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Abstract

Abstract: In my research I meander through various disciplines, using fragments of AI that I regard
as relevant, willing to learn from anyone whose ideas contribute. This makes me unfit to write the history
of European collaboration on some area of AI research as originally intended for this collection. However,
by interpreting the topic rather loosely, I can regard some European philosophers who were interested in
Philosophy of mathematics as early AI researchers from whom I learnt much, such as Kant and Frege.
Hume’s work is also relevant. Moreover, more recent work by Annette Karmiloff-Smith, begun in Geneva
with Piaget then developed independently, helps to identify important challenges for AI (and theoretical
neuroscience), that also connect with philosophy of mathematics and the future, rather than the history, of
robotics. So this paper presents an idiosyncratic survey of a subset of AI stretching back in time, and deep
into other disciplines, including philosophy, psychology and biology, and possibly also deep into the future.

Kant, Frege, Mathematics, Representational-Redescription, Empirical knowledge, Necessary
truths, Geometry, Robots

1 Kant, Philosophy of Mathematics and AI

Has research in AI contributed to our understanding of mathematical learning, discovery and reasoning? I shall
try to show that this question has different interpretations, leading to different answers. At first sight the question
may seem pointless, given all the progress in automated theorem proving and the variety of computer-based
mathematical tools used all round the world every day.1 Yet, as far as I know, there is not yet an AI system that
comes close to replicating the kind of learning about the environment that develops into mathematical learning
in young children and must in the distant past have happened without the aid of teachers, initially long before
the currently used mathematical formalisms were available (Sloman, 2010).

We need new models to help us understand how mathematical competences evolved and developed, and to
help us answer philosophical questions about how mathematical knowledge is related to and differs from other
kinds. That’s the problem that led me into AI over 40 years ago. I’ll try, in what follows, to explain the nature
of that quest and how it relates to some past thinkers and to past and, I hope, future achievements of AI, closely
linked to future advances in biology. One consequence may turn out to be far more intelligent robot “babies”
learning about the world, while they learn to think.

1For a sample of relevant evidence for, see http://en.wikipedia.org/wiki/Automated theorem proving,
http://en.wikipedia.org/wiki/Automated reasoning, http://en.wikipedia.org/wiki/Computational geometry,
http://en.wikipedia.org/wiki/Scientific computing and other papers in this collection in AI Communications.



After a degree in mathematics and physics (1956) I intended to continue into mathematical research, but
instead acquired a taste for philosophy and started attending lectures and graduate seminars in Oxford, where I
found that most philosophers there thought that a belief often attributed to David Hume (mistakenly according to
(Atkinson, 1960)) was correct, namely that there are only two kinds of knowledge, the empirical kind and a kind
that merely expresses “relations between ideas” (analytic, essentially trivial knowledge, true by definition). I
knew, from my own experience of learning and doing mathematics, that that was false: mathematical knowledge
is neither empirical2 nor trivial. A child who first learns that the result of counting is independent of the order
of counting, or that a loosely linked planar polygon with fixed length sides will be rigid if there are only three
sides, but not with four, or that changing the height of a planar triangle made of a rubber band stretched by
three pins alters its area, whereas moving a vertex parallel to the opposite side does not – is learning something
deep, acquiring new knowledge, and is not learning something that could turn out false if the triangle boundary
is made of a new kind of material, or has a different colour.3

I was also convinced that the view of another, more recent, philosopher, Wittgenstein, was also incorrect:
namely that instead of making discoveries, mathematicians merely take decisions that remove residual
indeterminacy in their concepts4, a view similar to that of the great mathematician Henri Poincaré. Another
view of mathematics widely discussed at that time was based on the work of Frege, Russell and Whitehead,
namely the view that all mathematical knowledge was essentially knowledge of logical truths, though that did
not make them trivial, since logical discoveries could be deep and unobvious. Frege thought this applied to
arithmetical knowledge because arithmetical concepts could be defined in purely logical terms (Frege, 1950),
but did not apply to geometric knowledge since the concepts of point, line, area, length, etc. could not.

Russell agreed with Frege about arithmetic, and half agreed with him about geometry, claiming instead in
(Russell, 1917) (though he held different views at different times) that all we really can know about geometry
and many other branches of mathematics is that IF the axioms are true of anything THEN the theorems are
also, because the derivations can all be based on logic. Objections to that view included (a) the possibility of
knowing that the Euclidean axioms (possibly with the exception of the parallel axiom and its consequences) are
true without deriving them from other axioms, and (b) the widespread use of non-logical methods of proof in
geometry and other branches of mathematics, e.g. reasoning with diagrams.

I learnt about philosophical theories about mathematics by attending philosophy lectures, and lectures
on foundations of mathematics by Michael Dummett and Hao Wang (my supervisor for a while, though he
was mostly in the USA working for IBM on automatic theorem proving5). But I felt they were all missing
something.

On reading Kant (Kant, 1781), I felt that he understood the nature of mathematical knowledge better than
the other philosophers I had encountered (alive or dead).6 . He claimed that mathematical knowledge was both
synthetic (non-analytic) and a priori (non-empirical), though not infallible, and not innate, since newborn babies
lack the concepts required as well as the ability to make mathematical discoveries. Unsurprisingly (in 1781), he
had no precise ideas about the transitions required for a neonate to develop mathematical competences, though
it could not be merely a matter of discovering reliable correlations: or the type of statistical learning that now,
dominates much of AI, which I believe diverts attention from more important mechanisms discussed below.

So I switched to philosophy, and wrote a thesis defending Kant’s philosophy of mathematics (Sloman,
1962). The pressure to publish that now ruins the research of young academics did not exist then, so while
teaching various aspects of philosophy in the following few years I continued trying to improve my account of

2Lakatos (Lakatos, 1976) argues mathematics is quasi empirical, since mathematicians can make mistakes, detect them, and correct
them.

3http://tinyurl.com/CogMisc/triangle-theorem.html
4This interpretation of his philosophy of mathematics is not agreed by all, but that’s not important for this paper.
5http://en.wikipedia.org/wiki/Hao Wang (academic)
6There seems to be an intuitive geometry not including anything infinite, subsuming much of Euclidean geometry (without the

parallel axiom, but allowing shape-preserving translations or rotations) and usable in reasoning.(Merrick, 2006).
See also http://tinyurl.com/BhamCog/misc/p-geometry.html
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mathematical knowledge, including publishing papers, e.g. (Sloman, 1965, 1968/9.), which left me feeling that
I was missing something important.

In 1969 Max Clowes, an AI vision researcher (Sloman, 1984), arrived at Sussex University, after a spell
in Australia. He introduced me to programming and AI, and lent me AI books and papers. I tried to persuade
him that there were connections between requirements for making machines see and enabling them to make
mathematical discoveries in a non-logical manner, e.g. using diagrams to reason with. I began to suspect
that it should be possible to build a “baby” robot that explored the environment like a child, making empirical
discoveries but also, after acquiring the required meta-cognitive capabilities, finding that there is a pervasive
structure to occupants of space and time, which allows some facts to be worked out without having to be
demonstrated empirically or inferred statistically.

Similar discoveries could be made about counting and logical reasoning, discoveries triggered by experience
then later understood non-empirically, e.g. by noticing invariant properties of counting preserved by permuting
things counted, like a child noticing that counting fingers from left to right gives the same result as counting
right to left then later realising that the results must be the same.7 That now seems to me to be an example of
what Karmiloff-Smith called “Representational Redescription” in (Karmiloff-Smith, 1992).

Many psychologists studying number competences fail to distinguish numerosity (roughly: a product of
density and area or volume) and cardinality (defined in terms of one-to-one correspondence). A robot would
require different mechanisms for these. Differences in numerosity become harder to detect as numerosity
increases, whereas detection is irrelevant to cardinality: it requires a mapping operation. Numerosity is a very
much shallower concept. Most also fail to distinguish understanding metrical concepts from understanding
networks of partial orderings (of length, angle, speed, area, volume, force, weight, etc.): I suspect only the
latter are available to young children and most other animals.

If we can design a “child robot” that, as a result of interacting with a rich environment while deploying
innate metacognitive tendencies (McCarthy, 2008; Chappell & Sloman, 2007)), develops concepts and
techniques for perceiving, using and reasoning about affordances (Gibson, 1979; Sloman, 1996a), and is thereby
enabled later on to discover necessary, non-empirical, truths about spatial structures, processes and affordances,
that would provide a deeper and richer basis for Kant’s philosophy of mathematics than anything philosophers
have offered. The workings of such a child robot mathematician would be understood if we had designed it.
Some of these ideas were later presented in my 1978 book. But that was preceded by momentous events for
me, starting in 1971.

2 IJCAI-2, London 1971

Max Clowes was one of the organisers of the 2nd IJCAI in London.8. He pressed me to write a paper on my
criticisms of the logicist approach to AI, presented by McCarthy and Hayes in 1969 (McCarthy & Hayes, 1969).
This also hinted at doubts about the claim that it is possible to assemble all the operations used in mathematical
reasoning from operations of a Turing machine.

Turing machines can, surprisingly, produce sequences of transformations of symbols that accurately model
(at a certain level of abstraction) a wide range of human thought process involving numbers, algebra, and logical
formulae, but it is not obvious that those processes suffice for all human intelligence, especially certain kinds
of mathematical reasoning about our environments.

Humans can perceive and think about continuously moving geometrical structures changing location,
orientation or shape (Sloman, 1982). They can also think about classes of such structures and processes
without having to represent any instance in full detail – unlike physics engines used in computer games, which
can generate detailed simulations of particular physical processes, but cannot reason about classes of cases as

7Chapter 8 of (Sloman, 1971) began to develop that idea http://tinyurl.com/BhamCog/crp/chap8.html
8http://ijcai.org/Past%20Proceedings/IJCAI-1971/CONTENT/content.htm
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humans can, e.g. arguing that a particular operation with ruler and compasses will bisect any angle.
The IJCAI paper (also published that year in AIJ) drew attention to modes of representation and reasoning

that appeared to fit neither logical and algebraic derivations nor the kinds of atomic operations found in Turing
machines. It led Bernard Meltzer to use research council funds to invite me to spend 1972-3 in Edinburgh in
his Department.

There I learnt to program in POP-2, was taught Lisp by Boyer and Moore, and got to know outstanding
local and visiting AI researchers and PhD students, who kindly gave me some of their time, including several
visiting AI researchers. Pat Hayes, then at Essex university, wrote a rejoinder to my IJCAI paper (Hayes, 1984).
People I learnt from included Bruce Anderson, Harry Barrow, Danny Bobrow, Bob Boyer, Chris Brown, Frank
Brown, Alan Bundy, Julian Davies, Geoffrey Hinton, Bob Kowalski, Christopher Longuet-Higgins, Bernard
Meltzer, J Moore, Seymour Papert, Robin Popplestone, Steve Salter, Jim Stansfield, Austin Tate, Sylvia Weir,
and others, but I was not able to persuade anyone to join me in trying work out how to build a baby robot that
could learn about space and numbers and recapitulate some of the human processes of mathematical discovery,
though for a short time Alan Bundy explored the use of diagrammatic reasoning in arithmetic (Bundy, 1973), a
topic later pursued by some of his students (mentioned below).

One of the things I learnt that year, especially from limitations of the AI systems I encountered, was the
importance of a complete architecture combining many kinds of functionality - as proposed in a technical report
later included as chapter 6 of (Sloman, 1978). That required all the components to “scale out”, i.e. be capable
of being combined with other sub-systems to provide new more complex functions. (“Scale out” was a label I
used much later, e.g. (Sloman, 2006), to contrast with “scale up”.) At that time (early 1970s) most AI research
seemed to me to ignore the problems of how to put sub-systems together in a complete architecture embedded
in an environment with which it has many concurrent forms of interaction, while also engaged in processing
information unrelated to the current environment (a requirement that has been mis-described by proponents
of embodied cognition, enactivism and the so-called extended mind who all seem to focus on a subset of what
needs to be explained). Of course, computational machinery available at that time had dreadful limits: kilobytes
of memory, CPU clock-speeds measured in kiloherz, etc., severely constraining what was possible.

Architectures have received much attention since then, but most researchers merely propose a particular
architecture, instead of formulating a general theory allowing a large variety of different architectures (from
microbes upwards) to be compared and contrasted – as required for AI to contribute to a scientific or
philosophical understanding of biological evolution, and also to avoid short-sighted engineering decisions.9

Not much progress was made on ways of representing spatial information so as to model human
(animal?) reasoning, though powerful techniques for using logic and other mathematical formalisms were being
developed. An example is being able to answer the question: if a plane contains a circle and a triangle, each
stretchable and movable, how many points of intersection of the boundaries can there be? Obvious answers are
0 and 6, but most people are able to provide all the other possibilities. If asked how, most talk about visualising
various configurations, though one person claimed to start with a set of axioms and derive a theorem! Most
people seem to be able to use diagrams (on paper, or merely imagined) to explore both a set of possibilities and
also necessary features of (constraints on) those possibilities, and without requiring precise measurements, nor
an infinite set of diagrams to cover infinitely many possibilities.

The combination of requirements (covering possibilities and establishing necessities) is not met by systems
that merely produce an example drawing and read off its properties, which in some cases may give the
appearance of establishing something if the diagram is interpreted in the right way (e.g. ignoring lengths and
angles), but that will not work for the circle and triangle problem, as there are qualitatively distinct subclasses of
possibilities to be covered. 10 The work of Lakatos (Lakatos, 1976) suggests that no method can be guaranteed
to be valid.

Since then, attempts have been made, in Europe and elsewhere, to model various forms of diagrammatic

9See the Meta-Morphogenesis project: http://tinyurl.com/M-M-Gen
10More examples involving triangles are presented in http://tinyurl.com/CogMisc/triangle-theorem.html
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reasoning and a series of international conferences on the topic started in 1998, with results presented in books
and journals, e.g. (Anderson, Meyer, & Olivier, 2001). I contributed a paper to the first one, but it merely
presented examples of things humans could do, and made no progress on implementation issues. Around that
time one of Alan Bundy’s students Mateja Jamnik, completed a thesis on diagrammatic reasoning (Jamnik,
Bundy, & Green, 1999) (provoked by a lecture in which Roger Penrose claimed that machines could not reason
spatially as human mathematicians do!).

While interesting and important, that work, like much else in the field, is concerned only with the use
of discrete spatial structures such as 2-D grids, trees or lattices. An exception was Daniel Winterstein’s
thesis (Winterstein, 2005), though he was more concerned with tutorial support for mathematics students than
providing a spatial reasoning system for robots. Perhaps his ideas could be developed in that direction, but I
don’t think anyone has taken this up. Another strand of research, exemplified by Forbus’ work on CogSketch,
provides tools to support human diagrammatic reasoning but does not (as far as I know) do the sort of reasoning
described here. Likewise Tarski’s World11 uses a diagrammatic display to help a student test logical inferences,
but the system does not do any geometric reasoning. (Piaget thought about similar problems (Piaget, 1981,
1983), though not in computational terms.)

There has been much work (e.g. in the Edinburgh AI group) on automated reasoning about discrete
computational structures and processes, a simple example of which concerns a recursive procedure (called
“rotate”) which given a list produces another by removing the first item in the list and adding it at the end, so
that rotate([a b c]) is [b c a]. It is obvious to humans that applying rotate to L, the length of L times, recreates
the original list, L.

A typical AI proof of that would use mathematical induction, whereas (some) humans visualise the process
of moving the first element of a list to the end once for each element of the list and find it obvious that that
must create a list with the original elements in the original order. The human ability to use an abstract spatial
structure (on paper or imagined) to reason reliably about a huge variety of possible instances of a theorem (e.g.
all possible list-lengths and all possible contents for each length) has not yet, as far as I know, been modelled,
although modes of proof using mathematical induction have.

3 Research on vision

11http://ggweb.stanford.edu/tarskisworld
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Not long after returning to Sussex I obtained a research council grant to work on vision, developing ideas about
architectural requirements for a system that could process visual information at different levels of abstraction in
parallel. David Owen, then later Geoffrey Hinton, worked on the project, and Frank O’Gorman, an outstanding
programmer who worked with Max Clowes helped. The main features of the system we developed (POPEYE)
are described in (Sloman, Owen, Hinton, & O’Gorman, 1978) and Ch 9 of (Sloman, 1978)12, and illustrated
by the figure above, indicating the variety of ontologies used in parallel (bottom up, top-down and middle-out)
while interpreting a dot-array ((a) in the diagram).

A paper on POPEYE proved unpublishable, perhaps because David Marr was thought to have demonstrated
(a) that sophisticated architectures are not required for human vision, (b) that problems of interpretation using
artificial images do not arise for natural scenes because the richness of natural scenes rules out the ambiguities
of artificial images, such as line drawings. For similar reasons (I think), an application to continue the project
was rejected. So theoretical work continued informally and unfunded for several years, leading to papers on
vision, architectures and representation, including the need for intelligent systems to use multiple forms of
representation. (See (Sloman, 1982, 1989, 1993, 1995, 1996a, 1996b, 2000, 2002, 2001, 2005, 2007).) The
investigation of architectures led to work on emotional and other affective states and processes and to design of
test domains to challenge current theories of vision and spatial reasoning.

The key challenges were concerned with perception of and reasoning about continuous changes producing
new structures, use of continuously changing visual information for controlling action, perception of empty
spaces (especially potentially useful empty spaces), perception of unrealised possibilities for spatial changes
(whether actions of the perceiver or not – contra Gibson), and perception of constraints on possibilities. None
of these is captured by graphical simulations, or game engines. Instead, an intelligent perceiver requires a level
of abstraction that corresponds to mathematical reasoning about possibilities and constraints (e.g. a construction
for bisecting any angle). As far as I know the problems are still unsolved, though there are fragmentary steps
in the required direction, e.g. (Cabalar & Santos, 2011; Li & Cohn, 2012; Forbus, Usher, Lovett, Lockwood, &
Wetzel, 2011)

The ontology of POPEYE did not include features required for mathematical meta-cognition, namely
representations of possible changes (“proto-affordances”) and their implications/invariants, required to
understand the interactions between worm and pinion in this sort of configuration (from Wikimedia):

For example, why does rotation of the worm about its axle make the pinion rotate about its axle? What
about the reverse influence?

In this mode of reasoning, diagrams and transformations of diagrams play a different role from the data-
structures and variables representing spatial relationships and processes in physical simulation engines required
for weather forecasting and game engines. Those represent geometrical structures and processes at a high level
of precision and allow only predictions at that level of precision, possibly weakened by probability distributions,
whereas a mathematician typically uses a diagram, and geometric or topological alterations to the diagram, to
represent a whole class of structures and processes, and their invariants. Here is a proof (due to Mary Pardoe)
that the angles of a planar triangle add up to half a rotation (180 degrees).

12http://tinyurl.com/crp78/chap9.html
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The proof is a process, in which the red arrow rotates through angles a, b, and c, then ends up on the original
line pointing in the opposite direction. This, like many proofs in Euclidean geometry, does not depend on the
specific sizes of the angles or the lengths of the sides. Rather it reveals a collection of “invariant” relationships
common to a large class of cases (all shapes, sizes and orientations, of triangles, provided that they are planar).
This is quite different from the use of a physics engine to predict the outcome of a skid on a race-track, or a
building collapsing (whether the prediction is deterministic or probabilistic).

A related lack of generalisation would be manifested by a humanoid robot trained to use one hand to rotate
a crank handle at a fixed rate, which has to be re-trained in order to perform the action after its body is moved
a short distance in relation to the crank. If, instead of learning a specific set of sensory-motor relationships, it
understood that the action required constantly pushing the crank handle in the (constantly changing) direction
of the tangent of the circle through which it moves, then it might be able to constantly work out the direction
of the force it needs to apply to the handle, and work backwards from that to the motor signals required. This
is different from learning for each configuration of sensors and motors how to produce the next motor signals:
that uses a different ontology.

I suggest that the human ability to prove theorems in Euclidean geometry arose out of more general abilities
to reason in an abstract way about possibilities and constraints in physical structures and processes.

4 The EU cognitive systems project

The EU Cognitive systems project, announced in the summer of 2003, provided an important new opportunity
to bring together researchers in robotics, psychology, philosophy, mathematics, education, and other fields,
especially as the emphasis was mainly on science, as opposed to mere engineering.13 But progress was held
up by the pressure to produce working systems to demonstrate to reviewers every year, along with wide-
spread, and in my view unreflective, commitment to a shallow notion of “embodied cognition”, criticised in
(Sloman, 2009). These pressures and commitments seemed to get in the way of more reflective research on
long term requirements for intelligent machines which, instead of always being engaged in acting on their
environments (using on-line intelligence), can also reason about, explain, form theories about, and form plans
for action in, their environments without necessarily doing anything in the environment at the time (using
off-line intelligence).

The narrowly focused view of embodiment also impacted on AI research on vision. There was a lot of work
on giving machines the ability to classify images and parts of images, and to combine information from images
to form depth-maps, and to use vision to control various sorts of motion, e.g. catching a moving object, and (in
SLAM systems) to form large scale maps from terrain fragments sampled consecutively, but, as far as I know,
there were few, if any, attempts to model increasing understanding of spatial structures and processes in a way
that included perception of possibilities and constraints inherent in a class of spatial configurations, especially
“multi-strand” relationships and processes described in (Sloman, 2009).

Some researchers confuse that spatial reasoning capability with the ability to run a simulation model in
order to predict what will happen, as occurs in game engines – which cannot answer questions like “Why
couldn’t the block pass through the hole?” by responding “Because it was in the wrong orientation”. Nor can
they explain why rotating a threaded nut on a fixed threaded bolt causes the nut to move along the length of
the bolt, in a direction that depends on the direction of rotation and the screw thread direction, even if they
can predict the rotation for every possible nut+bolt combination. A generic explanation need not mention the

13http://cognitivesystems.org/events/CogSysKickoff/files/unitE5.pdf
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specific dimensions involved, e.g. the diameter of the bolt, the depth of the screw thread, the pitch of the thread,
the speed of rotation, etc., whereas physical simulation packages cannot run without having precise measures
for all relevant physical quantities.

Some AI systems learn about affordances by being told by a human, for example, that grasping is afforded
by the handle of a cup, but, as far as I know, there is no machine that uses perception of relationships between
the shape of a cup with a handle and the structure and possible movements of hands and fingers to infer positive
and negative affordances. A machine might learn from a lot of training examples that the handle of a cup can be
used to lift the cup, but different mechanisms are required to be able to explain why lifting a cup full of coffee
by pushing a finger through the handle and lifting the finger is a bad idea, even though it will raise the cup off
the table – i.e. explaining positive and negative affordances involved in the same action.

The kind of reflective understanding of possible changes, and constraints on changes, in a physical situation,
summarised in (Sloman, 1996a), and required for developing human-like mathematical competences, is not
available to any robot I’ve heard of, though there are many that can perform impressive physical actions,
like swimming, hopping, catching a ball, for example, and others that, if given an appropriate collection of
factual premises about a situation in a planning formalism, can solve complex planning tasks, including solving
spatial/topological puzzles as in (Cabalar & Santos, 2011).

What seems to be missing in AI systems is the ability to discover a collection of useful generalisations
empirically which are then replaced by a “generative” theory that allows new cases to be derived from the
theory instead of having to be learnt through a training process.

5 Links with developmental neuroscience

I think there is a deep connection between (a) the work of Annette Karmiloff-Smith (K-S), a neuro-
developmental psychologist, reported in (Karmiloff-Smith, 1992), especially her ideas about “Representational
Redescription” (RR), and (b) the problem of using AI designs to defend Kant’s philosophy of mathematics,
according to which mathematical knowledge is neither empirical nor trivial (e.g. true by definition). The kind
of reorganisation of information K-S discussed (RR) seems to be closely related to the Kantian notion that a
child can learn things about the world by playing and experimenting in it, and can then, without necessarily
being instructed by a teacher, reorganise that knowledge so that (i) it is no longer empirical but derivable within a
generative system (using still unknown mechanisms) and (ii) it can be extrapolated to many new configurations
without those configurations having to be tested experimentally.

Such changes may require not only reorganisation of empirically acquired information but also ontology
expansion and a modified information-processing architecture, enabling use of a generative rule-set. The best
known example of RR that K-S discusses is the transformation in children from acquiring what seems to be a
pattern-based ability to use language to a syntax-based ability, which provides much greater generative power.
After that change, children start making grammatical mistakes, e.g. saying “He runned away” instead of “He
ran away”.

Although I don’t think anyone knows exactly what goes on in the child’s brain it is clear that for a
computational system designer a change in the software architecture is required to replace a pattern based
system (using fixed patterns) with a (recursive) generative grammar based system. Likewise extending a
generative system to cope with counter-examples (e.g. using “ran” as past tense of “run”) requires an extension
of the architecture. Neither change is merely a change of formalism: new mechanisms are needed.

The mechanisms K-S postulates for reorganising a behavioural competence acquired empirically to form
a more generative (or deductive) competence may turn out to be closely related to the biological mechanisms
that led to the discovery of truths of Euclidean geometry and their organisation into a generative system in
Euclid’s Elements, though I am no historian of mathematics. RR also seems to be closely related to Craik’s
ideas in (Craik, 1943) regarding animals using models to work things out instead of trying them out, though I
don’t know if he noticed the importance of reasoning about sets of possibilities as opposed to predicting specific
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behaviours. In chapter 8 of (Sloman, 1978)14 I tried to indicate some of the ways in which counting expertise
might be re-organised as a result of playing with counting and building up new re-usable structures. But the
ideas were very sketchy and never implemented in a working system.

The label “toddler theorem” is proposed for the type of generic result that young children seem to be able to
derive after reorganising knowledge acquired by experimenting with instances. In older children, with a good
grasp of cardinality, knowledge acquired by playing with blocks could lead to the discovery that some numbers
are prime, some not.15

Future research linking ideas of K-S with problems in philosophy of mathematics, in the context of a general
theory of how biological evolution constantly produces new forms of competence substantially extending
or transforming previous competences, may help to remove the existing gaps in the explanatory power of
AI models of mathematical reasoning. This will also have implications for empirical research in biology,
neuroscience and education as well as applications in intelligent robots that learn new ways to work things out
for themselves.

K-S distinguishes several stages of representational re-description, relevant in different ways to this paper,
including a stage in which agents become aware of and able to think about how a reasoning task is performed,
a stage in which such meta-knowledge is expressed explicitly in words or thoughts, or communicated to others,
and possibly further stages, including being able to assess the type of competence reached by another individual
(e.g. a child) and being able to intervene and help that individual make progress. Implementing all this will
require significant modifications to current AI research on meta-cognition, e.g. (Cox & Raja, 2011).

Until we learn how to implement mechanisms (including new forms of representation) capable of producing
the sorts of transition discussed by K-S and used in informal but substantive mathematical discoveries, AI
in general and robotics in particular will continue making promises, setting up challenges, but only making
incremental, relatively shallow, though sometimes deceptively impressive, progress, such as the Boston
Dynamics BigDog robot.16

Although I cannot identify the required mechanisms, I have tried to describe the problem (though there
is much more to be said), and in various web pages have presented examples in the form of challenges (e.g.
(Sloman, 2008)), with examples to illustrate some of the transitions in understanding that can occur. It should
be possible for AI researchers and others to work collaboratively on identifying a much richer collection of
requirements for a satisfactory solution, and a larger collection of intermediate stages in evolution between
microbes and crows, squirrels, elephants, octopuses, and humans.17 Of course, there may already be researchers
doing what I claim needs to be done, whom I have not encountered.

6 Conclusion

The label ‘Meta-morphogenesis’ can be used for a broad multi-disciplinary research programme, linking
evolution, development, learning, and problems in AI/Robotics, for which ideas are being collected, e.g.
in http://tinyurl.com/M-M-Gen. See also (Sloman, 2013 In Press). I suspect this will lead to
new contributions to philosophy of mathematics, biological investigations of evolution of various kinds
of intelligence, psychological investigations of various kinds of learning and development, neuroscientific
investigations of brain mechanisms involved in these processes, epigenetic investigations of how a genome is
able to encode the right sort of constrained potential for development, e.g. as found in altricial species, research
into the role of cultural evolution in extending individual mental capabilities, and perhaps also ways of using
some of the results of all that research to design new more intelligent robots and other machines. A conjecture

14http://tinyurl.com/crp78/chap8.html
15http://tinyurl.com/TodTh#primes
16http://www.youtube.com/watch?v=cNZPRsrwumQ
17http://tinyurl.com/CogMisc/evolution-info-transitions.html
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that evolution discovered the importance of self-monitoring virtual machinery long before we did may play an
important role in explaining mathematical meta-cognition and other aspects of human consciousness.
NOTE 1: I object to closed-access publication of research results, but this journal allows freely available copies
to be posted by authors. This paper is a partial, highly compressed report on a personal journey over the last
four decades. Missing details and references will be added in a longer, more complete, version updated from
time to time on this web site: http://tinyurl.com/BhamCog/13.html#ecai .
NOTE 2: A more recent paper discussing the nature of mathematics and the evolution of mathematical
competences is available in draft form at
http://www.cs.bham.ac.uk/research/projects/cogaff/incomputable-sloman.pdf
“Evolution of Geometrical Reasoning”
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