
Oxford Computing Lab
30Jan 2001

SimAg ent:

A TOOLKIT FOR PHILOSOPHERS
AND ENGINEERS

Aaron Sloman
http://www .cs.bham.ac.uk/˜axs/

School of Computer Science
The Univer sity of Birmingham

INCLUDING IDEAS FROM:

Riccardo Poli, Brian Logan,

Catriona Kennedy Matthias Scheutz,

Jeremy Baxter (DERA), Richard Hepplewhite (DERA)

THE TOOLKIT IS AVAILABLE ONLINE WITH SOURCES

IN THE BIRMINGHAM FREE POPLOG DIRECT ORY

http://www .cs.bham.ac.uk/resear ch/poplog/

Agents and agent toolkits are very
fashionab le.

So why another toolkit?

Partly becauseour research objectivesare very ambitious: wewished
to explore ideasrelevant to exploring modelsof human-like
information processingarchitectures,with many complex,
interacting, components.

E.g. modelsexplaining human emotionsin terms of an information
processingmodelof mind – with several concurrently active
processinglayersexplaining differ ent sortsof emotions.

We did not know how thesemodelswould develop. Sowe did not
want a toolkit that wascommited to a particular type of architecture,
suchasSOAR, ACT-R, BDI,

Other toolkit developersweremoreconcernedwith issueslik e
security, provability , distrib ution, portability , efficiency, etc. Wewere
primarily concernedwith flexibility , exploratory design,support for
multiple programming paradigms,rapid prototyping, interactive
testing,and easyextendability.

We alsowanted the tookit to havea core that could easilybeusedby
studentsfor interestingprojects,at the sametime assupporting
advancedresearch and development.

The toolkit must suppor t
SCENARIOS WITH

RICH ONTOLOGIES

Object

Instrument

Reactor

Location

Agent

Mechanism

Communicate
Be sensed
Act on

Various kinds of concurrently active entities,e.g.:
� AGENTS: which cancommunicatewith oneanother,
� MECHANISMS: which senseand reactto other things,
� INSTRUMENTS: which can act if controlled by an agent,
� “ REACTORS” which do nothing unlessactedon

(e.g. a mouse-trap)
� LOCATIONS: of arbitrary extentswith various properties,

including continuouslyvarying heights
etc.,etc.

INSIDE ONE AGENT

Agentscanhave complexinternal architectures
� Rectanglesrepresentshort or long term databases
� Ovals representprocessingunits.
� Arr owsrepresentflow of information,

including control information

Somecomponentsare link ed to sensorsand motors
(physicalor simulated)

Someareconnectedonly to other internal components

The toolkit should suppor t diff erent
sor ts of agents,

with diff erent architectures

E.g. agents:
� performing differ ent sortsof tasks
� with various kinds of sensorsand motors

(either simulated or physical)
� connectedto differ ent kinds of internal processingmodules
� with differ ent kinds of internal short term and long term

databases,
� with somecomponentsmonitoring or controlling others
� with differ ent levelsof abstraction, and differ ent levelsof

control

Seethe slidesfor my CognitiveNeurosciencetalk in Oxford last week

http://www.cs.bham.ac.uk/˜axs/misc/oxford/

Concurrenc y is required at all levels

Different entities in the “w orld” run concurrently.

Different componentsof individual agentsrun
concurrently, performing various tasksin parallel, e.g.

� Sensing,
� Differ ent levelsof perceptualanalysis,
� Reactingthr ough tight feedbackloops,
� Linguistic processing(understanding,generating)
� Learning of various kinds,
� Triggering “alarms” (various kinds of emotion)
� Generatingnewmotives,evaluating motives,comparing

motives,
� Planning, executingplans,
� Monitoring internal processes,etc.
� Monitoring and reasoningabout (simulating) other agents,

etc. etc.

Compare M.Minsk y The Society of Mind.
Perhapsweneedto think of an “ecosystemof mind”.

There’smoreon this in papersin the Cogaff Web dir ectory:

http://www.cs.bham.ac.uk/research/cogaff/

The Birmingham ‘CogAff ’
Architecture Schema

A framework for modelswith multi-level concurrently active
componentswithin perceptual,central and motor sub-systems.

The differ ent levelscorrespondto differ ent stagesin evolution (not all
levelsfound in all animals,or new-born infants!).

They alsoinvolvediffer ent typesof abstraction, differ ent forms of
representation,etc.

ALARMS

Central
Processing

Perception Action

Meta-management
(reflective processes)

Deliberative
reasoning

Reactive mechanisms

Seehttp://www.cs.bham.ac.uk/research/cogaff/

A SPECIAL CASE
H-COGAFF: A HUMAN-LIKE

ARCHITECTURE

ALARMS

Variable
threshold
attention
filter

META-MANAGEMENT

processes
(reflective)

THE ENVIRONMENT

REACTIVE PROCESSES

Motive
activation

Long
term
memory

Personae

DELIBERATIVE PROCESSES

(Planning, deciding,
‘What if’ reasoning)

perception action

APPROACHES TO DIVERSITY

Toolsto support this diversity cannot beexpectedto
anticipate all typesof entities,causaland non-causal
relationships,states,processes,etc. which canoccur.

Sousersshouldbeable to extendthe ontology asneeded.

There are various approachespossible,including:
� User provideslogical axioms defining new classesand

subclassesand new behaviours

� User assemblesarchitecturesdiagrammatically.

� User writes lots of low level code!

� Userdefinesnewclassesand sub-classesusing
an object oriented programming language
(e.g. with multiple-inheritance).

THE LAST IS, AT PRESENT, THE APPROACH SUPPORTED BY

SIM AGENT.

Some tutorial examples

1. The marching platoonsdemo.

2. Sim feelings

3. usingRCLIB to build a control panel.

4. The sheepdogscenario(Peter Waudby, Tom Carter)

5. the gblocksdemo(not strictly sim agent,but the
linguistic and planning modulescould be invokedby
agentactions.)

Earliest demo

Riccardo Poli’ sRIB (Robot in a Box - IJCAI/Atal 1995)

Some examples of student work
(Under graduate , MSc, PhD)

1. The spacewars scenario(Mor ganBeeby)

2. The Braitenberg vehiclesscenario(DuncanFewkes)

3. Predator-prey (Nick Hawes)

4. Bee-scenarios(various)

5. Ian Wright (Minder 1)

6. Steve Allen (Abbot)

7. Catriona Kennedy(mutual and selfmonitoring of
monitoring)

Jurassicpark, various games,etc.

Other s ...

E.g. Brian Logan, Darryl Davis, Matthias Scheutz,DERA
collaborators

TTHERE ARE MANY TRADE-OFFS IN
THE DESIGN OF TOOLS

E.g.

There is a trade-off betweenflexibility/generality of the
toolkit and easeof use,and alsobetweenflexibility and
efficiency.

Sim agentaims for flexibility and generality.

Soit takeslonger to learn to usethan somemore
restricted toolkits.

But this canbe alleviated by developing higher level tools
and libraries aimedat specificclassesof architectures.

(Futur e work: supportedby RCLIB).

SIM AGENT: IS BASED ON POPLOG
ESPECIALLY POP-11

POPLOG: a multi-languageAI developmentenvir onment
with incrementalcompilers for

� Pop-11
(a Lisp-lik e language,with a Pascal-like syntax)

� Prolog
� Common Lisp
� Standard ML
� facilities for adding new incrementalcompilers
� a rich interface to the X window system
� a very fast generalgarbagecollector
� largeand easilyextendedcollectionof codeand

documentationlibraries and AI/Cogniti ve Science
teachingmaterials

“ POPLOG” IS A TRADE MARK OF THE UNIVERSITY OF

SUSSEX WHERE IT WAS ORIGINALLY DEVELOPED.

A (PARTIAL) PICTURE OF POPLOG
AND POP-11

A diagram producedfor student users:

login
sentryuser

"password
please"

window
manager

operating
system

xterm + shell
"receptionist"

xterm + shell
"receptionist"

netscape

mail
system

ls
cd
rm
mv
cp
ln
kill

man
top
who
exit
lpr
pine
etc.

Other
unix
utilities

Other
compilers
C, C++,
Java ... Other

applications

Campus and
international networks

CS network, printers
workstations, servers

Where Pop-11 fits in

VED/XVED POP11
compiler

POPLOG

Other
languages:

Prolog
Lisp
ML

teach, help
lib, auto,

user,
system

files, etc.

Graphic
windows
RCLIB
panels

window1
window2
window3

THE ARCHITECTURE OF THE
TOOLKIT
Overview:

The toolkit usesPop-11extendedwith

1. Objectclass
(Object Oriented packagepartly lik eCLOS)

2. RCLIB (Graphical toolkit)

3. Poprulebase(Rule-basedsystem)

4. SimAgentcore libraries
(classes,scheduler, methodsetc.)

5. Sim picagent(combining sim agentwith RCLIB

6. Sim harness(Toolsfor settingup scenarios)

... later application libraries, sitting on the Poplog library
mechanisms

THE ARCHITECTURE OF THE
TOOLKIT: more details

Built on Pop-11extendedwith:

� OBJECTCLASS (designedby Steve Leach). Lik e
CLOS, it supportsobject oriented programming with
multiple inheritance and genericfunctions
(multi-methods).
IMPORTANT FOR RE-USABILITY AND EVENT DRIVEN

PROGRAMMING.
� RCLIB – An object-oriented “r elative coordinates”

2-D graphical package,making it easyto produce
graphical interfaceslink ed to a simulation, including
declaratively specifiedcontrol panels.
MULTIPLE-INHERITANCE HAS BEEN USED

THROUGHOUT TO ACHIEVE MODULARITY.
MANY METHODS ATTACHED TO INDIVIDUAL

INSTANCES RATHER THAN CLASSES.

..........AND...........

continued...

� POPRULEBASE – an unusually flexible,
forward-chaining pattern-dri ven production system
interpreter, able to invokearbitrary proceduresin its
conditionsand actions,with meta-rules,and support
for hybrid architectures(e.g. a rule’s conditionscan
run a neural net). Poprulebasesupports:

� Rulesets:collectionsof condition-action rules with
various processingstrategies.

� Ruleclusters: families of Rulesets,with control
switching betweenthem

� Thr eads:differ ent concurrently active
rulesets/clusters

� Conditions and actionscan invoke ‘lower level’
mechanisms(Pop-11,C, Prolog,neural nets...)

� Ruleset-specificand/or dynamic settingof
operation modes,e.g. conflict resolution,tracing
modes

� Interacti ve debuggingand development: edit and
recompilea rulesetafter a run hasbegun

..........AND...........

continued...

� SIM AGENT
providesa schedulerand somedefault classesand
methodsfor sensing,communicating,acting.
There is a growing library of utilities.
The object-orienteddesignprovidesa setof basic
classesand methodswhich canbe extendedfor
particular applications.
A collectionof rulesetsand ruleclusters,executed“in
parallel”, forms a rulesystem defining an agent’s
internal processingarchitecture.

There are alsouser-definabletypesof sensorsand
external actions.

Default communicationprotocol supported

� SIM PICAGENT
Allows individual agentsto be in multiple windows

� SIM HARNESS
Providesdefault control paneland startup mechanisms

SUPPORT FOR SELF-MONITORING
(E.g. meta-mana gement)

An agentcan inspectand alter its own architecture.

Eachagent’s rulesystemis representedasa collectionof
items in its database.I.e. the architecture consistsof
mechanismsfor operating on a databasewhich contains
the architecture.

Poprulebaseallowsmeta-ruleswhich get their conditions
and actionsfr om the database.

(Someof the self-monitoring mechanismswere partly
specifiedby Catriona Kennedy.)

RCLIB and Poprulebase can be used
independentl y of each other and the

rest of the toolkit.

The toolkit dependson a largenumber of re-usable
Pop-11libraries, forming part of Poplog,

including many low-level libraries concerned with the X
window capabilitiesand the PoplogX widget set.

(BasicX facilities developedat Sussexand ISL – now
SPSS)

Distrib uted agents

The basicsystemsupportsmultiple agentsin oneUnix
processon a singleCPU.

However, someusershaveusedPop-11facilities suchas
the socket library to implement distrib uted systems.

That needsto bebetter packagedfor lessexpert users.It
is work to be done.Collaborators welcome!

HOW WE DO IT
A MULTI-PARADIGM APPROACH

Combinemany stylesof programming:
� Conventional proceduraland functional programming

POP-11
� List processingand pattern matching POP-11
� Rule-basedprogramming POPRULEBASE

� Object oriented programming OBJECTCLASS

Including genericfunctions and multiple inheritance
� Event-driven programming

X WINDOW SYSTEM AND RCLIB
� Other computational paradigms neededfor particular

applications,e.g. neural netsor evolutionary
mechanisms.

� Extendablesyntaxand semantics(macrosand beyond)
� Invocationof other languagesasneeded

PROLOG, ML, L ISP, C, ...
� Automatic store managementand FAST garbage

collection.

RAPID PROTOTYPING
AND

SELF-MODIFYING SOFTWARE

Useof Pop-11’s INCREMENTAL COMPILER makesit
easyto experimentwith changesand extensionsto a
running systemwithout having to re-start every time.

� Dynamic replacementof modules(at run time)

� Essentialfor debuggingcomplexsystems

� Also for RAPID PROTOTYPING

i.e. rapid evaluation, exploration, etc.
(Required whenyou don’t start off with a
preciselydefinedwell understoodproblem.)

� And for self-modifying systems

What are the languagerequirementsto support this?

As far asI know, ONLY AI programming languages
combineall of thesefeatures,with Java probably the
closestcontender, someway(??) behind.

There will becontinueddevelopmentof increasinglyhigh
level languagesto expressthe designideas,alongwith
compilers (or interpreters)to translate them into the sort
of codewhich now hasto be designedby hand.

That hasbeenthe dominant form of progressin computer
scienceand software engineeringin the last half century,
apart fr om hardware developments.

OBJECT ORIENTATION IN
SIM AGENT

Usemultiple inheritance with powerful default methods.
Definenewsubclassescombining capabilitiesof old classes.

SeeTEACH OOP

Default sim agentclasses,with associatedmethods
� object – the top level classin Sim agent
� agent– the next level down, with additional capabilities,

e.g. messagesending.

Graphical classesand mixins in RCLIB

e.g. rc window object, rc linepic, rc movable,
rc rotatable, rc selectable,rc constrained mover, etc.

With support for buttons, sliders,scrolling text, etc.,

All with user-extendablemethods.

Additional classesare provided in libraries.

SIM PICAGENT librar y combines
RCLIB and SIM AGENT

� New classof graphical window
classsim picagent window;

is rc window object;
� New typesof objectsusing sim agent+ rclib

mixin sim multiwin;
(For movable objectsin multiple windows)

mixin sim multiwin static;
IS SIM MULTIWIN;

mixin sim multiwin mobile;
IS SIM MULTIWIN RC LINEPIC MOVABLE;

mixin sim immobile;
IS SIM MULTIWIN STATIC SIM OBJECT;

mixin sim immobile agent;
IS SIM MULTIWIN STATIC SIM AGENT;

mixin sim movable;
IS SIM MULTIWIN MOBILE SIM OBJECT;

mixin sim movable agent;
IS SIM MULTIWIN MOBILE SIM AGENT;

SIM HARNESS
automaticall y sets up contr ol panels

Seeexamplefr om sim feelings.

But changingdefaults,even at run time, is not hard
becauseeverything is in Pop-11,which is incrementally
compiled,and re-compilableat run time (lik eLisp,
Prolog,Scheme,(??ML??)...).

Users can define new subc lasses,
and extend or replace the methods.

THERE IS NO FIXED ARCHITECTURE: FLEXIBLE

FRAMEWORK FOR EXPLORING A VARIETY OF

ARCHITECTURES.

Eachagent’s architecture can include:
� condition-action rules

In a flexible, user-extendableformalism.
� rulesets

composedof a collectionof rules which work together to
perform sometask

� ruleclusters
Consistingof a group of rulesets,only oneof which is
active at any time.
(Previously called ‘rulefamilies’)

� a rulesystem
Made up of a collectionof ruleclusterswhich run in
parallel. Eachagenthasonerulesystem.

� Various methodsfor sensing,acting, communicating,
tracing

Also a database(or several databases)which function as:
� long term knowledgestores
� temporary workspaces
� communication channelsbetweensubsystems

ADDITIONAL FEATURES

� The rules within an agentcommunicatevia pri vate
databasesand messagechannelsin the agent.

� Conditions and actionsin rules canaccessarbitrary
Pop-11code: including codefor neural netsand other
“sub-symbolic” mechanisms(e.g. [WHERE ...]
conditions).

� Conditions and actionscan, if needed,accesspackages
written in other languagessupportedby Poplog,etc.
Prolog,Lisp, ML.

� Pop-11codecan accessall the Pop-11libraries,
including pipesand sockets,and can invoke ‘external’
procedures,e.g. C procedures,suchasthe X window
facilities.

� Rulesetscanbe tur ned on and off while an agentis
running.

� The rulesystemsof differ ent agentsrun in simulated
parallelism.

� The rulesystemswithin an agentrun in simulated
parallelism.

CODE EXAMPLES

define :class sim_object;
;;; Top level class
slot sim_name = gensym(‘‘object’’);

;;; A table for mapping words to rulesets, etc.
slot sim_valof =

newproperty([], 17, false, ‘‘tmparg’’);

slot sim_speed == 1;
slot sim_cycle_limit == 1;
slot sim_interval == 1;

slot sim_status == undef; ;;; e.g. ‘alive’, etc.

slot sim_data = prb_newdatabase(sim_dbsize,[]);

slot sim_rulesystem == [];

slot sim_sensors =
[{sim_sense_agent 1000}];

slot sim_sensor_data == [];

slot sim_actions == [];

slot sim_setup_done = false;
enddefine;

define :class sim_agent; is sim_object;

slot sim_name = gensym(‘‘agent’’);

slot sim_in_messages == [];
slot sim_out_messages == [];

enddefine;

define :class trial_agent;
is rc_rotatable rc_linepic_movable

rc_selectable sim_agent;

slot trial_heading == 0;
slot trial_size == 10;
slot rc_picx == 0;
slot rc_picy == 0;
slot sim_sensors = [];

enddefine;

define :class trial_dog; is trial_agent;
slot trial_speed == 0;
slot rc_pic_lines ==

[
WIDTH 3
[CLOSED {-10 10} {10 10} {10 -10} {-10 -10}]
[CLOSED {8 8} {8 -8} {17 0}]

];
slot sim_rulesystem = trial_dog_rulesystem;
slot sim_sensors =

[{sim_sense_agent ˆtrial_visual_range}];
slot trial_list == [];
slot trial_current == [];
slot trial_goal == [];
slot trial_leftpost == [];
slot trial_rightpost == [];
slot trial_postlist == [];
slot trial_sector = [];
slot trial_side = [];
slot trial_sheepside = [];
slot trial_in_pen = false;
slot trial_deshead = false;
slot trial_problempost = false;
slot trial_problemtree = false;
slot trial_personalspace = 30;
slot trial_behav = [];
slot trial_memory = [];
slot trial_trees = [];
slot counter = 0;

enddefine;

define :rulesystem trial_dog_rulesystem;

debug = false;
cycle_limit = 1;

include: dog_pen_rules
include: find_new_sheep
include: dog_perception_rules
include: dog_target_rules
include: dog_side_rules
include: dog_sheepside_rules
include: dog_tracing
include: behaviour_rules
include: dog_activity
include: memory_testing

enddefine;

define :rulefamily dog_activity;

ruleset: join
ruleset: steer
ruleset: take
ruleset: treedetection

enddefine;

define :ruleset take;

RULE flipttotd
[WHERE tree_detect(sim_myself)]

==>
[RESTORERULESETtreedetection]

RULE flipttoj
[behaviour join]
[WHERE

sim_distance(
sim_myself, sim_myself.trial_current)

> 100]
==>

[RESTORERULESETjoin]

RULE flipttoj2
[WHERE

sim_distance_from(
trial_coords(sim_myself),

trial_coords(sim_myself.trial_current))
> 100]

==>
[RESTORERULESETjoin]

RULE flipttoj3
[side pen]

==>
[RESTORERULESETjoin]

RULE flipttoj4
[targ ron]

==>
[RESTORERULESETjoin]

RULE flipttos
[behaviour steer]

==>
[RESTORERULESETsteer]

RULE inpen
[side pen]

==>
[POP11

[in pen]==>;
lvars speed, heading, a, dist;
sim_distance_from(

trial_coords(sim_myself),
trial_coords(sim_myself.trial_current))

-> dist;

20 -> speed;

pen.orientation - 90 -> heading;
move_dog(sim_myself, speed, heading);

]

.... ETC

AN EXAMPLE METARULE
USING AN [ALL ...] CONDITION

define :ruleset check_rules;

RULE check_constraints
[constraint ?name ?checks ?message]
[ALL ?checks]
==>
[SAY Constraint ?name violated]
[SAY ??message]
[RESTORERULESETbacktrack_rules]

RULE checks_ok
==>
[RESTORERULESETsolve_rules]

enddefine;

In the above,the condition

[constraint ?name ?checks ?message]

Causesthe variable checks to pick up fr om the databasea list of
conditions (which may include variables.

Exampleconstraint, fr om TEACH PRB RIVER.P

;;; Now the constraints - checked by rule check
;;; first constraint -
;;; fail if something can eat something
[constraint Eat

[[?thing1 isat ?side]
[NOT man isat ?side]
[?thing1 can eat ?thing2]
[?thing2 isat ?side]]

[?thing1 can eat ?thing2 GO BACK]]

;;; second constraint, is the current state
;;; one that’s in the history?
[constraint Loop

[[state ?state] [history == [= ?state] ==]]
[’LOOP found - Was previously in state: ‘

?state]]

Then this condition

[ALL ?checks]

testswhether all thoseconditionsare curr ently satisfiedin the
database:asif the conditions had beenmadeexplicit in this rule.

THE VIRTUAL TIME SCHEDULER

SIM AGENT providesa schedulerwhich ‘runs’ objectsin a virtual
time frame composedof a successionof time slices.

It usesObjectclassmethodsthat canbe redefinedfor differ ent
sub-classesof agentswithout altering the scheduler.

The default ‘run’ methodgivesevery agenta chanceto do thr ee
things in eachtime-slice:

� senseits envir onment
� run internal processesthat interpret sensorydata and incoming

messages,and manipulate internal states
� produceactionsor messagesfor other agents

After that’ sdonefor eachagent,default methodsare used:
� to transfer messagesbetweenagents
� to perform the actionsfor eachagent

So each agent’s sensor y processes
and internal processes run with the
‘external’ world in the same state in

the same time-slice .

Therecanbeunexpectedinteractions, though, when the external
actionsare performed.

Developershave to takecare.

Changeableresourcelimits associatedwith rulesetssupports
exploration of effectsof speedingup or slowing down differ ent
modulesrelative to eachother and envir onmental speeds.

This will help us evaluate the needfor meta-management
mechanisms,and various waysof meetingthat needby letting
meta-managementcompensatefor lack of speedin somecontexts.

DEVELOPMENT ENVIRONMENT

It hasprovedquite difficult to designand implement suchagents.
One reasonis the difficulty of knowing what sort of designis
required. This suggestsa needfor tools to explorepossibledesigns
and designrequirements(e.g. by examininghow instancesof first
draft designssucceedor fail in various domainsand tasks). I.e.
support for very rapid prototyping is essential.

Trade-off: compile time checkingetc. vs flexibility .

Many agenttoolkits exist which aregeared to support a particular
type of agent(e.g. agentsbuilt fr om a collectionof neural nets,or
agentswhich all havea particular sort of cognitivearchitecturesuch
asSOAR).

For researcherswho don’t yet know which architecture to use,these
imposea prematurecommitment (the field is still in its infancy).

Sowe needa toolkit which not only supports the kind of complexity
describedabove,but which doesnot prescribeany particular
architecture for agents,sothat wecan learn by exploring new forms.

However it should support the re-useof componentsof previous
designssothat not all designershave to start fr om scratch. Libraries
are neededfor this.

It shouldsupport both explicit designby human researchersand also
automateddesignof agentse.g. using evolutionary mechanisms.

FUTURE WORK

� Adding more libraries, including libraries supporting particular
kinds of architectures

� Extending the “har ness”,e.g. with tools to make it easierto
assembleand run scenarios(including architecture-specificgraphical
tools).

� Making it easierfor agentsto inspectand modify their own
architectures(e.g. to model various kinds of cognitivedevelopmentor
self-awareness).

� Adding a more “neural lik e” databasemechanism,with “sloppy”
matching and spreadingactivation (asin ACT-R)

Suggestionsfr om usershave led to many impr ovementsand
extensions,e.g. including support for self-monitoring.

It is expectedthat the processof designingextensionsguided by user
requirementswill continue.

Someextensionsmay bebuilt deepinto the system,while otherswill
beoptional libraries.

CHALLENGES FOR THEORISTS

� It seemslik ely that the sort of complexity outlined abovewill be
requiredeven in somesafetycritical systems.Can wepossiblyhopeto
understand suchcomplexsystemswell enoughto trust them?

� Will weever beable to automatethe checkingof important features
of suchdesigns?

� The designof systemsof suchcomplexity posesa formidable
challenge.Can it beautomatedto any usefulextent?

� Do weyet havegoodlanguagesfor expressingthe REQUIREMENTS

for suchsystems(e.g. what does“coherent integration” mean?What
does“adapti ve learning” meanin connectionwith a multi-functional
system?)

� Do wehave languagesadequatefor describing DESIGNS for such
systemsat a high enoughlevel of abstraction for us to be able
understand them (asopposedto millions of lines of low level detail)?

� Will we ever understand the workings of systemsof such
complexity?

� How should we teachour studentsto think about suchthings?

For more on sim agent and its
subsystems see

http://www.cs.bham.ac.uk/˜axs/cog affect/sim agent.html
Overview

http://www.cs.bham.ac.uk/research/poplog/sim/help/sim agent
Main integrating library

http://www.cs.bham.ac.uk/research/poplog/prb/help/rul esystems
How to expressagentinternals

http://www.cs.bham.ac.uk/research/poplog/prb/help/poprulebase
Mor e details

http://www.cs.bham.ac.uk/research/poplog/rclib/help/rclib
The graphical tools.

Therearegzippedtar filescontaining all the above.

Further information:
http://www.poplog.org

To obtain Poplog,and the toolkit libraries, see:

http://www.cs.bham.ac.uk/research/
poplog/freepoplog.html

