shown by comparing the
interpretation of the image components in the previous pictures with
the interpretations below. What does the picture on the right suggest
to you? Obviously that will depend on how the two multi-pronged
structures are interpreted.

Words can add more context that influences how the image is
interpreted, by activating different parts of your ontology of 3-D
structures, processes, relationships. The figure on the right was based
on a “droodle” found on the internet with the caption “Strong worm
catches early bird”. Another possible caption is “Shark-infested
sewer”. Different people asked to invent captions will produce
different phrases, depending on which ontologies they have and also
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how fragments of their ontologies are activated by the fragments and
relationships of fragments in the picture.

5 SEEING POSSIBILITIES

Some of the interpretations of the droodle above depend
on hypothesising physical structures that are not visible but
are connected to the structures that are visible. Interpreting
droodles, however, would not normally be regarded as a
typical illustration of biological functions of vision. In contrast,
the images below, which are poor quality, low resolution
photographs of 3-D configurations, can be interpreted as scenes
in which various kinds of actions are possible, where the
possibilities are constrained by the perceived structures –
taken from this presentation: http://www.cs.bham.ac.uk/
research/projects/cogaff/challenge.pdf

If you attend to various locations on the surfaces of these objects
and if you see their 3-D shapes, even with low precision and much
noise, you will be able to work out roughly how two fingers need to
be oriented to grasp at those locations. For instance, try attending
to, or getting someone to point at various parts of the rim of the
cup, or of the edge of the saucer, or of the spoon or cup handle. In
each case you should be able to work out roughly how your finger
and thumb will need to be oriented if you grasp at that point. In
doing that you are making use of an ontology of spatial positions,
orientations and relationships that can hold between surfaces or
between objects with surfaces. This shows that perception of action
affordances makes uses of an ontology allowing a whole range of
spatial arrangements between surfaces of fingers and other objects,
among other things. The word “roughly”, earlier, indicates that the
locations and orientations are not represented with great precision –
an important feature of the ontology.

You can probably go beyond thinking about static grasping, to
construct a representation of a process in which you transform a
configuration of one sort into the other sort – which could be done
in various different ways, depending where things are held, where
they are placed in intermediate configurations, etc. That is, you can
make a plan in your head for transforming the configuration seen in
one picture of the cup saucer and spoon the configuration in the other
picture.

In doing that visualisation, you use an ontology of process
fragments that can be “attached” to the various portions of the
visible surfaces of the objects involved. Doing that is working out
a plan: this need not be a very metrically precise plan in order to
be the basis of intelligent action, or intelligent advice to someone
else about how to rearrange the objects. An important question
that I shall not try to answer in any detail is how you manage to
steer through the explosive (infinite) space of continuously varying
possible movements at various levels of abstraction so as to find a
particular set of movements (a plan) that achieves the desire result. It
is often assumed that this requires a search through a discrete space
of possible combinations of actions, whose discreteness results from

the ability to chunk continuous spaces into sub-spaces (often with
slightly fuzzy boundaries). Exactly how that space is related to the
ability to see is a topic for another time.

It is not necessary to recognize any of the object categories for
the purpose of constructing such a plan, as long as you can see their
shapes, namely how the various parts of their surfaces are arranged in
space. I could have used pictures of objects that you did not recognise
at all. You can do many things with something you see but do not
recognize, including planning things to do to it.

6 EXTENDABLE ONTOLOGIES
Extendable, and at least partly explicit, ontologies are needed by
animals that have to acquire and use information about, reason about,
and interact with rich and complex 3-D structures and processes
in the physical environment. Even perception of 2-D images of
representing abstract structures, such as written words, requires use
of ontologies with multiple layers using different sub-ontologies,
as illustrated in [11, Chap. 9]. Impressive recent work in machine
vision has shown how computers can use statistical methods to
automatically induce ontologies as a result of being exposed to many
pictures, e.g. the work by Fidler and colleagues in [4, 3]. However at
present such ontologies are concerned (a) only with static structures
and (b) levels of 2-D organisation in images, as opposed to being able
to cope with processes in 3-D space with changing 3-D structures
and relationships. Perhaps the methods used will generalise to those
cases (using considerably more computing power).

However, not only do the ontologies used in visual systems
need to be extendable to cope with new types of entity, they also
need to be usable for more tasks than recognition or description
of externally presented configurations. As illustrated earlier, the
ontology needs also to be usable for representing and reasoning about
non-existent but possible entities and processes, including possible
future sequences of events, but also for representing things in the
past, or out of sight, or invisible but capable of having visible effects.

Similar requirements are relevant to future machines doing
automated design, inspection and repair of complex machinery;
automated rescue systems; domestic aids for disabled people; and
robots performing tasks in remote and humanly uninhabitable
environments, e.g. on space platforms and other planets. For such
systems, required ontologies will not refer only to abstract structures
(e.g. web pages and their contents, collections of scientific data, or
business information systems concerned with financial transactions)
but also to some of the sorts of things many animals can deal
with, including spatial structures and processes, causal interactions,
assembly or disassembly of objects of varying degrees and kinds of
complexity, including changes of

• material properties (e.g. becoming brittle),

• spatial relations (including shape changes),

• causal relations (e.g. producing obstructions, or loosening a grip)

• functional relations (e.g. modifying a structure to serve a new
purpose)

7 WITH WHAT STARTING POINT?
A newborn human infant cannot see or do all those things. Why not?
– And what has to change to produce those competences? It seems
that newborn humans start off with a limited ontology provided
by evolution [7] along with the ability to extend the ontology by
interacting with the environment.
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Some newborn animals can do very sophisticated things very
soon after birth (e.g. deer, chicks) so evolution can produce innate
sophisticated competences, with whatever ontology is required.
However in many cases an implicit ontology will suffice.

Infant humans, orangutans, corvids, ... lack behavioural
competences some other species have at birth or hatching, even
though the other species do not develop so far in their lifetime.
Perhaps that is because humans are born with something more
powerful than the competences picked up by other animals. This is
the hypothesis under development in the collaboration reported in
[13, 2].

Many researchers assume learning is that more powerful
something: but what sort of learning? And from what starting point?

A common assumption is that the initial learning is of a general
kind, that can learn anything, provided that enough training data can
be provided.

The designers of such systems don’t bother to study the
environment: they expect to leave that to their future learning systems
– but that may not work, for the reason given by McCarthy in [7]:

“Evolution solved a different problem than that of starting a
baby with no a priori assumptions.
.......
Instead of building babies as Cartesian philosophers taking
nothing but their sensations for granted, evolution produced
babies with innate prejudices that correspond to facts about
the world and babies’ positions in it. Learning starts from
these prejudices. What is the world like, and what are these
instinctive prejudices?”

A logicist roboticist might think all the required innate prejudices
can be expressed as axioms and deployed through a logic engine.
However, studying the environment animals interact with, and learn
in, suggests that we need a much richer theory, involving what
McCarthy describes, and also

• An initial architecture, that can extend itself in certain ways,
including ontology extension.

• Initial (still unknown) forms or representation adequate for
encoding specific sorts of information (including information
about processes in which 3-D surfaces change their shapes and
spatial relations), and which support specific forms of information
manipulation.

• Initial sensory, motor, and internal processing mechanisms,
including mechanisms for constructing new goals, for goal
conflict resolution, and for detecting opportunities to learn.

• Initial behavioural dispositions that drive learning tailored to
perceiving and producing 3-D structures and processes.

• An initial, mostly implicit, “framework theory” determining the
type of ontology that is assumed and ways in which it can be used
and extended. Compare Kant’s [5].

E.g. implicit assumptions about the topology of space/time,
kinds of stuff able to occupy and move around in space,
modes of composition of structures and processes, kinds of
process that can occur involving the stuff, kinds of causation,
the differences between doing and passive sensing, ...

• Delayed activation of an architectural layer that uses the
combination of the environment and the early architecture as a
new developmental “playground” in order to drive ever more
sophisticated testing, debugging, and extensions as conjectured in
[2].

8 WHAT SORT OF INITIAL ONTOLOGY?
Many theorists assume that the initial ontology includes only sensory
and motor contents and patterns relating them, a somatic, multi-
modal, ontology) – I claim that will not suffice for children, chimps,
or crows. Instead, I conjecture that from the start many learners will
use, and attempt to extend, an exosomatic, amodal ontology (about
what’s going on outside – not just the shadows on Plato’s cave wall),
including:
• bits of stuff (of various kinds) that can occur in the environment

• bits of surface of bits of stuff, in various shapes, locations,
orientations

• bits of process (of various kinds) that can occur in the environment

• ways of combining them to construct larger structures and
processes in the environment (not necessarily with global
consistency)

• at various levels of abstraction: metrical, semi-metrical,
topological, causal, functional....

Semi-metrical representations include things like: “W is further from
X than Y is from Z”, orderings with gap descriptions, symmetries and
partial symmetries. (And other things, still to be determined.)

Semi-metrical distance and angle measures could include
comparisons between distances and angles instead of use of global
units, like ‘cm’ or ‘degrees’.

Instead of items in the environment being located relative to
a single global coordinate frame, they could be embedded in
(changing) networks of more or less local relations of the above
types.

9 HOW CAN ALL THIS WORK ?
Powerful multi-layer, extendable constraint-propagation
mechanisms will need to be available for vision, haptic perception,
reasoning, planning, predicting, etc. to work. For more on this see,
for example, [18]. The main unsolved problem seems to be: what
forms of representation are required to support these processes?

It is argued in [16] that in our pre-linguistic evolutionary
history, our pre-verbal individual development and in some other
non-verbal animals, there are “languages” that are not used for
communication, but are used internally for perception, reasoning,
goal formation, planning, plan execution, question formation,
prediction, explanation, causal understanding, as described
above, and those languages include (a) structural variability
(for dealing with novelty), (b) compositional semantics (modified
by context sensitivity) (c) manipulability (for reasoning, planning,
hypothesising, etc.).

Suggestions for making progress
Instead of the normal AI strategy of thinking about how to extend our
existing mechanisms, or how to deploy them in new ways, perhaps
we should spend more time engaged in a deep study of features of the
environment and ways of interacting with it, looking at examples of
children and other animals doing that, and altering their competences
as a result. On that basis we can try to derive constraints on the
forms of representation and ontologies that can explain the detailed
phenomena observed at different stages of development (which in
children are partially, not totally ordered).

In the light of all that, we should try to design and test mechanisms,
architectures, robots that illustrate the theories.

The problems will be different for different sorts of organisms
and robots, e.g. depending on the complexity of their sensors and



manipulators, the kinds of terrain they inhabit and the kinds of things
they need to acquire and avoid. See:[15]

Composition/binding
These different aspects of reality can be composed/combined
in many different ways. Long before there was
algebraic/functional/logical composition there was spatio-temporal
composition. Also auditory/temporal composition – in music and
many natural sounds. We need to distinguish composition in the
spatio-temporal environment (e.g. combining actions and things
acted on, or sounds) from composition in internal representations of
things that can be spatio-temporally combined (e.g. composition in
representations in virtual machines).

At present we have only a relatively small number of forms
of information-composition that we can implement and use in
computers. Perhaps by studying the environments of various sorts of
intelligent systems very carefully we can derive new requirements for
forms of representation and forms of composition and manipulation.
This may lead to the creation of new kinds of artificial information-
processing systems.

10 LIFE IS INFORMATION PROCESSING

The world contains matter, energy, and information. Organisms
acquire and use information, in order to control how they use matter
and energy – in order to acquire more matter, energy and information,
and also reproduce, repair, defend against intruders, dispose of
waste products... Somehow evolution produced more and more
sophisticated information processors, driven in part by changes in the
environment, which led to changes in morphology which provided
more opportunities in the environment requiring more sophisticated
information processing (for example, when organisms acquired
manipulators that could move independently of eyes), as conjectured
in [15]. It seems that evolutionary advances driven/selected by
particular challenges often produced opportunities for new more
complex advances.

Betty, the New Caledonian Crow made hooks from straight pieces of
wire, in several different ways, in order to get a bucket of food out of
a tall transparent tube.

All this poses great challenges for science and engineering,
namely, to understand that process, to understand the products, and to

design working systems that replicate various aspects of the products.
In order to do this we need a better understanding of
• the structure of design space
• the structure of niche space
• the many design tradeoffs linking them
• the possible trajectories in design space,
• the possible trajectories in niche space,
• the many complex feedback loops linking both.

11 DEVELOPMENT OF ENVIRONMENT AND
COGNITION

The cognitive system, including sensory mechanisms, motor control
systems, learning systems, motivational mechanisms, memory, forms
of representation, forms of reasoning, etc. that an organism (or robot)
needs will depend both on what is in the environment and also
what the physical structure and capabilities of the organism are. The
current fashion for emphasising the role of embodiment in cognition
mostly leads to claims that a particular form of embodiment solves
or eliminates cognitive problems. My claim, on the contrary is that
added complexity of animal bodies provides new more complex
problems of cognition and control, as explained in [18].

For a micro-organism swimming in an ever changing chemical
soup it may suffice to have hill-climbing mechanisms that sense
and follow chemical gradients, perhaps choosing different chemical
gradients according to the current needs of the organism.

As the environment becomes more structured, more differentiated
with more enduring objects and features (e.g. obstacles, food
sources, dangers, shelters, manipulable entities) and the organisms
become more articulated, with more complex changing needs,
the information-processing requirements become increasingly more
demanding.

As more complex information processing capabilities develop, the
opportunities to observe, modify and combine them in new ways also
develop.

The cognitive system, including sensory mechanisms, motor
control systems, learning systems, motivational mechanisms,
memory, forms of representation, forms of reasoning, etc. that an
organism (or robot) needs will depend both on
• what is in the environment

and
• what the physical structure and capabilities of the organism are.

Many researchers who emphasise the importance of embodiment
of animals and robots make a mistaken assumption:

they claim that embodiment and physical morphology solve the
problems and reduce the burdens on cognition, by producing
required results “for free” when movements occur.

However, the point I am making is that as bodies become more
complex, with more parts that can be moved independently to
cooperate with one another in performing complex actions on
complex, changeable structures in the environment, the cognitive
demands (for perception, learning, planning, reasoning, and
motor control, and the ontologies involved) increase substantially,
requiring more powerful forms of representation and more complex
information-processing architectures.

12 TURING’S MISTAKE?
A major challenge for such an investigation is to understand the
variety of possible starting points for an individual born or hatched in



a particular sort of environment, after millions of years of evolution
of the species. In [19] Turing wrote:

“Instead of trying to produce a programme to simulate the adult
mind, why not rather try to produce one which simulates the
child’s? If this were then subjected to an appropriate course
of education one would obtain the adult brain. Presumably
the child brain is something like a notebook as one buys
it from the stationer’s. Rather little mechanism, and lots of
blank sheets. (Mechanism and writing are from our point of
view almost synonymous.) Our hope is that there is so little
mechanism in the child brain that something like it can be easily
programmed.”

On this point (little mechanism and much space), Turing was
uncharacteristically badly wrong, like all the AI researchers who try
to find a small number (some hope one will suffice) of powerful,
general, learning mechanisms that can learn from arbitrary data:
Evolution did not produce general-purpose data-miners.

Most species produced by evolution start off with almost all
the information they will ever need, leaving only scope for minor
adjustments of parameters, e.g. for calibration and minor adaptations.
A few species learn a lot using mechanisms that evolved to learn
in a 3-D world of static and changing configurations of objects,
including other intelligent agents: they start with powerful special-
purpose mechanisms. In short: Evolution itself is a general-purpose
data-miner, changing what it mines. But it needs something like a
planet-sized laboratory, and millions of years, to produce things like
humans

13 MCCARTHY DISAGREES WITH TURING
As indicated earlier, John McCarthy, in [7], emphasises an important
point missed by Turing (and by many AI researchers). In the same
article he wrote:

“Animal behavior, including human intelligence, evolved to
survive and succeed in this complex, partially observable and
very slightly controllable world. The main features of this
world have existed for several billion years and should not have
to be learned anew by each person or animal.”

McCarthy’s own theories about requirements for a neonate are
tempered by his goal of attempting to see how much could be
achieved using logic. We need to keep an open mind as to which
forms of representation and modes of syntactic composition and
transformation may be required, or may be useful at times. (As
argued in 1971 in [10], and Chapter 7 of [11].)

I am not arguing against the use of logic, but for a search for
additional (new) forms of representation.

14 DEVELOPMENTAL PSYCHOLOGISTS vs
DESIGNERS

Many developmental psychologists investigate what is and is not
innate in newborn humans, and other animals. Examples studying
humans include (among many more): E. Spelke, P. Rochat, E. Gibson
& D. Pick, A. Karmiloff-Smith, and much earlier J. Piaget,
and studying animals: N. Tinbergen, K. Lorenz, J. Goodall, W.
Köhler, E.C. Tolman, I. Pepperberg, M. Hauser, A. Kacelnik (and
colleagues), N. Clayton, S. Healey, F. Warneken, M. Tomasello.
Unfortunately not enough of these researchers have learnt to look
at something done by a child, chimp, or chick and ask

• How could that work? What else can the mechanisms do?

• How do they do it?

Instead many researchers ask questions like:
• Under what conditions does this happen?

• How can the task be made easier or more difficult for species X?

• Is this innate or learnt?

• If it is learnt what triggers the learning?

• Which other animals can and cannot do it?

• How early does it happen?

• Which additional tests can I perform to detect these and similar
competences?
They don’t adopt what McCarthy calls “the designer stance”. That

is a very difficult thing to do.
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