Asron Slomen
Steven Hardy

GIVING A COMPUTER GESTALT EXPERIENCES

POPEYE is a vision program currently being developed by a
small group at Sussex University. The sim is to explore the
problems of interpreting messy end complex pictures of fami-
liar objects. Familiaribty is importent because knowledge of
the objects helps to overcome the problems of dealing with
noise and ambiguities. Figure 1 gives an example. Pictures
are presented to POPEYE in the form of a two-dimensional
binary array, representing scenes containing overlapping
letters made of "bars". Pictures are generated by programs
either from descriptions or with the aid of an interactive
graphics terminal. We are using POP2, the programming
language developed for A.I. at Edinburgh University. However,
we have found it useful to extend the language, and this paper
describes some of the extensions. POPEYE!s domain-gpecific
knowledge will be described on another occssion.

POPEYE should process the picture in a gensible, flexible
way, g0 that the main features to have emerged at any time can
redirect the flow of attention. This applies at all levels.
For ingtance, insgtead of doing the usual complete scan of a
picture before starting higher-level processes, POPEYE builds
histograms while doing the scan, and uses them to indicate the
need to switch to something more importent. Bub if higher
level processes run oub of things to do, the scan is continued.
Similexrly, the higher-=level processes themselves may generate
something still more important, in which case they have to be
suspended. So, many different kinds of processes need to be
eble to coexight. Starting higher processes before lower level
surveys are complete generates horrific problems to do with
not jumping to conclusions too guickly, and being prepared to
undo decisions, cccasionally. However it seems that the human
ability to make something mesningful emerge quickly out of a
meas of data depends on this. To meke it easgier to write pro=
grams which generate and control many different processes we
have implemented a "process® package, including scheduling
facilities. These will be described below.

Mnother kind of problem is concerned with storsge and re=
trieval of large amounts of information. For instance, the
same item mgy be relevant in different ways in different con-
textgs sometimes a line-gegment is relevent to a subproblem
because of its orientation, and sometimes because of its loca=

2ho

Aopiok Rk

Aok ROk ROR K sokokRkokckolokkook RO R K A
XK *
deksokokaoiok ksiokokkkok X% X
% XK *
Rk dokkRRdokkck &k KA KA L RRE
* #* X X ¥
® * * X #
% kckskdoiokRorkoRkR * X *
3 E S 4 * COX X
% L S 4 * £ * b3
R X % * *® X *
*® *¥ ¥ tX *® .
b ¢ Hk * X
E3 4 0k * % ®
X & * % # % ¥ %
% Kk 24 * % %
L * * % *
*® % *
% #® X ¥
X & * X
* Rk ok * % *
* * * X X *
* * R * X X
* #* ® % X *
* * Aok kKK * *
*® * * x X
L K% # %
3 KA L3 3 3 % * #
* E L3R S 4 ® * 4
KRdok % W& E Rk
® % # % -
* R 3 %
Rkkkkk Hiokkdok # X
L 3 . b S
A 4 ®

Fidure 1.

This is a8 simele exameple of the kind of ricture thg Frogram wi}l_be
expected to ansluse and intereret. Most reorle find @hat familiar
letterss and. rossibly a3lso a8 wordr: emerde vers auicklys.

243

tion in the picture. So a lot of cross-indexing is nesded.
Moreover, the program will eventually have to have a very
large number of different concepts, relating to different kinds
of sbruchbures and relationships which can be found in the pice
ture and the scene, so an efficient retrieval gystem is needed
for matching picture-fragments and scene-fragments with pre-
viously stored structural descriptions. To deal with this
problem we are using a pattern-~directed data-~base package,

with demonsg which can react to attempts to access or modify
the data-base.

THE DATA BASE

The dabs base containsg many features found in PLANNER-like
languages. It is & modified and extended version of the

HBASE gystem degigned by Harry Barrow as a POP2 library pack-
age. The data base consists of a nebwork of patterns, with an
indexing mechanism for finding a patbtern quickly, given a tem~
plate for it. There is a POPZ2 library package for associating
different values with the same data base item in different
teontexts®™. The main extension to HBASE has been the provie-
gion of a "demon" mechanism. A demon is & procedure invoked
by the occurrence of a specific type of event involving a
pattern, e.g. when ASSERT, DENY or RETIRIEVE is spplied to the
pattern. A Wpossibilities" list mechanism is provided, so that
real or simulated data=base items may be generated and tried
one at g time, if necessary. Generators use the process packe=
age, described below. Posgsibilities lists are themselves
generators, go that explicit lists of possibilities dontt have
to be built up. ,

Eight standard types of pattern~invoked demons are provided,
vhoge names should indicate their functions: FPREASSERTED,
IFASSERTED, PREDENTED, IFDENTED, PRENEEDED, IFNEEDED, ALREADY=
ASSERTED, ALREADYDENTED. The last two types are for trapping
redundant deta-base alterations = especially useful for de-
bugging. The system makes it easy to define end use further
types of demons. For ingtance, the function RUNALL takes a
pattern, and a list of types of demons, end causes all demons
of the types listed,whose patterns mabch the given pabttern, to
be execubted. This is used in the processes package. Pro-
cesges may be sent "messages" in the form of patterns. Each
class of processes usesg s speclalised set of demons to react
b0 such messeges. Later we shall illustrate the use of the
data base in combination with the process package.

THE PROCESS PACKAGE

The process package consists of (a) a scheduler, (b) process-

creating facilities and (c) a message=broadeasting system,
which uses the dats base. These will be described in that

ol

order.

The scheduler is our attempt to overcome the following pro=-
blem. POPEYE will be analysing & wide variety of picture
fregments, yet wanting to switch attention to the most impor-
tant features as they emerge. This suggests the need for some
central intelligent process with an overview of everything
happening, so that informed decisions can be taken. TYet no
central adminisbrator can manage all the complex different
kinds of knowledge required for comparing different possible
developments. We have therefore tried to decompose the sche=
duling task as follows.

The central scheduler knows only about the major categories
of jobs which may be ready to run. These cabegories are listed
in SCHEDULE. Lower-level processes know how to decide, on the
basis of detailed evidence available to them, when to creats a
job, and which category to assign it to, or more generally
which job=description to associate with i%. For instance, pro=
cesses concerned with linking line-fragments into larger
clusters might be able to decide to creabe s hypothesis that &
Jjunction between two bars has been found. That hypothesis will
be a process which may collect further evidence, and perhaps
link itself with other bar-hypotheses to generate a letter hy=
pothesis.

As each process is either initially creabed, or given some
new evidence, it can put itself into an appropriate category
of rummeable Jjobs, leaving it to the central scheduler to de-
cide which category is currently most important. So all the
scheduler hag to do is find the most important non-empty cate=
gory, end select a job from it, either arbitrarily or by asking
a manager for that category, By ellowing schedulers them-
selves to be processes which can run for a while, then halt,
then continue, we can allow some of the jobs to have their own
locel vergiong of the scheduler, with their own local
SCHEDULE. Since POP2 does not provide a time-gharing facility,
the programmer has to take care to design modules so that they
don®t run for too long. For instance, whenever a process does
something which mey have created or reactivated more important
processes, then it should suspend itself soon after. The
DETACH facility, described below, mekes this possible.

The uge of job=descriptions instead of numerical priorities
has a number of adventeges. For ingtance if the task changes
(eeg. "find all vertical bars"™), then the order of importance
repregented by the schedule can be slhtered on the basgis of
knowledge of which kinds of processes sre relevant to the
task. PFurther, if a relatively importent process needs a spe~
cific low-level process to be run (e.g. & bar process needs a
line=gegment process to get information ebout junctions at its

ends), then instead of juggling with priorities the first
process can look in the appropriate job cabtegory, find what it

oh5

needs and run it.

The procegs=creating facilities make extensive use of "pare
tial application®; one of the features of POP2., A POP2 func-
tion can be partially epplied to a set of arguments, forming a
®closure, For example, the following function assigns X to be
the second element of L.

FUNCTION PUTSECOND X Ly X -> HD(TL(L)); END;

If L1 is a lisgb, we can make a closure which behaves like a
function whose execution assigns the word "cat® to be the
second element of L1, thus:

PUTSECOND(Z"CAT® ,L1%) -3 PUTCAT;

Bvery time PUTCAT is executed, it runs the function PUTSECOND
in sn environment in which X and L are given the two "frozen
values® specified. Thus FUTCAT has both program end data
gbored within it. It can be exscuted, like a function, but it
can also be accessed, like a data strucbture. Both the frozen
velues and the frozen procedure may later be altered. By
giving a POP2 clesure a pointer to itself, we can allow it to
update its om frozen values. So it can behave like a process
with & memory, unlike ordinary funcbions. Doing this in POP2
requires defining functions which are ugly and obgcure. So we
have defined POP2 "macros® which alter the gyntax, hiding the
vgliness. The central ideas come from Steve Hardy's POPCORN
gystem, currently under developmenm

The most basic mechanism is the creation of a "process“
consisting of a function and a varisble~binding environment

vhich, uvnlike an ordinary POP2 closure, will remember assigne
ments to its varisbles. If FOO is a function in which the
variebles P (and R are not declared ss locals, then the bra=
ckets "/ss" and "s3/% can be used to create a process whose
Imemager® is the function FOO and whose environment uses the
values of P Q and B at the time of creation.

FOO /3s PQ R 23/ => FROC3

PROC is now a process which will run FO0 each time it is execu-
ted. But if FO0 assigns new values to P, Q or R, then they
will be remembered for subsequent exscubtions.

Such processes can be accessed from oubside. For instance
PROC("PW) will produce the current value of P in PROC., Pro=-
cesses sutomatically get updaters, 80 that h =»PROC("PM)
will change the stored value of P, ENVEVAL can be used to
evaluate a ﬁm,cties ingide a process. TFach process gets a
local variable SELF, so the code for the manager funchtion can
include ingtructions involving SELF. The funchtion SAVESELF
sallows a process to make a copy of ibe current state. The
function SHOWSELF ensbles any process to print itself out in a
neat format. The operation SETMANAGER may be epplied to a

2L6

funetion or lambde expression and will give the current process
a new manager function.

Similar effects could have been obteined using the state-
saving functions of POP2. However, this would have been much
more awkward to use, and much legs efficient.

We have provided additional macros and functions, using the
process~creating brackets, to provide features analogous to
the "classes®™ of SIMULAS7. We use the term ®processmaker't,
This denotes a function which creastes a procesgs, does some ini=
tialising computations, such as setting up data-structures for
the process, then returns the process. The process has the
features mentioned ebove. Further, the macro DETACH, illustra-
ted below, makes it possible to write code which can be execu-
ted, left for a while, then continued. The process=initiali-
sing instructions are distinguished by occurring between the
words WINITIALISE" and "BEGINW,

Here is a simple example: a processmasker which produces
generators for pairs of numbers.

PROCESSMAKER PATRS XMAX YMAXs
INITTALISE;
VARS X T
BEGINg
FOR X FROM 1 BY 1 TO XMAX DO
FOR ¥ FROM 1 BY 1 TO YMAX DO
CONSPAIR(X,Y)
DETACH;
ENDDO:
ENDDO3;
TERMING
END3
VARS PAIRGEN:
PATRS(5,7) =>PAIRGEN;

PATRGEN is now & process which will generate a new pair each
time it is executed, until it is exhausted, in which case it
produces the POP2 Wierminator® TERMIN.

A macro GENERATE, which uses DETACH, is provided to ensble
one generator to create and use others, on the assumption that
en exhaugbed generator will produce TERMIN as its result. The
following is a recursive processmaker which creates a genera=
tor for the atoms of a tree. (In FOP2, HD and TL correspond
to CAR and CDR of LISP).

2hT.

PROCESSMAKER FRINGE TREE;
INTTIALISE;
BEGINg
UNLESS TREE=NII THEN
IF ATOM(TREE) THEN TREE; DETACH;
FLSE '
GENERATE FRINGE(HD(TREE));
GENERATE FRINGE(TL(TREE));
CLOSE;
CLOSEs

VARS TREEGEN

FRINGE(/L /5 67 [/%7 ® 7])->mmcmy;

TREEGEN is now a process which when first called will produce
®A®, then the next time "B", and eventually TERMIN. GENERATE
used like this is rather inefficient, but illustrates the
facilities.

Neither TREEGEN nor PAIRGEN takes arguments. However, a
process mansger may be a function which takes arguments, in
which case it is easy for other processes to communicate with
it, without using ENVEVAL. For instance we are currently ex—
perimenting with a class of processes which all use the
following manager functiong

FUNCTION PROCESSMANAGER MESSAGES
IF ISFUNC(MESSAGE) THEN MESSAGE()
ELSE
RUNALL(MESSAGE ,DEMONTYPES)
CLOSE;
END s

A process with this manager will run only if given an argument,
MESSAGE. If it is a function it will be executed in the en=
vironment of the process, otherwise it is assumed to be a
pattern which will invoke one or more demons of the types
specified in DEMONTYPES. The daba=base index is used to find
relevent demons quickly. Different classes of processes may
use different versions of DEMONTYPES. For insbtance, if some
have demons which know how “i:;o understand English, then
they can talk to one another in English. By having two types
of messages, functions and patberns, we caber for two cases.
When communicating with a process, if you know exactly what
you want it %o do, then send it a funchbion to execute. Other=
wise send it a pattern and let it use its own expertise. By
allowing processes to have their initidl versions of DEMON=
TYPES seb up by the relevant processmaker, we allow instances
t0 "inherit? procedural sgttributes from their species. How=
ever, individual processes may modify their own versions.

2L8

The concept of a processmaker is gbtill evolving. We are
currently experimenting with ways of allowing assignments to
process-variables to trigger suitable actions. Similarly, it
is possible to atbach "exit" demons to a process, which will
antomatically run whenever control is ebout to leave the pro=-
cess. Thus a process which needs to be careful sbout some-
thing, for a short time, can give itself such a demon, for as
long as is necessary. ‘

A process may be located at an Maddress® in the data base,
or possibly at several addresses. The function STOREAT takes
a pattern and locates the current process at the address speci-
fied. The address is a public description of some important
facts about the process, e.g. its type end location in the
picture, or maybe some of its relations to other things. In-
gide the process is the more detailed information it needs to
do its stuff, but which it would be wasteful to have represen-
ted in the data=base index. We could have represented every-
thing by data bage items, and done without processes, but that
would have too many disadvantages, of the sorts documented by
Bornab, Brady end Weilinga in their contributions to this con=
ference.

The message broadcasting mechanism is provided to enable
processes to communicate with one another, using their
addresses in the data base. A message may be either a
patbern, which will invoke gppropriate frame demons, or a word
or a function. In the latter two cases it will be evaluated
in the environment of each recipient. The barget should be a
description of the intended recipients. For insgtance

LAMBDA

IF SIZE»10 THEN FR(SEGMENTLIST) CLOSE
END

-y KLINE ZEDIRECTION ==>73

causes every line whose orientation matches the current value
of DIRECTION ($% means "use current value"), no matter what
its location (== will match anything), to print its segment-
lisgt if it containsg more than 10 points.

LENFWPOINT S8POINTSD
==y LLINE ZZDIRECTION ZFLOCATIONS)

will tell the gppropriate line process that a new point hag
been found for it. This should activabe appropriate demons in
the environment of that process. To pogbpone message sending
unbil there's nothing more importent to be done, use the
following syntaxs

Lmessagey -=> (Lbarget descripbiony, <job category>)s

This will casuse the sending of the message to be a job to be
activated by the scheduler. The gender will presumsbly detach,

2h9

and hope for a reply later.

When one process runs another by calling it explicitly, the
second can reply by leaving resulis on the stack, as sub-
routines do in POP2. But when message broadcasting is post-
poned, the sender may not be active when the message is re-
ceived, so the stack cannot be used for replies. If a reply is
needed, the message must include some data=structure which the
sender can examine later. For instance,

VARS LETTERBOX; CONSREF(NIL) -3 LETTERBOX;

LAMBDA LETTERBOX;
IF SIZE > 10 THEN
SELF 3 CONT(LETTERBOX) =% CONT(LETTERBOX)
CLOSE
END(ZLETTERBOX%)

uses partial gpplication to creaste a message which can be sent
to & lot of lines. By looking at CONT(LETTERBOX) from time to
time, the sender will discover which of the lines has a size
greaber than ten. Similarly a letterbox can be included as
part of a pattern message. Incidentally this shows how pro=-
cesses which at first only know of one another by description
can get direct pointers to one another.

This message~sending mechanism, combined with other POP2
features, such as interrupts and incremental compilation,
enables the programmer to communicate with processes in much
the same way as they communicate with one enother. This is
indispenseble during debugging.

Here is en example showing how data base demons can use
process brackets to save a portion of the environment in which
they were created. Demons of type IFNEEDED are activated when
a RETRIEVE command is unsuccessful. We want an IFNEEDED demon
to try to answer a question, end if it fails, to plant an IF=
ASSTRTED demon which will watch out for the answer. If the
enswer turns up later, the second demon will record the fact,
which may trigger off other demons, then kill itself. The
problem is that the second demon may run long after its
creator has exited, so that it needs to save relevant parts of
its binding environment, using the process brackets. In the
example, "Z4" meens use the current value of, and "#" means
give thig variable a value during mabching.

250

IFNEEDED << SUM ##X $%Y #%Z2>>
mms Y 23 72;
IF X <1 THEN QUIT(FALSE)
ELSE
=l ->Xl; Z-1 -»21;
TF RETRIEVE 4< SUM 55@. g3Y #9471 THEN
SUCCEED()
TLSE
IFASSERTED << SUM g8X1 37 88715
PR('FOUND THE ANSWEX!);
KILLSELF()3
ASSERT &SUM ggX 23T 837Z%;
END /38 XY Z 53/
CLOSE
BND

A call of RETRIEVESUM 3 5 8D whendSUM 3 5 &P has never been
asgserted; will activate the IFNEEDED demon. If, in addition,
&SUM 2 5 7D has never been asserted, which will produce a re=
cursive call of the demon, and it cannot be proved, then the
IFASSERTED demon, in the form of a process remembering the
values of X Y and Z, will be added to the data base. If it
gets triggered later, it will remove itself from the index and
store the solution to the problem, which may activate other
demons waiting for the solution. Demons can be given names,
making it easy for ome to access enother and kill it if it
becomes redundant. Thus chaing of demons in the data base can
provide some of the functions of a multiple stack mechanism.
The lack of efficiency is perhaps compensated for by the ease
of inter-process communication.

OVERVIEW

POPEYE sets a number of different processes going in parallel
when presented with a picture to interpret, Some collect glo-
bal statistics about the picture, some search for dot configura-
tions suggesting lines. These may trigger off other processes,
gome deciding whether parallel lines ghould be linked to form
*tubes®, some keeping track of junctions, some trying to link
Ytube=gections® into 1arger structures, etc. This kind of
"breadth first" spproach is required mainly because, with a
large amount of information available for analysis and inter-
pretabion, it may not be easy to decide what 1o do next, e.g.
which @@nfigufaﬁlons to look for, end where to look for them.,
Deciding between such alternatives itself requires analysis of
evidence, and it will not be obvious what the important clues
are, nor where they are. So initially many possibilities are
sampled, until items both unambiguous end relatively important
begin to emerge, such as a long line, en unambiguous clue to
‘the location of a line, sn aspect of the style of the picture,

251

or a set of linked fragments which uniquely identify a known
letter. What counts as important will depend on the stage of
analysis. The scheduler will notice the emergence of new ime=
portant jobs and run them before others. This approach seems
to be very similar to that used in the HEARSAY IT system at
Carnegie Mellon.

We are guided by several principles. One is to use descrip=-
tiong wherever possible instead of numerical weights or priori=
ties, so that the progrem has adeguate information for taking
decisions. Another is to select hypothese not on the basis of
their support, or probability, but on the basis of their ex=
plengbory power (as recommended in Popper's philosophy of
science). For instance, work on a large picture fragment
rather than a small one, but work on a scene fragment rather
than a picture fregment. Bubl this requires a further principle,
which is not to let any hypothesis be generated unless there is
good reason to do so and one is not simultaneously generating
large numbers of rival hypotheses. When there is no way of
choosging between alternatives on the basis of current evidence,
dontt generate either. Insbtead there should be a description
of what is common to both. Hope that either new detailed evi=
dence will emerge to decide the issue (or look for it if you
know it can be found quickly), or else global relationships
between ambiguous, intermediate structures will enable larger,
unambiguous clusters to emerge without combinatorial searches.
For example, as Larry Paul's paper for this conference shows,
global relations between a cluster of ambiguous limb-like
regions may determine which are arms and which legs, when
therets little hope of finding local details to discriminate
+them,

Meking all this work requires the program to have a large
store of concepts corresponding to various Wintermediate®
levels of structure, so that it never needs to take large
leaps from what it knows to sheky hypotheses. In relation to
dots and letters, intermediate concepts include "line segment®,
Thor®, "bar junction®. We view CGrape's work as illustrating
the importance of using intermediabte structures between line=
junctions and pictures of whole objects. This kind of exper-
tise will work only in a "friendly world®. If pictures are
too noisy, or objects are piled up so that most things are &l-
most enbirely occluded, or if letters are juxtaposed so that
gaps between them form too many spurious clues, then POPEYE,
like a person, will get confused. However, there are cases
where albternative hypotheses need to be coped with, for
insbance in pictures where there are guite large chunks with
globally consistent dusl interpretations. Geoffrey Hinton's
conference paper suggests a way of using relaxation to deal
with this.

Currently POPEYE

manages to see impaﬁﬁan@ bars, and

252

sUTewop S4NYITHA-BUTT 243 WOJL SLd483U0D JUCGH
£ SunBTd
B gy -—
S-S e ca%e
*SU0T3IBS a8qny 40 uoTIIuUnNt U0 pua - apop

M
5

*qUI2UERS UTIM] € /g DaUTiap

aupe

aqng 8 40 Yded - uU0IlIas-agng

TUMBJP 87 JOMUSIISAUIT aTUTJUT L0 JIed RG PIUTLEp - 8gng

%73 paso«dg

13

UIMj

331

UIM)

Yot 3aunc 3341

oW\ TLadnl

FUSWESS UTIM|
UoTRounr I3
UDUEHS BUTT

(iumedp @gq p0uued) BUTY 83 IMIIUT

$33L pesodn

713 PejseN

P HIUBIS-A B L0 UISWOR 8YF WOLY 53£430U00 Bwog
B 84NBTd
¢a%3
\QAXY\ puUs ueg
< g4
EALN

2

Jeq pepniasg

(MOTAEIGSHTIT 918T440ddae OU) DUROJEAD e
WAWN““v Jeq £ 40 JOTa83uY
LLLLE seq e g0 aEp3
N
PP votyoun: 713 4eg

s480 PIBJa

Jeg

253,

Jjunctions between them, without exploring all points and line=
segments in the picture. A fair amount of positive or negative

noise (spurious or missing dots) can be added without upsetting
the process much. We have begun to work on the concepts re-
quired for dealing with significant clusters of bar fragments,
80 as to enable whole letters to emerge from the mess. The
figures illustrate some of the concepts involved.

ACKNOWLEDGEMENTS

The POPEYE project is funded by the Science Research Council.
Much of POPEYE'!S domain-specific code is being written by
David Owen, who joined the project in Sephember 1976, followed
by Geoffrey Hinton in January 1975. The idea of using histo-
grams and other global picture descriptions to control pro-
cessing came from the work of Max Clowes and Frank O'Gorman.
The latter has been closely involved in our theoreticel dis-
cussions. The design of the project also owes much to intere
actions with Sylvia Weir, Alean Mackworth, Mike Brady and
Richard Bornat. The process package is influenced by Carl
Hewitt's work on "actors", and the paper by RBobrow and Norman.
Instead of standard POP2 we are using POF10, a dislect
developed by Julian Davies and maintained on the Edinburgh
FDPLO by Arnold Smith.

But for Pat Norton's speed, accuracy and patience this paper
would never have been typed on tine,

CORRIGENDUM

P246 ninth line from bottom should read ENVEVAL ('"P", "PROC")
and not PROC ("P"),

25l

Bobrow,D. & 4. Colling (1975) Representation and Understanding,
Academic Press.

Bobrow,D. & D. Norman (1975) Some prineiples of memory
schemata in Bobrow and Collins.

Clowes,M.B. (197L) On seeings things in Journal of Artificial

Davis,L.S., A. Rozenfeld. & S.W. Zucker (1975) General purpose
models: e:@ectaa,%wns gbout the unexpected, Computer Science
Technical Report, TR3L7, University of Maryland.

Erman,L.D.; R.D.Fennell, V.R.Lesser & D.R.Reddy (1973) System
organisations for speech understanding in Proc.3rd I.J.C.A.I.
Stanford.

Grape,G.R. (1973) Model based (intermediate level) computer
vigion, Stanford A.I. Memo ATM=20L.

HewittyCus P.Bishop & R.Steiger (1973) A universal modular
ACTOR formalism for A.I. in Proc.3rd I.J.C.A.I., Stanford.

Hinton,G. (1976) Using relexation to find a puppet,this con=
ference.

Magee,B. (197L) Po Fontans Modern Masters.

OtGorman,F. & M.B. es Finding picture edges through collie-
nearity of feabure points in Proceedings 3rd I.J.C.A.I.
Stanford, 1973.

Paul,Jd.L. (1976) Seeing puppets quickly, this conference.

Shirai,Y. (1975) Analysing intensity arrays using knowledge
sbout scenes in Winsten.

Stansfield,d L. (197h) Active deseriptions for repr*esen‘bing
knowledge in Proceedings AISB summer conference.

Reddy,D.Re, L.D.Brman, R.D.Femnell & R.B.Neely The hearsay
?peecﬁg understanding system in Proc.3rd I.J.C.A.I., Stanford
1973

Turner,K.J. (197L) Computer perception of curved objects using
a television camera in Proceedings A.I1.S.B. summer cone
ference.

Walbz,D.(1975) Understanding line drawings of scenes with
ghadows in Wington.

Winston,P. (1975) The psychology of computer vision, McGraw-
M%‘

Hardy,S. The POPCORNT75 reference manual, forthcoming.

255

