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Abstract. One way to defend Kant’s philosophy of mathematics is
to show how a “baby” human-like robot could develop mathematical
competences on the basis of biological competences that evolved
to support interactions with a complex, varied and changing 3-
D world. Current techniques in AI/Robotics are nowhere near
that. This paper helps to characterise the task and some ways of
making progress, in part by analysing transitions in child or animal
intelligence from empirical learning to being able to “work things
out”. It is conjectured that mathematical competences grow out of
those competences. A long term collaborative project investigating
the evolution and development of such competences may contribute
to robot design, to developmental psychology, to mathematics
education and to philosophy of mathematics. This may turn out to be
a special case of a very general phenomenon involved in so-called
“U-shaped” learning, including the language learning that comes
later than some of the learning discussed here. There is still much
hard work to be done.

1 University of Birmingham, UK, email: a.sloman@cs.bham.ac.uk

1 Mathematics as a Biological Phenomenon

I once met a software engineer who poured scorn on evolution as
a designer because it had produced no animals with wheels. I have
not met one who poured scorn on evolution for designing human
neonates to be helpless while many other species have self-sufficient
neonates: e.g. chicks get themselves out of the egg and soon peck for
food, while a new foal or calf soon gets up on four legs and finds its
way to the mother’s nipple. It is commonly supposed that humans are
born so immature because larger skulls would kill their mothers, but
that ignores the existence of other mammals born with large heads,
e.g. elephants. Another suggestion is that in an environment that is
continually changing, learning capabilities are more important than
innate knowledge: but that does not explain why evolution does not
produce both in the same species. One version of that suggestion is
that humans are born with a collection of innate modules that control
various aspects of behaviour including a general purposes learning
module.

An alternative answer is that in addition to those competences
required from birth (e.g. breathing, sucking, digesting food,
doing various things that attract attention of parents) there are
special-purpose meta-competences for acquiring competences (e.g.
those required for manipulation using independently movable
manipulators) that involve such complex and varied perceptual
and motor processes that they cannot be encoded in a genome
(possibly for reasons suggested in (Sloman & Chappell, 2005)). For
instance, some behaviours need to be produced by sophisticated run-
time control competences that have to be learnt, using specialised
meta-competences that also develop under the influence of the
environment: we learn how to learn many different things. (Chappell
& Sloman, 2007) conjectured that humans are born with, among
other things, sophisticated, evolved, meta-knowledge about how to
learn in a complex 3-D world containing more or less complex
structures and processes, opportunities and obstacles, and also other
intelligent individuals. This may include learning how to grow layers
of meta-competence suited to increasingly complex and/or abstract
features of the environment, through play and exploration. The
innate/learned dichotomy does not do justice to such diversity.

This paper extends those ideas by providing some (informal)
empirical observations and theoretical conjectures about layered
development and learning, that may lead to further progress in
understanding how mathematics fits in with the rest of animal
cognition, including precursors in human infants and toddlers, and
in other animals, unlike more widely studied, allegedly innate,
precursors concerned with recognition or estimation of objecthood,
numerosity, size, etc. (Spelke, 2000). This proposal is related to
the philosophy of mathematics of Immanuel Kant (Kant, 1781),
according to whom mathematics is neither empirical (as suggested
by Mill), nor merely about “relations between ideas” (as suggested



by Hume). But that does not mean mathematical knowledge is innate,
or that mathematical competences are infallible. Neither is the nature
of mathematical knowledge usefully described in terms of “feelings
of compulsion” (Azzouni, 2008). Rather the structure, kinematics
and dynamics of the 3-D world generally requires generalisations
and predictions to be tested empirically, but includes features that
allow powerful short-cuts to be discovered and used in creative
problem-solving (Craik, 1943). This makes possible biologically
useful productive laziness which reduces or eliminates the need
for empirical trial and error, or symbolic searching, and sometimes
provides relatively quick solutions for novel practical problems,
avoiding empirical experiments that could be dangerous, or even
fatal. However, the mechanisms are not infallible, so that testing and
debugging may be required.

The central claim is that these products of human evolution
can and do develop into what we understand as mathematical
competences. (Examples are given below.) But that does not mean
that the subject matter of mathematics is psychological: it is
primarily concerned with the structure of the world, and also how
that structure can be discovered, and used. Many of species-specific
details are of psychological interest, however.

2 Russell vs Feynman on Mathematics

Russell and Whitehead (1910–1913) attempted to demonstrate that
all of mathematics could be reduced to logic (Frege had attempted
this only for Arithmetic). Despite the logical paradoxes, Russell
thought the goals of the project could be or had been achieved, and
concluded that mathematics was just the investigation of implications
that are valid in virtue of their logical form, independently of any
non-logical subject matter. He wrote: “Mathematics may be defined
as the subject in which we never know what we are talking about, nor
whether what we are saying is true” (Mysticism and Logic (Russell,
1917)).

In contrast, Feynman described mathematics as “the language
nature speaks in”. He wrote: “If you want to learn about nature,
to appreciate nature, it is necessary to understand the language
that she speaks in” (Feynman, 1965). I believe that Feynman’s
description is closely related to generally unnoticed facts about
how a child (and perhaps future robots) can develop powerful,
reusable concepts and techniques related to patterns of perception
and patterns of thinking that are learnt through interacting with a
complex environment, part of which is the information-processing
system within the learner (Sloman, 1978, Ch 6). Despite the role
of experience in such learning, the results of such learning are not
empirical generalisations. Kant wrote, in (Kant, 1781), “though all
our knowledge begins with experience, it by no means follows that
all arises out of experience.” Feynman seems to agree.

I suspect that some of the re-conceptualisation involved in
developing mathematical insight uses mechanisms related to the
more specialised mechanisms for language learning that allow
empirical learning of useful patterns of verbal communication after
a time to trigger the development of a rule-based syntactic theory
that is far more general in its predictive and explanatory power
than the set of previously learnt patterns. In children this leads
to “U-shaped” learning2 because at first the new system cannot
handle exceptions so incorrect utterances are produced (e.g. “she
speaked”, “he hitted me”) by a child who earlier would have used
the correct forms (“she spoke”, “he hit me”). Later the architecture

2 http://www.cis.udel.edu/˜case/slides/nugget-ushape.pdf

is extended to cope with exceptions (a non-trivial alteration to
an information-processing system) and both previously known and
newly learnt exceptions to the rules are dealt with correctly. Further
reorganisation may occur as the language changes. This ability to
develop a powerful (implicit) generative theory of the language in
use, replacing previously acquired empirical generalisations, may be
a specialised version of mechanisms that evolved earlier because they
support productive laziness in coping with a physical environment.
Language is not the only aspect of the world that has general laws
with exceptions that have to be accommodated. But some aspects
are exceptionless, including things learnt about topological features
of space and time and some of the metrical features. There are
also exceptionless generalisations about numbers and about logical
forms, which can be learnt later and embedded in a powerful theory.

This possibility does not seem to be widely recognised. For
example, many examples of learning about affordances in young
children are described in (E. J. Gibson & Pick, 2000). The authors,
like many others, assume there are only three ways for a child to
have knowledge about what can and cannot occur, namely either it is
innate, or it is acquired by learning associations by observation and
trial and error, or the information is acquired from someone else, by
imitation or being instructed. They, like many others, ignore a fourth
way: learning by working things out. Having an appropriate theory
about some aspect of reality allows a child (or animal, or physicist,
or engineer) to work out what must happen even in some situations
that have never previously been encountered (e.g. dealing with new
spatial configurations) whereas if the learning were purely empirical
every novel situation would have to be tested before predictions
could be relied on. How is it possible to avoid that need?

3 Examples of “Productive Laziness”

(1) A deceptively obvious, though quite sophisticated, example
concerns invariant results of sequential matching operations. A
child may discover empirically (and with surprise and delight) that
counting the same set in different orders (e.g. counting fingers on
a hand from left to right and from right to left) always produces
the same result – if no items are added/removed or counted twice,
omitted from the count etc. This can start off as an empirical
discovery and later becomes obvious (at least for some learners).
How? Is it merely that after finding much evidence to support the
generalisation learners associate a very high probability with it? That
would be very rash, since the evidence would be limited to only a
tiny subset of possible cases: what justifies the extrapolation to all
the very many sets of objects much larger than any the learner has
encountered? Can you give a proof? Some philosophers believe that
the result is not proved – merely stipulated as a criterion for doing
the counting properly. (They have presumably never experienced the
process of making a mathematical discovery.)
(2) Another example can occur after the child has learnt that there
are different kinds of matter, some rigid, some not. It is possible
to discover empirically that if a part of a rigid object is grasped
and rotated all the other parts of the object will move, and their
movements will be greater the further they are from the rotated
portion. Later on comes understanding that rigidity (which is a local
property of resistance to deformation) can have global effects, so that
movement of part of object can cause all other parts to move, and that
rotary movements have amplified remote effects. The reasoning can
be applied to objects of many shapes and sizes in many contexts,
and makes it possible to predict consequences of rotation and other
movements, and also constraints on such movements (assuming



rigidity and impenetrability of the materials). This sort of discovery
can, of course, have practical consequences that are important.
(3) A child who can lift a cut-out picture from its recess may know
which recess it should go back into but fail to insert it without a lot
of random movement. Later, the child learns to align the boundary
of the picture with the boundary of the recess. (That may require
a non-trivial extension of the child’s ontology to include concepts
of boundary and alignment.) If the two boundaries are aligned and
the picture piece is slightly smaller than the recess then all parts of
the piece can simultaneously move in without obstruction from the
material surrounding the recess. Any translation before insertion will
cause overlap that prevents insertion. What is not so obvious is that
unless the recess and picture piece are both circular, most rotations
will also cause obstruction. However if the piece is symmetrical there
may be several rotations that allow insertion, but most rotations will
cause obstruction: why?

A child who can reliably get such pictures back into their recesses,
may at first merely attach a very low probability of success to
insertion without boundary alignment then later come to see that
the insertion must fail, but without being able to explain that this
impossibility depends on the materials being rigid and impenetrable.
What changes between noticing an empirical regularity and seeing
that it cannot have exceptions?
(4) There is much to learn about strings. If an inelastic but flexible
string is attached to a remote movable object, then if the end is pulled
away from the object a process can result with two distinct phases:
(1) curves in the string are gradually eliminated (as long as there are
no knots), and (2) when the string is fully straightened the remote
object will start moving in the direction of the pulled end. However,
if the string is looped round a fixed pillar, the first sub-process does
not produce a single straight string but two straight portions and a
portion going round the pillar, and in the second phase the attached
object moves toward the pillar, not toward the pulled end; and so on.
Many more complex variants can be reasoned about.
(5) J.J. Gibson (1979) drew attention to the biological importance
of perceiving not only structures, but also processes (e.g. optical
flow patterns), and being able to detect possibilities for action, and
constraints on actions, in the environment: positive and negative
affordances for the perceiver. That requires the ability to perceive
the possibility of some processes and configurations and the
impossibility of others (Sloman, 1996). Gibson considered only
possibilities involving the perceiver’s actions. However those are
only a subset of a broader range of possibilities and constraints
that can be perceived: they can be called “proto-affordances”, since
they involve possibilities and constraints on processes that need not
involve actions, e.g. seeing that an object is too large to fit through a
gap, whereas another could get through, as long as it is rotated during
the process (e.g. if it is L-shaped). These are potential affordances,
not actual affordances for someone who has no interest in moving
the object.

Figure 1 illustrates a vast array of possible processes and
constraints on processes involving a small number of objects which
can be moved from one configuration to another via a large collection
of different trajectories, using many possible modes of manipulation.
Such transformations of 3-D configurations are achievable by
children before they can talk, and therefore the ability to perform
them cannot depend on use of human language, though there must
be an internal form of information processing supporting not only
perception of what exists but also reasoning about what is and is not
possible including representation of goals (non-existent states to be
achieved) so that action sequences can be thought about and selected

Figure 1. There is a huge variety of ways in which using your right
hand, left hand, both hands, teeth, a pair of pliers, tweezers, etc., you
could rearrange the objects on the left to the configuration on the right.
To do this a robot would need forms of representation that: (a) can be
derived from sensory input (even low-resolution noisy input, as here);
(b) have sufficient definiteness to allow goals to be expressed; (c) allow
representation of effective multi-step plans to achieve goals; (d) are
sufficiently abstract to allow effective reasoning about future possibilities
and impossibilities (e.g. grasping the saucer in the middle, using finger
and thumb is impossible), without considering all the continuously variable
configurations and processes; and (e) allow plans to be used to control
actions (using visual servoing, not necessarily ballistically). An infant cannot
do all this but a normal child will eventually develop the ability to do it and
later the ability to describe ways to do it. Byrne & Russon (1998) show that
some other species seem to have partly similar abilities.

before they are performed, and their consequences worked out, using
general capabilities, even if the task is a new one. Physical trial-and
error is not always required.
(6) A familiar example is stacking nested cups (facing up). At first, as
Piagetians found, children succeed only by a procedure that appears
to involve randomly selecting the next cup, and later, when a cup
is found too big to insert, removing some of the previously inserted
cups and trying again with the omitted cup. Eventually a child may
notice that all the back-tracking involves wasted effort and time and
go on to “debug” the procedure, until she works out that wasted
moves can be avoided if the cups are selected in order of decreasing
size: inserting the largest remaining cup at each stage.

A child who cannot describe that successful procedure, may
nevertheless discover it. Perhaps she has understood but is unable
to say: (a) ‘smaller than’ is transitive; (b) a cup cannot be inserted
into a smaller cup; (c) if at some stage a cup X is inserted that
is smaller than some other available cup Y, then (d) all the cups
inserted after X will be smaller than X (from (a)) and therefore (e)
all the cups inserted after X will be smaller than Y, and (f) Y cannot
therefore be inserted after X – so that back-tracking will be required.
A child who has somehow understood all that may be able to work
out that always inserting the largest remaining cup will prevent the
blockage occurring. A further step is understanding that preventing
that blockage will suffice to get all the cups stacked. Yet another step
is generalising the result to nesting the cups upside down – requiring
a partly similar, but importantly different, strategy.

I doubt that most adults who understand the strategy can explain
why the strategy works, unless they have had training in computer
science or mathematical reasoning. How such understanding is
implemented is another matter, requiring further research. It seems
unlikely that a young child, or even most non-mathematical
adults, can use reasoning in predicate calculus, or a computational
process-algebra. Rather, I suspect the reasoning uses a form of
representation that is more pictorial than logic, but more abstract
than normal pictures – features required also for planning multi-
step future actions. Compare (Sloman, 1971; Glasgow, Narayanan, &
Chandrasekaran, 1995; Jamnik, Bundy, & Green, 1999; Winterstein,
2005). Spelling out details remains a hard task for the future.
(7) There are very many examples involving counting and numbers.



Much philosophy of mathematics assumes numbers are abstract
entities named by numerals, but for a young child, as pointed out
(independently) in (Wiese, 2007) and (Sloman, 1978, Ch 8), number
words are primarily used for doing things, including reciting them,
matching them and using them to perform tasks involving collections
of objects (which later can include collections of number names). In
addition to example (1) there are many more numerical discoveries
that can be made empirically, then later understood as necessarily
exceptionless, including the discovery that adding 3 more objects to
a set of 4 objects gives the same “How many?” result as adding 4
more objects to a set of 3 objects; then later generalising this so as to
understand that adding N objects to a set of M objects gives the same
result as adding M objects to a set of N objects. One way to see this
is to make the (non-trivial) discovery that adding the larger set to the
smaller set necessarily goes through a stage which is the initial state
of adding the smaller set to the larger set. (Contrast the analysis in
(Guhe, Pease, & Smaill, 2009).) Moving from the empirical view to
the non-empirical view of these results requires a fairly sophisticated
ability to attend to abstract features of processes as well as structures,
namely parametrisable patterns that can be instantiated in different
ways, while (necessarily) preserving some of their structure.
(8) Links between counting abilities and abilities to manipulate and
rearrange objects can be discovered when playing with blocks, e.g.
the discovery that some sets of blocks can be arranged in rectangles,
or in cubes, while others cannot. E.g. 5 or 7 blocks cannot be
arranged as a rectangle, except a rectangle with only one row,
whereas 8 or 9 blocks can be arranged in a rectangle (the latter a
square). In contrast, 8, but not 9 blocks can be arranged to form a
cube, and so on. In very unusual children this exploration might lead
to invention of the concept of a prime number or even conjecturing
the unique-factorisation theorem for natural numbers.

Many more examples including string, elastic, pins, stones, mazes,
and marks on paper are described in (Sauvy & Suavy, 1974).
Some of their experiments can be performed on simulated physical
objects, e.g. simulated rubber bands, using a graphical package like
‘dia’. This illustrates a point made in (Sloman, 1971) namely that
some proofs work on representations of the subject matter rather
than instances of the subject matter, which would not be possible
for empirical knowledge. (However, as pointed out in that paper
analogical/pictorial representations are often not isomorphic with
what they represent, as commonly assumed.)

Additional examples were investigated by Piaget, though as far
as I know Piagetians did not ask the questions posed here from
an AI standpoint, including: What forms of representation does
the learner need? What perceptual and reasoning mechanisms are
required? What is the information processing architecture within
which such processes function? What meta-cognitive mechanisms
are needed? What ontology is required, and how are ontologies
extended? Are all the components, and the architecture containing
them, present from birth (which seems unlikely) or do they grow? If
so, what mechanisms (forms of representation, architectures, etc.) are
required to produce that growth and what are the roles of the genome
and the environment in making such growth possible? The work of
Karmiloff-Smith on representational redescription, e.g. (Karmiloff-
Smith, 1994), seems to be related, but as far as I can see it does not
propose mechanisms.

4 Toddler Theorems

The preceding examples are a small subset from a potentially much
larger collection of examples, based on informal observations of

infants, toddlers and older children, as well as observations reported
in developmental psychology and animal behaviour literature. One
way to make progress in this field is to go on collecting, analysing,
and organising, examples of what could be called “toddler theorems”,
supported, where possible, by videos. Analysing the behaviours,
from the viewpoint of a designer of robots that need to function
and learn in 3-D environments of the sorts that humans and
other animals can cope with, would include partially ordering the
examples in terms of the information processing mechanisms that
are required. That could be tested by building and demonstrating
such mechanisms producing similar achievements, and analysing
dependency relationships.

I suspect there are very many examples of the transition, based
on “productive laziness”, from empirical discovery to knowledge
about necessity of structural relations (in spatial configurations, in
processes, etc.).

Many of the examples will be about proto-affordances
(possibilities for and constraints on change), vicarious affordances
(possibilities and constraints for other agents) and epistemic
affordances (how changes in the environment alter the information
available to particular perceivers). Building a shared repository of
examples may require overcoming the misguided prejudice among
many psychologists that if your observations cannot be fed into a
statistics package you are not doing science.

A large and varied collection of examples could be the basis
of systematic investigation into requirements for robots able to
go through similar (partially ordered) transitions – including
requirements that have not been noticed by most robot designers
(for instance researchers who over-emphasise the importance
of embodiment, morphology, and dynamic coupling with the
environment, criticised in (Sloman, 2009b)). Since animals with
different morphologies seem to learn complex abilities to manipulate
3-D objects, and some seem to be able to solve non-trivial planning
problems (as illustrated in (Byrne & Russon, 1998)) it may be that
what is common to animals with different morphologies, namely
information-processing capabilities evolved in a 3-D environment,
is more important for their intelligence (productive laziness!) than
their morphology. Compare humans born limb-less, or blind, etc.

One of the reasons for this importance, is that much of human
(and animal) intelligence is concerned not with real-time dynamic
interaction with the environment (which is obviously important some
of the time) but with avoiding unnecessary, time-wasting, dangerous,
or inefficient interaction. It is no accident that much mathematical
thinking about physical events and processes is done without actually
producing those events and processes.

As Kant noticed, development of those competences is triggered
by experience, e.g. producing and observing physical processes
in play and exploration, but what results is not a conclusion
derived from or based on those observations but a new theoretical
understanding, providing explanations of those observations.
(Compare Popper’s view of science, summarised in (Popper, 1972).)

Conjecture: diverse mathematical competences are based on
expanding layers of meta-cognitive competences that grow out
of more common biological competences that originally evolved
to support interactions with a complex, varied and changing 3-
D world. These competences include: (a) the ability to detect the
need to extend the current ontology substantively (as happens in
deep science, i.e. non-definitionally), (b) the ability to create new
explanatory and predictive theories and to extend or modify those
theories (e.g. by modifying the ontology they use, as well as
basic postulates and reasoning methods), (c) the ability to deploy



theories, including noticing new opportunities for deployment, (d)
the ability to detect and debug flaws in those theories, and (e) the
ability to create new forms of representation, including new ways of
manipulating representations that are usable in reasoning, explaining,
predicting, and inventing.

So far, robots are nowhere near matching these competences,
but there is no known reason why they could not do so in
future – once we understand the competences well enough
to specify the computational resources required to support
them: forms of representation, information-processing mechanisms,
and self-modifying multi-functional architectures. Although there
has been much AI work on attempting to model aspects of
mathematical competence, e.g. by Seely-Brown, Lenat, Bundy,
Jamnik, Winterstein, Colton, Pease, and very recently (Guhe et
al., 2009), such work starts with systems that manipulate abstract
structures rather than objects in the environment. For the current
project, we need to investigate how empirical knowledge is acquired
by such interactions, and later transformed to a non-empirical status.

I suggest that the best way to test Kant’s view of the nature of
mathematics, is to try to show how to design and build a robot that
develops mathematical understanding as humans seem to do, initially
by building on their understanding of structures and processes in 2-
D and 3-D space using more general biological competences, and
also reflecting on their own thinking about structures and processes,
and then later reflecting on and talking about the results of their
earlier reflection. Formal work in AI on theorem proving does not
address these issues, because it all starts at a much later stage of
sophistication, where much knowledge has already been formalised
and reasoning methods are (usually) based on logic, though those
techniques may later play an important role in this project. 3

5 Psychological Theories About Number Concepts

It is often supposed that the visual or auditory ability to distinguish
groups with different numbers of elements (subitizing) displays
an understanding of number. However this is simply a perceptual
capability. A deeper understanding of numbers requires a wider range
of abilities, some of them already mentioned. Rips et al. (Rips,
Bloomfield, & Asmuth, 2008) rightly criticise theories that treat
number concepts as abstracted from perception of groups of objects,
and discuss alternative requirements for a child to have a concept
of number, concluding that having a concept of number involves
having some understanding (not necessarily consciously) of a logical
schema something like Peano’s five axioms. They claim that that is
what enables a child to work out various properties of numbers, e.g.
the commutativity of addition, and the existence of indefinitely larger
numbers. This implies that such children have the logical capabilities
required to draw conclusions from the axioms, though not necessarily
consciously. That immediately raises the question how children can
acquire such competences. They conclude that somehow the Peano
schema and the logical competences are innately built into the child’s
“background architecture” (but do not specify how that could work).

An alternative possibility was presented in (Chappell & Sloman,
2007; Sloman & Chappell, 2007) according to which such
competences are meta-configured, i.e. not determined in the genome,
but produced through interactions with the environment that
generate layers of meta-competences (competences that enable new

3 See also this PDF presentation on whether a baby robot can grow up to be
a mathematician
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#math-robot

competences to be acquired). Some hints about how that might occur
are presented below.

Many psychologists and researchers in animal cognition
misguidedly search for experimental tests for whether a child or
animal does or does not understand what numbers are.4 Rips et
al. are not so committed to specifying an experimental test, but
they do require a definition that makes a clear distinction between
understanding and not understanding what numbers are.

As far as I know, no developmental psychologists have considered
the alternative view, presented over 30 years ago in (Sloman, 1978),
chapter 8, that there is no single distinction between having and
not having a concept of number, because learning about numbers
involves a never-ending process that starts from relatively primitive
and general competences that are not specifically mathematical and
gradually adds more and more sophistication, in parallel with the
development of other competences. Independently developed ideas
in (Wiese, 2007) also suggest that learning about numbers involves
developing capabilities of the following sorts:

1. performing a repetitive action;

2. memorising an ordered sequence of arbitrary names;

3. performing two repetitive actions together and keeping them in
synchrony;

4. initiating such a process and then being able to use different
stopping conditions, depending on the task;

5. doing all this when one of the actions is uttering a learnt sequence
of names;

6. learning rules for extending the sequence of names indefinitely;

7. observing various patterns in such processes and storing
information about them, e.g. information about successors and
predecessors of numerals, or results of counting onwards various
amounts from particular numerals;

8. noticing commonalities between static mappings and process
mappings (e.g. paired objects vs paired events);

9. finding mappings between components of static structures as well
as the temporal mappings between process-elements;

10. noticing that such mappings have features that are independent of
their order (e.g. counting a set of objects in two different orders
must give the same result);

11. noticing that numbers themselves can be counted, e.g. the numbers
between two specified numbers;

12. noticing possibilities of and constraints on rearrangements of
groups of objects – e.g. some can be arranged as rectangular
arrays, but not all;

13. learning to compare continuous quantities by dividing them into
small components of a standard size and counting.

Such competences and knowledge can be extended indefinitely.
Some can be internalised, e.g. counting silently. Documenting all the
things that can be discovered about such structures and processes in
the first few years of life could fill many pages. (Compare (Liebeck,
1984).) The sub-abilities involved in these processes are useful in
achieving practical goals by manipulating objects in the environment
and learning good ways to plan and control such achievements. An
example might be fetching enough cups to give one each to a group
of people, or matching heights of two columns made of bricks, to

4 Compare the mistake of striving for a definitive test for whether animals of
some species understand causation, criticised here in presentation 3:
http://www.cs.bham.ac.uk/research/projects/cogaff/talks/wonac



support a horizontal beam, or ensuring that enough water is in a big
jug to fill all the glasses on the table.

Gifted teachers understand that any deep mathematical domain
is something that has to be explored from multiple directions,
gaining structural insights and developing a variety of perceptual
and thinking skills of ever increasing power. That includes learning
new constructs, new reasoning procedures, learning to detect
partial or erroneous understanding, and finding out how to remedy
such deficiencies. The work of Wiese and Sloman presents some
conjectures about some of the information-processing mechanisms
involved. As far as I know, nobody has tried giving a robot such
capabilities. Simplified versions should be achievable soon.

6 Internal Construction Competences
The processes described above require the ability to create (a) new
internal information structures, including, for example, structures
recording predecessors of numbers, so that it is not necessary always
to count up to N to find the predecessor of N, and (b) new algorithms
for operating on those structures. As these internal information-
structures grow, and algorithms for manipulating them are developed,
there are increasingly many opportunities to discover more properties
of numbers. The more you know, the more you can learn.

Moreover those constructions do not happen instantaneously or
in an error-free process. Many steps are required including much
self-debugging, as illustrated in (Sussman, 1975). This depends
on self-observation during performance of various tasks, including
observations of external actions and of thinking. One form of
debugging is what Sussman called detecting the need to create new
critics that run in parallel with other activities and interrupt if some
pattern is matched, for instance if disguised division by zero occurs.

The ongoing discovery of new invariant patterns in structures and
processes produced when counting, arranging, sorting, or aligning
sets of objects, leads to successive extensions of the learner’s
understanding of numbers. Initially this is just empirical exploration,
but later a child may realise that the result of counting a fixed set
of objects cannot depend on the order of counting. (Why not?) That
invariance (a kind of transitivity) is intrinsic to the nature of one-
to-one mappings and does not depend on properties of the things
being counted, or on how fast or how loud one counts, etc. However,
some learners may never notice this non-empirical character of
mathematical discoveries until they take a philosophy class!

6.1 Approaches to infinity
One of the non-empirical discoveries is that the natural numbers
form an infinite set. Kant suggested that this requires grasping that
a rule can go on being applied indefinitely. This contrasts with the
suggestion by Rips et al. (Rips et al., 2008) that a child somehow
acquires logical axioms which state that every natural number has
exactly one successor and at most one predecessor, and that the first
number has no predecessor, from which it follows logically that there
is no final number and the sequence of numbers never loops. Instead,
a child could learn that there are repetitive processes of two kinds:
those that start off with a determinate stopping condition that limits
the number of repetitions and those that do not, though they can be
stopped by an external process. Tapping a surface, walking, making
the same noise repeatedly, swaying from side to side, repeatedly
lifting an object and dropping it, are all examples of the latter type.

The general notion of something not occurring is clearly required
for intelligent action in an environment. E.g. failure of an action

to achieve its goal needs to be detectable. So if the learner has the
concept of a repetitive process leading to an event that terminates
the process, then the general notion of something not happening
can be applied to that to generate the notion of something going on
indefinitely. From there, depending on the information processing
architecture and the forms of representation available, it may be a
small step to the representation of two synchronised processes going
on indefinitely, one of which is a counting process.

What is more sophisticated is acquiring a notion of a sequence
of sounds or marks that can be generated indefinitely without ever
repeating a previous mark. An obvious way to do that is to think of
marks made up of one or more dots or strokes. Then the sequence
could start with a single stroke, followed by two strokes, followed
by three strokes, etc., e.g. | || ||| |||| ||||| etc. Such
patterns grow large very quickly. That can motivate far more compact
notations, like arabic numerals, though any infinitely generative
notation will ultimately become physically unmanageable.

A different sort of extension is involved in adding zero to the
natural numbers, which introduces “anomalies”, such as that there
is no difference between adding zero apples and subtracting zero
apples from a set of apples. A special meaning has to be invented for
“multiplying by zero” – or it could be deemed meaningless.

Negative integers add further confusions. This extension is rarely
taught properly, and as a result most people cannot give a coherent
explanation of why multiplying two negative numbers should give
a positive number. It cannot be proved on the basis of previous
knowledge because what multiplying by a negative number means
is undefined initially. For mathematicians, it is defined by the
rules for multiplying negative numbers, and the simplest way to
extend multiplication rules to negative numbers without disruption
of previous generalisations, is to stipulate that multiplying two
negatives produces a positive. (Compare defining what 3−1 and 30

should mean.)
Some teachers use demonstrations based on the so-called “number

line” to introduce notions of negative integers, but this can lead
to serious muddles (e.g. about multiplication). Pamela Liebeck
(Liebeck, 1990) developed a game called “scores and forfeits”
where players have two sets of tokens: addition of a red token is
treated as equivalent to removal of a black token, and vice versa.
(Multiplication was not included.) The person with the biggest
surplus of black over red wins. Giving a player both a red and a
black token, or removing both a red and a black token makes no
difference to the total status of the player. Playing, and especially
discussing, the game seemed to give children a deeper understanding
of negative numbers and subtraction than standard ways of teaching,
presumably because the set of pairs of natural numbers can be used to
model accurately the set of positive and negative integers. Productive
laziness can stimulate a search for good notations and procedures for
manipulating them: a difficult task with high payoff.

Cardinality and orderings are properties of discrete sets.
Extending the notion of number to include measures that are
continuously variable, e.g. lengths, areas, volumes and time intervals,
requires sophisticated extensions to the learner’s ontology and
forms of representation – leading to deep mathematical and
philosophical problems (e.g. Zeno’s paradoxes). In humans, an
understanding of Euclidean geometry and topology seems to build on
reasoning/planning competences combined with visual competences,
illustrated in (Sauvy & Suavy, 1974). This requires different forms
of representation from counting and matching groups of entities.
Some of these competences are apparently shared with some other
animals – those that are capable of planning and executing novel



spatial actions (Byrne & Russon, 1998).

7 Doing Philosophy by Doing AI

I suspect that many philosophical disputes about the nature
of mathematics will be transformed if we can build not a
standard theorem proving machine but a robot that discovers
ways of achieving “productive laziness”, for instance by doing
spatial/geometrical reasoning. Many others (e.g. (Glasgow et al.,
1995)) have pointed out the need to provide intelligent machines
with spatial forms of representation and reasoning, but progress in
replicating animal abilities has been very slow. In part, this is because
the requirements for human-like (or animal-like) visual systems have
not been analysed in sufficient depth (as illustrated in (Sloman,
2009a, 2008)). E.g. there is a vast amount of research on object
recognition that contributes nothing to our understanding of how 3-
D spatial structures and processes are seen or how information about
spatial structures and processes is used, for instance in reasoning and
acting.5

8 Affordances, Visual Servoing, and Beyond

Analysis of biological requirements for vision (including human
vision) enlarges our view of the functions of vision, requiring goals
of AI vision researchers to be substantially expanded. An example
is the role of vision in servo-control, including control of continuous
motion as well as discrete condition-checking.

Gibson’s work on affordances in his (1979) showed that animal
vision provides information not merely about geometrical and
physical features of entities in the environment, as in (Barrow
& Tenenbaum, 1978; Marr, 1982), nor about recognising or
categorising objects (the focus of much recent AI ‘vision’ research),
but about what the perceiver can and cannot do, given its physical
capabilities and its goals. I.e. vision needs to provide information not
only about actual objects, structures and movements, but also what
processes can and cannot occur in the environment (Sloman, 1996).
In order to do this, the visual system must use an ontology that is
only very indirectly related to retinal arrays. Gibson did not go far
enough, as we have seen in discussing proto-affordances, vicarious
affordances, etc.

9 Perception of Actual and Possible Processes

Previous work in a cognitive robotics project included analysis of
requirements for a robot capable of manipulating 3-D objects, e.g.
grasping them, moving them, and constructing assemblages, possibly
while other things were happening. Analysis of the requirements
revealed (a) the need for representing scene objects with parts and
relationships (as everyone already knew), (b) the need for several
ontological layers in scene structures (as in chapter 9 of (Sloman,
1978)), (c) the need to represent “multi-strand relationships” because
not only whole objects but also parts of different objects are related
in various ways, (d) the need to represent “multi-strand processes”,
because when things move the multi-strand relationships change,
e.g. with metrical, topological, causal, functional, continuous, and
discrete changes occurring concurrently, and (e) the need to
represent possible multi-strand processes and constraints on such

5 Some of the differences between recognition and perception of 3-D
structure are illustrated in
http://www.cs.bham.ac.uk/research/projects/cogaff/challenge.pdf

possibilities – the positive and negative “proto-affordances” that are
the substratum of affordances.

As explained in (Sloman, 2009a, 2008), that requires an amodal,
exosomatic form of representation of processes; one that is not
tied to the agent’s sensorimotor processes. That possibly is ignored
by researchers who focus only on sensorimotor learning and
representation, and base all semantics on “symbol-grounding”.

The ability to perceive a multi-strand process requires the
ability to have internal representations of the various discretely
and continuously concurrently changing relationships. Some of the
mechanisms used for perceiving multi-strand processes can also
be used both to predict outcomes of possible processes that are
not currently occurring (e.g. when planning), and to explain how a
perceived situation came about. Both may use a partial simulation of
the processes (Craik, 1943; Grush, 2004). Our conjecture is that those
biological mechanisms, not yet matched in AI, evolved/grew into
mechanisms capable of use in geometrical/topological reasoning.

10 The Importance of Kinds of Matter

A child, or robot, learning about kinds of process that can occur in
the environment, needs to be able to extend the ontology she uses
indefinitely, and not merely by defining new concepts in terms of
old ones: there are also substantive ontology extensions (as in the
history of physics and other sciences). For example, whereas many
perceived processes involve objects that preserve all their metrical
relationships, there are also many deviations from such rigidity,
and concepts of different kinds of matter are required to explain
those deviations: string and wire are flexible, but wire retains its
shape after being deformed; an elastic band returns to its original
length after being stretched, but does not restore its shape after
bending. Some kinds of stuff easily separate into chunks in various
ways, if pulled, e.g. mud, porridge, plasticine and paper. A subset
of those allow restoration to a single object if separated parts are
pressed together. There are also objects that are marks on other
objects, like lines on paper, and there are some objects that can
be used to produce such marks, like pencils and crayons. Marks
produced in different ways and on different materials can have
similar structures. Compare (Sauvy & Suavy, 1974). However, it is
important to remember ((Sloman, 1971)) that 2-D pictures/diagrams
of 3-D structures/processes cannot possibly be isomorphic with what
they represent, a common incorrect assumption.

11 Perception and Mathematical Discovery

I have argued that many mathematical discoveries involve noticing
an invariant in a class of processes. For example, Mary Ensor, a
mathematics teacher, once told me she had found a good way to teach
children that the internal angles of a triangle add up to a straight line,
demonstrated in the figure.

Imagine an arrow starting at one corner, pointing along one side.
It can be rotated three times as indicated, going through positions
shown in the three successive figures. The successive rotations a,
b and c go through the interior angles of the triangle, and reverse
the arrow, so they must add up to a straight line. This discovery



may initially be made through empirical exploration with physical
objects, but the pattern involved clearly does not depend on what
the objects are made of and changing conditions such as colours
used, lengths of lines, particular angles in the triangle, temperature,
strength of gravitational or magnetic field cannot affect the property
of the process.

However, such mathematical discoveries can have “bugs” as
Lakatos (Lakatos, 1976) demonstrated using the history of Euler’s
theorem about polyhedra. That is sometimes wrongly taken to imply
that mathematical knowledge is empirical in the same way as
knowledge about the physical properties of matter. (Lakatos used
the label “quasi-empirical”, but it needs to be explicated in terms
of mechanisms required. Compare the self-debugging in (Sussman,
1975).) The discovery of bugs in proofs and good ways to deal with
them is an important feature of mathematical learning. Ensor’s proof
would break down on a spherical surface, for example, since the
triangle could have three 90 degree angles (among other possibilities
inconsistent with the original result). Noticing this might lead a
learner to investigate properties of triangles that distinguish planar
and non-planar surfaces. But that exploration does not require
experiments in a physical laboratory, though it may benefit from
them. Kant claimed that such discoveries are about the perceiver’s
forms of perception, but they are not restricted to any particular
perceivers. Making Kant’s claim more precise, in the form of a
working design for a robot learner remains a challenge.

12 Humean and Kantian Causation

Adding properties of matter, such as rigidity and impenetrability, to
representations of shape and topology allows additional reasoning
about and prediction of results of processes. An example is the
ability to use the fact that two meshed gear wheels are rigid and
impenetrable to work out, in advance of experimenting, how rotating
one will cause the other to rotate. That kind of reasoning is not always
available.

If the wheels are not meshed, but there are hidden connections,
then the only basis for predicting the consequence of rotating
the wheels is to use a Humean (statistical) notion of causation:
basing predictions of results of actions or events solely on observed
correlations. In contrast, where the relevant structure and constraints
are known, and mathematical proofs (using geometry and topology)
are possible, Kant’s notion of causation, which is structure-based
and deterministic, can be used. A significant subset of the causal
understanding of the environment that a child acquires (though
not all) is Kantian because it allows the consequences of novel
processes to be worked out on the basis of geometric and topological
relationships, and kinds of matter involved.6 But for this, much
engineering design would be impossible.

13 Individual and social processes

I have tried to present a view of products of biological
evolution concerned with interacting with a complex spatio-temporal
environment whose structure allows some things to be worked out by
an individual instead of having to be learnt empirically, even though
the working out is sometimes preceded by empirical discovery of the
result, followed by a re-interpretation at a later stage. Further work
is required to understand both the evolutionary pressures and what
exactly those pressures have produced in humans and other animals

6 http://www.cs.bham.ac.uk/research/projects/cogaff/talks/wonac

(as shown by research on primates, corvids, elephants, dolphins,
octopuses, dogs, and others).

The evidence considered here suggests that the potential to learn
about even fairly advanced mathematics is in most newborn human
infants (though there may also be genetic individual differences
which can only be understood in the light of detailed theories of the
mechanisms involved – not yet available). Moreover, the existence
of the potential does not mean that that potential can be realised in
a normal lifetime without additional help. One product of evolution
that is not unique to humans, but is supported by especially powerful
mechanisms in humans, is the ability of individuals to speed up their
learning under the guidance and scaffolding of results of learning
of those who have come before. This makes cultural evolution,
and cultural learning possible. It is facilitated by toys, games,
development of tools, shelters, clothing, collaborative experiences
with acquiring and consuming food, etc. (I think the role of imitation
is sometimes grossly over-rated. Another common error, which there
is no space to discuss here is to confuse processes of creative
abstraction with use of metaphorical reasoning. Metaphors cannot
produce an grasp of why certain things are possible and others
impossible.)

Many animals seem to be able to acquire unusual cognitive
competences as a result of domestication and training by humans,
but are not able to pass on what they have learnt from humans to
others, e.g. dogs, parrots, various primates, elephants, although there
are other things that they teach their young. This means that humans
in groups can share the process of acquiring new knowledge and
competences and passing them on with much faster progress between
generations than other species. A well-known spectacular example
was the spontaneous development of a novel sign language by a
group of deaf children in Nicaragua, but human history is full of
examples of collaborative advance, usually spread out over longer
time periods and with a large age spread in the communication from
experts to learners. That applies also to mathematical advances. So
although the products of biological evolution discussed in previous
sections are necessary for development of mathematics, they do
not suffice for the development of advanced and systematised
mathematical knowledge in a human lifetime: that requires cultural
development. Perhaps future robots, or a future animal species, will
not need that cultural support for rapid mathematical development.

14 Conclusion

We need further investigation of architectures and forms of
representation that allow playful exploration by a robot to produce
discoveries of patterns in structures and processes that are the basic
mechanisms needed for development of deep mathematical concepts
and mathematical forms of reasoning. The robot should be able to go
through the following stages:

1. Acquiring familiarity with some domain, e.g. through playful
exploration;

2. Noticing (empirically) certain generalisations;
3. Discovering a way of thinking about them that shows they are not

empirical;
4. Generalising, diversifying, debugging, deploying, that knowledge;
5. Formalising the knowledge, possibly in more than one way.

Although this work emphasises embodiment because spatial
embodiment presents both the problems that need to be solved
(including problems of manipulating, route-finding, building things,
eating food, avoiding being eaten, finding shelter, etc.), it does



not emphasise embodiment in the way that much current research
in neuroscience and AI/Robotics does e.g. (Lungarella & Sporns,
2006; Berthoz, 2000), namely by focusing on the real-time dynamic
interaction with the environment. That is certainly a problem for
all organisms. What is special about the organisms we regard as
most intelligent (including humans, primates, some birds, octopuses)
seems to be their relatively unusual ability to use an understanding
of the structure of the environment to select goals, to create plans,
to carry out plans, and to control their behaviour in a productively
lazy way: not being driven simply by the physics of the environment
and their own morphology, but in part by using information acquired
by perception of structures to reasoning about structures and future
possible and impossible processes (Sloman, 2009b).

This paper merely reports on a subset of the requirements for
working designs. Some more detailed requirements are in cited
papers. It is clear that AI still has a long way to go before the visual
and cognitive mechanisms of robots can match the development of a
typical human child going through infant and toddler learning. There
is still a great deal more to be done, and meeting all the requirements
will not be easy.

If others are interested in this project, perhaps it would be useful
to set up an informal multidisciplinary network for collaboration on
refining the requirements and then producing a working prototype
system as a proof of concept, using a simulated robot, perhaps
one that manipulates 2-D shapes in a plane surface, discovering
properties of various kinds of interactions, involving objects with
different shapes made of substances with various properties that
determine the consequences of the interactions, e.g. impenetrability,
rigidity, elasticity, etc.

Perhaps one day, a team of robot mathematicians, philosophers of
mathematics and designers will also be able implement such systems.
Don’t expect that soon.
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