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Introduction and overview

For over half a century I have been interested in the role of intuitive spatial reasoning in

mathematics. My Oxford DPhil Thesis (1962) was an attempt to defend Kant’s philosophy of

mathematics, especially his claim that mathematical proofs extend our knowledge (so the

knowledge is "synthetic", not "analytic") and that the discoveries are not empirical, or contingent,

but are in an important sense "a priori" (which does not imply "innate") and also necessarily true. 

I had made my views clear in courses on philosophy of science and mathematics when teaching at

Sussex University (from 1964) which was why one of our former students, Mary Pardoe (then Mary

Ensor) who had become a mathematics teacher informed me, while visiting the university, that she

had found a new diagrammatic proof of the triangle sum theorem. I reported her proof in some

papers and presentations on methods of representation and reasoning, e.g. here, but neither she

nor I has encountered anyone else who knew about the proof. So, in November 2010, I decided to

try to get comments on it from experts by writing to a mailing list on mathematical knowledge

management (MKM). 

The email discussions that followed helped to clarify what the new proof does and does not

assume (e.g. it does not seem to assume the Euclidean parallel lines postulate). This web site is

my attempt to summarise what I learnt from that discussion. (Please see the acknowledgements

section.) 
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In particular the discussion led me to attempt a partial formalisation of what I think the proof

assumes about moving, rotating, line segments as explained below. 

There is a lot more work to be done, including clarifying the difference between adding time and

motion to Euclidean geometry and merely adding sets of locations (or paths, loci) of geometrical

entities to geometry without time. 

NOTE: Updated 29 May 2013 I have produced two web pages that go into Pardoe’s proof and

other proofs of the Triangle Sum Theorem in more detail, and also proofs of theorems about areas

of triangles, and how they change if parts move. These discuss some of biological and cognitive

implications, but without discussing how Euclidean geometry might be changed to accommodate

processes and time. See 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-theorem.html 

   (Mainly about processes that alter areas.) 

Added: 22 Jul 2011 

I have recently realised that my (still unfinished) attempt described below to produce a version of

Euclidean Geometry that does not include the parallel axiom but does allow structure-preserving

motion, can be construed as an example of what Annette Karmiloff-Smith refers to as

"Representational Redescription" in her 1992 book 

Beyond Modularity: A Developmental Perspective on Cognitive Science 

I have tried to explain this connection in my extended personal review of her book, here: 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/beyond-modularity.html  

The sum of the angles of a triangle: The "standard" proof

There is a standard way (or small set of standard ways) of proving the theorem 

Triangle Sum Theorem (TST): 
The angles of a triangle add up to a straight line (180 degrees).

These standard methods all make use of some version of Euclid’s parallel postulate, 

which can be formulated in several equivalent ways, e.g. 

Definition: 
Two straight lines L1 and L2 are parallel if and only if they are co-planar and have no point in

common, no matter how far they are extended. 

Postulate: 
Given a straight line L in a plane, and a point P in the plane not on L, there is exactly one line

through P that is in the plane and parallel to L.

The "standard" ways of proving the TST make use of properties of angles formed when a straight

line joins or crosses a pair of parallel lines: 

Corresponding angles are equal: 
If two lines L1, L2 are parallel and a third line L3 is drawn from any point P1 on L1 to a point

P2 on L2 and continued beyond P2, 

Then the angle that L1 makes with the line L3 at point P1, and the angle L2 makes with the
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line L3 at point P2 (where the angles are on the same side of both lines) are equal. 

Alternate angles are equal: 
If two lines L1, L2 are parallel and a third line L3 is drawn from any point P1 on L1 to a point

P2 on L2, 

Then the angle L1 makes with the line L3 at point P1, and the angle L2 makes with the line L3

at point P2 (on the opposite sides of both lines) are equal. 

For more on transversals and relations between the angles they create see 

http://www.mathsisfun.com/geometry/parallel-lines.html 

The page teaches concepts with some interactive illustrations, but presents no proofs.

Two "standard" proofs of the triangle sum theorem using parallel lines are 

illustrated here. as shown below: 

two proofs 

Warning: several online proofs seem to have bugs due to carelessness. 

Mary Pardoe’s proof of the Triangle Sum Theorem

Many years ago at Sussex university I was visited by a former student Mary Pardoe (then Mary

Ensor), who had been teaching mathematics in schools. She mentioned that her pupils had found

the standard proof of the triangle sum theorem hard to take in and remember, but that she had

found an alternative proof, which was more memorable, and easier for her pupils to understand. 

Her proof just involves rotating a single directed line segment (or arrow, or pencil, or ...) through

each of the angles in turn at the corners of the triangle, which must result in its ending up in its

initial location pointing in the opposite direction, without ever crossing over itself. 

So the total rotation angle is equivalent to a straight line, or half rotation, i.e. 180 degrees, using the

convention that a full rotation is 360 degrees. The proof is illustrated below. 

rotating segment 

Available as printable PDF here.

An alternative presentation as a process 

rotating 

I have been presenting this proof in talks and papers on mathematical discovery and reasoning for

many years, until recently attributing it to Mary Ensor, as I had forgotten her change of name. For

instance in 
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  Aaron Sloman, 2008,

  Kantian Philosophy of Mathematics and Young Robots,

  in Intelligent Computer Mathematics,

  Eds. Autexier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., and Wiedijk, F.,

  LLNCS no 5144, pp. 558-573, Springer,

  http://www.cs.bham.ac.uk/research/projects/cosy/papers#tr0802

  Aaron Sloman, 2010,

  If Learning Maths Requires a Teacher, Where did the First Teachers Come From?

  In Proceedings Symposium on Mathematical Practice and Cognition,

  AISB 2010 Convention, De Montfort University, Leicester

  http://www.cs.bham.ac.uk/research/projects/cogaff/10.html#1001

  And in talks on mathematical cognition and philosophy of mathematics here:

  http://www.cs.bham.ac.uk/research/projects/cogaff/talks/

The presentations produced no responses -- either critical or approving, except that in an informal

discussion recently a mathematician objected that the proof was unacceptable because the surface

of a sphere would provide a counter example. However, the surface of a sphere provides no more

and no less of a problem for Pardoe’s proof than for the standard proofs since both proofs are

restricted to planar surfaces. 

There may be interesting generalisations of both proofs that are applicable to non-planar surfaces,

but that’s not the present topic. 

I tried searching for online proofs to see if anyone else had discovered this proof or used it, but

nothing turned up. The proof using rotation is so simple and so effective that both Mary Pardoe and

I felt sure it must have been discovered previously. 

Email discussions of Pardoe’s proof

In November 2010 I wrote to the Mathematical Knowledge Management Interest Group (MKM-IG)

mailing list, pointing at the online presentation of the proof and inviting comments. I included a

reference to Nelsen’s "Proofs without words" (see below), as evidence that there was nothing new

in the idea that a serious mathematical proof can be based on transformations of a diagram. In

particular, I invited comments on the possible use of the rotating segment proof in mathematics

teaching. 

From the ensuing discussion on the email list I was able to distil the following alternative views.

(Participants and others are invited to comment on this summary.) 

1.  The proof is valid, but it is no different from the standard proof because the use of rotations

adds rotations around different points in the plane and this requires use of the parallel

postulate (since addition of angles that do not share a common vertex is otherwise

undefined?) 

On this view the proof as presented is incomplete, and completing it would show it to be a

variant of the standard proof. 

I responded to this that I thought there was an interpretation of the Pardoe proof that did not 

assume anything about the possibility of parallel lines or any properties of parallel lines,

though it might be possible to deduce the parallel postulate from what it did assume, namely

that a line segment can be rotated and that successive rotations can be summed even if they

are rotations about different points. (Later I tried to draft a partial axiomatisation to show how

the parallel axiom could be by-passed. See below.) 
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2.  A variant of comment (1) was the objection that the proof should not be used in teaching

because as it stands it is not valid, and making it valid would require presenting axioms for
Euclidean geometry that are assumed in the proof. This would then replace the Pardoe proof with

something like the standard proof. 

I think this objection was based on an unproved assumption that it is impossible to prove the

triangle sum theorem without assuming the parallel postulate (or something equivalent). The

assumption is correct for some axiomatisations of Euclidean geometry. 

Since there have been different axiomatisations of Euclidean geometry over many centuries
and rigorous formal axiomatisations were not possible before the developments of logic in the late
19th century, there must be a way of identifying what Euclidean geometry is that is independent of

the way in which it is axiomatised formally. 

This seems to be connected with Kant’s view that assuming something like Euclidean
geometry is a requirement for perception and action involving objects in space. The refutation (by

Einstein’s work on relativity) of Euclid’s 5th postulate as a characterisation of physical space still
leaves a great deal of Euclidean geometry (including its topological subset and much more) intact. 

The assumptions made by the Pardoe proof may be part of that subset, especially if the proof
can be shown NOT to assume the parallel postulate. (See the partial axiomatisation of P-geometry 

below.) 

3.  Other comments pointed to various online demonstrations of mathematical properties of

geometrical constructions, applications of pythagoras’ theorem, algebraic formulae, etc. which
could be used by students of mathematics to develop familiarity with the concepts and fluency in
their use. Such development of mathematical intuitions is not the same thing as presenting a proof. 

4.  In order to justify my assumption that the Pardoe proof was both intrinsically different from the
standard proof, and to meet the objection, (1) above, that its assumptions are unclear, I decided to
examine some existing axiomatisations of Euclidean geometry and thanks to google found Hilbert’s

and Tarski’s axiomatisations, along with others. 

5.  This led me to begin investigating the possibility of an alternative axiomatisation that included

the notion of moving and rotating lines and other objects as primitive. 

I append the work in progress below, in the form of a partial axiomatisation.

Formal vs Informal (including diagrammatic) mathematical proofs

There are some mathematicians and logicians who claim that only a formal (logical) proof can be a

proof (e.g. some followers of the Bourbaki school, whose influence I believe seriously harmed the

education of many young potential mathematicians). 

In issue 73 (2010) of https://www.ncetm.org.uk/resources/28649 the NCETM secondary magazine (edited by

Mary Pardoe) there is a piece on mathematical education by Benoit Mandelbrot, also relevant to this discussion.

To claim that only formal logical proofs are proofs ignores all the deep mathematical advances over

many hundreds of years (including Euclidean geometry) that preceded the development of formal

approaches. 
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Of course that begs the question: what makes a diagram, or a transformation of a diagram (or

anything else) a proof as opposed to a mere intuition-builder? 

I think the full answer is very complex. It relates to the fact that when a structure or configuration of

any sort is perceived (or thought about) by humans and other intelligent animals, though not yet by

any robots I am aware of, that perceptual (or thinking) state includes recognition and representation

of 

ways in which it is possible for the structure in question to be different 

constraints on that set of possibilities. 

NOTE: I discussed both of these points in my DPhil thesis and in various papers and

presentations since then, e.g. 

  A. Sloman,

  Actual Possibilities,

  In Principles of Knowledge Representation and Reasoning:

    Proc. 5th Int. Conf. (KR ‘96),

  Eds. L.C. Aiello and S.C. Shapiro,

  Morgan Kaufmann, Boston, MA, 1996, pp. 627--638,

  http://www.cs.bham.ac.uk/research/cogaff/96-99.html#15

I recently discovered that the two last books Piaget wrote were on Knowledge of Possibility and

Knowledge of Necessity. I have not yet read them, but it seems that he had noticed the points

being discussed here. 

J.J.Gibson’s concept of perceiving and understanding affordances is a special case of the concepts

of knowledge of what is possible and what is necessarily the case in various possible situations

and processes. I don’t believe Gibson, or most of his followers understood the general point. A

great deal of mathematical knowledge, especially knowledge of geometry and topology, is

concerned with facts about what possible changes are possible in a given configuration and and

what the constraints on those possibilities and the consequences of those changes are (these are

the necessities). 

The use of diagrammatic reasoning in mathematics depends on the fact that there are ways of

producing spatial structures and processes transforming such structures, that reveal both

possibilities for variation and also invariances at various levels of abstraction that constrain those

variations. 

(Likewise logical or algebraic reasoning depends on the fact that there are ways of transforming

logical or algebraic expressions that reveal both possibilities for variation and semantic invariances

-- e.g. applying certain rules in a certain order to a starting formula will necessarily produce a

particular final formula (e.g. a theorem)). 

Metaphors vs Proofs

It became evident in some of the discussions and presentations at the Mathematical Practice and

Cognition Symposium at AISB2010 that some researchers on mathematical cognition, especially

non-mathematicians, seem to confuse diagrammatic reasoning with use of metaphors. This is a

serious error that is based on a failure to understand the nature of mathematics and the difference

between a suggestive argument (which could be a metaphor) and a proof, which demonstrates

what must be the case. 
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I don’t know to what extent the many people who are now building web sites for mathematical

education understand the difference. Both intuition builders and proofs can transform the mind of

the learner. But they do so in different ways -- partly like the difference between showing children

how to use light-switches and teaching them about opening and closing electrical circuits. The

latter type can explain why various generalisations hold: a deeper change. 

Another common view is that the fact that humans sometimes use diagrams for mathematical

reasoning is just a fact about human psychology, ignoring the fact that it depends on facts about

space and spatial transformations that have nothing specific to do with human psychology and

might be usable by other animals and future intelligent robots. The facts that some humans can

and others cannot use diagrams are psychological facts, and there are also sociological or

anthropological facts about which sorts of diagrams are used in which cultures. But the study of

mathematics is not the study of such psychological or sociological facts, but the investigation of

deeper truths that constrain what kinds of valid reasoning are possible for any species, culture, or

machine. 

Mary Pardoe’s proof, above, and the demonstrations in Nelsen’s book (see below) are relevant to

investigations of the deeper truths, as I hope will become clearer below. Perhaps more people

building mathematical web demos need to understand the difference, so that they can help young

learners understand the differences between illustrative examples and proofs/demonstrations. 

One of the important facts about such diagrammatic proofs is that their effectiveness does not

depend on the diagrams being drawn with great precision. For examples, the lines drawn and

transformed in the proof, need not be perfectly straight, infinitely thin or perfectly circular, in order to

represent properties of configurations of perfectly straight, infinitely thin, or perfectly circular lines.

That’s because the diagrams, whether drawn in sand, or paper, or merely imagined are not what

the proofs are about: they proofs are about what the diagrams represent (as I argued in 1971). 

Making assumptions of the proof explicit

Attempting to make assumptions explicit invites discussion of an infinite regress of assumptions,

like Lewis Carroll’s What the Tortoise Said to Achilles (in Mind 1895). 

I believe it is possible to show how to terminate such discussions by showing how to build a

reasoner in which instead of ever more factual assumptions we end with a demonstration of how

something can actually work, and why it works, where the actual reasoner built instantiates some

generic invariances that are equally applicable to other instances. (E.g. other reasoning animals or

machines, whose details can differ.) But that’s a topic for another occasion. For now all I want to do

is show how to make some of the assumptions more explicit than they are in Pardoe’s proof. 

Unpacking the assumptions of the proof leads to a description of a notion of geometry that is very

close to Euclidean geometry, sharing many features and theorems with it, though will be slightly

different from Euclidean geometry if the parallel axiom is not provable within it, or if it does not

allow the notion of parallelism to be defined or illustrated. For now, all I want to do is leave open the

possibility that the two geometries overlap without being equivalent (mutually derivable). 
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I use the label "P-geometry" (for "Pardoe-geometry" or "Process-geometry") to distinguish this from

standard Euclidean geometry. I think there is very substantial overlap with standard Euclidean

geometry, and it may turn out that the two are equivalent though that is not obvious to me. 

Note added: 15 Dec 2010 

After writing the above I discovered the chapter by Poincaré mentioned above. In the light of that, ’P-geometry’

could be ’Poincare-geometry’. The book by Jean Nicod on The Foundations of Geometry, which I dimly recall

reading many years ago, is also relevant. 

No doubt there is lots more relevant work, of which I am ignorant.

Axiomatisations of Euclidean Geometry

Some time ago, for the first time, I looked at and pondered the similarities and differences between

Hilbert’s and Tarski’s axiomatisations for Euclidean geometry, as presented here: 

    http://en.wikipedia.org/wiki/Hilbert%27s_axioms

    http://en.wikipedia.org/wiki/Tarski%27s_axioms

There are other axiomatisations, but for my current purposes it is enough to (a) to point out that the

same mathematical field (in this case Euclidean geometry) can have very different axiomatisations

and use different initial ontologies and (b) to draw attention to a few of the differences to illustrate

some of the relationships that can exist between a mathematical field of enquiry and an

axiomatisation of the field. 

There are several interesting differences between Hilbert’s and Tarski’s axiomatisations, including

the following: 

They presuppose different sets of primitives. 

E.g. Hilbert includes the notion of an angle and of angles being congruent, whereas Tarski

does not use the notion of angle or congruence of angles. (Though I assume they can be

defined as non-primitive concepts.) 

In consequence, the axioms are very different. 

Neither Hilbert nor Tarski includes the parallel postulate in its usual form, though both include

axioms that allow the parallel postulate to be derived. 

Both are distinct from the traditional (informal) axiomatisation that in one form or another goes

back centuries. 

Comparing with Pardoe’s proof: Neither axiomatisation includes notions of rotation, or

translation, or time, or time order. Neither explicitly mentions the possibility of objects moving

in space, which would require Euclidean geometry to be part of a larger space-time system. 

Rotations, but not translations, are used in the Pardoe proof displayed above. There is another

version of her proof, which alternates between rotations and translations, to ensure that the

rotating segment rotates only about one of its ends available here. 
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I suspect there are more variants, or generalisations, of this proof.

I don’t know how many other formal or informal axiomatisations of geometry there are, nor what is

in any of them, so I cannot make any claims about how they relate to P-geometry. There may

already be an excellent axiomatisation of P-geometry that I have not found. 

NOTE: Insofar as there is agreement among mathematicians that Hilbert and Tarski (and also

others listed on the web site with Hilbert’s axioms) produced distinct axiomatisations for Euclidean

geometry, it follows that there is some shared understanding of what Euclidean geometry is that is

NOT defined by a particular axiomatisation, though that shared understanding provides a basis for

generating and judging axiomatisations. 

That raises a question, which has driven my enquiry all along but may not interest others, namely

what that pre-axiomatic understanding consists in. 

Towards an axiomatisation of P-Geometry

It is worth trying to produce an axiomatisation of geometry that does not include the parallel

postulate, but does include notions of rotation of line segment and appropriate axioms

corresponding to our intuition that a line segment can continue rotating, so that its orientation

increases or decreases monotonically and continuously, even if the point of rotation changes, as

happens in the Pardoe proof. 

In what follows I shall try to indicate how axioms regarding rotating segments and the angles they

sweep through might be used to support something like Pardoe’s proof, without mentioning or

presupposing the existence of parallel lines. I shall take for granted that starting from one of the

existing axiomatisations mentioning lines and segments of a line it is possible to remove the

parallel postulate or any postulate that implies it, and insert the axioms below, to create something

very close to Euclidean geometry. (Later it should be possible to demonstrate this more formally.) 

This can be thought of as generalising the notion of a "locus" of a point defined by some

parametrised set of relations, to the "locus" of a changing line segment. 

The intuitive notion of such a locus as presented in Pardoe’s proof presupposes change of location

in time (hence the rotation). But it may be possible to get rid of time and just talk about an ordered,

continuous, set of line-segments as the locus. 

We’ll need to refer to the amount (angle) of rotation for part of the locus, and will have an axiom for

rotations something like this: 

If the locus of a moving rotating line segment is divided into two or more parts, each will have

an angle of rotation, and the sum of all the angles of rotation will be the total rotation for the

locus. 

(This can be generalised to include positive and negative rotations in the same locus, but

that’s not needed for the Pardoe proof, since the rotation is monotonic.) 
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Additional possible axioms are listed below.

This needs to be generalised later to include line segments that not only rotate but can also be

translated in various directions. 

It’s an open question (as far as I can tell) whether an axiomatisation based on that assumption (and

the further items below) will turn out necessarily to entail the parallel postulate, or whether this

variant of Euclidean geometry is consistent with, but does not require the parallel postulate. 

If the axioms do not entail the parallel postulate, but are consistent with it, then we’ll have a slightly

more general type of geometry than euclidean geometry, with euclidean geometry as a special

case. But the theorem about angles of a triangle summing to a straight line (or half rotation) will still

hold. 

(Perhaps a meta-theorem is provable that shows that the parallel postulate must follow from any

such axiom set.) 

A first draft set of assumptions (axioms) needed for P-geometry, to be combined with additional

standard assumptions for Euclidean geometry, excluding the parallel axiom. 

(WARNING: these axioms are likely to be updated. Suggestions for improvement welcome.) 

Ontology: 
There are lines (which have no ends), and line segments (each of which has two ends, and

lies on a line). 

Lines have positions and orientations in the plane. line segments have positions and 

orientations on the plane. 

Operations produce changes of positions and orientations. 

A path for an entity is an ordered, continuous, complete, set of positions and orientations for

the entity. This needs to be unpacked, to define the notions of continuity, ordering, etc. 

Some first draft suggestions 

A set of entities with an ordering is "continuous" (weakly continuous?) if given any two different

items in the set there is at least one more that is between them. 

The set is "inclusive" (is there a better term?) if it contains all the items that are between any

two that it contains. 

(For present purposes we do not require full mathematical continuity.) 

[... other general axioms are needed, e.g. about orderings of positions and orientations ...]

Axioms specific to P-geometry 

P-01: A line segment has a position and an orientation in any plane containing it. 
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The position of the line segment in the plane is also the position of the segment on the line

containing it. 

P-02a: A line segment can be rotated and translated in any plane containing it. 

P-02b: A translation in a plane is an operation that can be applied to a line segment with a
position in that plane, the initial position, and gives the segment a new position (in the plane), the

final position, leaving the orientation unchanged. 

In a cyclic translation the initial and final positions are identical. 

P-02c: A rotation in a plane is an operation that can be applied to a line segment in that plane,

and will give the segment a new position (in the plane) and a new orientation. 

P-02d: A rotation and translation can be applied simultaneously to a line segment and will

produce a new position and orientation. 

P-02e: (Optional: rotation and translation in a plane commute: Does this entail Euclid’s parallel

postulate???) 

P-03a: A translation of a line segment 
defines an ordered continuously varying set of positions of the line segment, without changing

the orientation. (A translation path). 

If no two positions in the set are identical the path is monotonic. 

P-03b: A rotation of a line segment 
defines an ordered continuously varying set of positions and orientations of the line segment.

(A rotation path). 

A simple rotation defines a rotation path in which all the lines containing the positions of the

segment have a unique point in common. 

That common point is the "centre of rotation" of that rotation. 

If no two positions in a simple rotation are identical the rotation is monotonic. 

If the start and end positions in a simple rotation are identical, and only those two, the rotation

is a cycle. 

If a simple rotation of a segment is monotonic, but the start and end positions of the segment

lie on the same line, but with the order of the ends on the line reversed, then the rotation is a 

half-cycle. 

[Added 10 Feb 2016] 
How to turn this into Euclidean Geometry: 
P-03c: Every rotation has an inverse. If a rotation of a segment about a point P is immediately

followed by the inverse rotation about P the segment returns to its original location. 

P-03d: If a segment S1 has only one end E on a straight line L, and a rotation R about E

produces a new segment S1’ that lies on L, and S1’ is then translated any distance along L, in

either direction, and then rotated by the inverse of R about end E then this will produce a new
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line segment S2 such that if the original S1 and S2 are extended indefinitely in either direction they

will never meet. 

(This seems to be equivalent to Euclid’s axiom (theorem?) of corresponding angles.) 

Note: 
Modifications of this axiom should produce alternative non-Euclidean geometries. 

A compound rotation defines a rotation path in which there is no point common to all the

lines containing the positions of the segment. 

A stepped rotation of a segment is a compound rotation whose path is composed of an

ordered set of sub-paths each of which is simple. 

Each subpath of a stepped rotation, except the last, ends with a position that is the start

position of the next sub-path. 

(Mary Pardoe’s proof above, uses a stepped rotation, using the vertices of the triangle in turn

as centres of rotation.) 

(To be continued: Need to define cycle and half-cycle for compound rotations.) 

P-04: The difference between initial and final orientation of a segment is the angle of rotation. 

This is also the difference between the orientations of the lines containing the initial and final

positions of the segment. 

(What properties do we need to assume for angles. Do they have to be scalar (metrical) values

or could they form a partial ordering?) 

P-05 (Revised 15 Dec 2010): 

when a line segment S on a line L is rotated about a point on L to a new position, in which it

lies on a new line L’, then at all times (all positions) 

EITHER exactly one point is common to L and L’ 
OR the lines L and L’ coincide, so that S again lies wholly on L. 

(The rotation is a half-cycle or cycle.) 

NOTE: This assumes that the segment is rotated about a point on the line containing the

segment. Allowing rotations about a point not on the line L adds extra complications, since the

segment will then be constantly translated as well as being rotated, and the points common to 

L and the intermediate lines containing S during the rotation will all be different. 

The parallel postulate could be brought in by adding an axiom to allow rotation about a point

not on L and then postulating a unique position during the rotation when the line through S no

longer intersects L. 

I don’t see that we have to include this possibility. 

Such an axiom could define a special case of P-geometry. But it may be required all angles
anywhere in the plane are to be comparable -- i.e. forming a total ordering (conformal geometry?) 
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P-05-dud: The original formulation of this axiom did not allow for a segment to be rotated

until it lies on the same line as before. The axiom originally stated: when a line segment is

rotated there is always exactly one point common to the original and final positions: the

point of rotation. 

P-06: when there is a unique point of rotation on the line L containing S, there are two angles

of rotation through which the initial segment can be swept to produce the final segment: in

opposite directions. 

(We can define acute, obtuse and reflex angles).

P-07: several contiguous rotations can be combined in order to produce a new rotation. 

("Contiguous" needs to be defined.) 

(We need to distinguish rotations about a common point and rotations of the segment about an

arbitrary point.)

Perhaps it will prove possible to transform this to something more elegant and then show formally

whether the intuitive ideas about rotations and translations of line segments entail the parallel

postulate (which is not the same as presupposing it). 

I don’t know how easy it would be to incorporate these in either Hilbert’s, or Tarski’s axioms (after

suitable changes to extend the ontology, and removing whatever is equivalent to the parallel

postulate.) 

Additional possible axioms -- added 15 Dec 2010 

P-08: A line segment in a plane has two sides. 

Those sides are preserved during rotations. 

P-09: If a segment S is rotated indefinitely about any point on the line L containing the

segment, the segment will repeatedly lie on the line L, and the first time S returns to L, the

sides of S will be swapped. (A half-rotation.) 

The next time S returns to L, the sides will be where they were originally. (A full-rotation.) 

After a full rotation the situation is indistinguishable from the initial situation. 

P-10: If rotation continues indefinitely the situation will alternate between a half-rotation state

and a full-rotation state. 

P-11: If a segment S on a line L is translated without a rotation, then either 

S is translated along L, with each point of S always remaining on L, or 

S is translated away from L. 

In the latter case there will be a discontinuity between the initial state, when every point of S is

on L, and the set of subsequent states, when no point of S is on L. 

To be continued. 
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Do we need an axiom stating that if the lines containing two segments have no point in
common then there is an infinite set of additional line segments between them whose lines have no

point in common. (I.e. an infinite plane between two non-intersecting lines can be swept out by a

moving line. 

Need to define perpendicularity (half rotation) and the sense of a rotation. If two rotations of
opposite sense with the same initial segment and the same point of rotation are equal then if the

final states form a straight line the "shared" edge is perpendicular to the line. S[perp]L, 

An interesting point is that intuitive notions of space inherently involve time, since motions are

possible in space and motions involve time. Most of the applications of euclidean geometry in real

life presuppose this, and many of the constructions used in proofs in euclidean geometry are

normally thought of as things that can happen in time. Notions of translation and rotation of rigid

shapes and also some non-rigid shapes with fixed sizes, e.g. inelastic strings, are essential for

engineering. 

I don’t know if an explicit axiomatisation of Euclidean space with (non-relativistic) time already

exists. But it seems obvious that such a thing is required for Newtonian physics, and a modified

version for relativistic mechanics. 

I would not be surprised to learn that some mathematician said all this long ago. 

I think it is close to Kant’s philosophy of mathematics, but that’s another story. 

Poincaré on non-Euclidean geometry 
Added: 15 Dec 2010

After producing a first draft of this web page I discovered that Henri Poincaré had written an

interesting discussion very closely related to the ideas here. 

http://www-history.mcs.st-and.ac.uk/Extras/Poincare_non-Euclidean.html 

Non-Euclidean geometries 

by Henri Poincaré 

Henri Poincaré published La science et l’hypothese in Paris in 1902. 

An English translation entitled Science and hypothesis was published in 1905. It contains a number

of articles written by Poincaré over quite a number of years and we discuss below a version of one

of these articles, namely the one on Non-Euclidean geometries. 

The following extract is directly relevant to our discussion. 

The Fourth Geometry. (Poincaré) 
Among these explicit axioms there is one which seems to me to deserve some attention, because

when we abandon it we can construct a fourth geometry as coherent as those of Euclid,

Lobachevsky, and Riemann. To prove that we can always draw a perpendicular at a point A to a

straight line AB, we consider a straight line AC movable about the point A, and initially identical with

the fixed straight line AB. We then can make it turn about the point A until it lies in AB produced.
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Thus we assume two propositions - first, that such a rotation is possible, and then that it may

continue until the two lines lie the one in the other produced. If the first point is conceded and the

second rejected, we are led to a series of theorems even stranger than those of Lobachevsky and

Riemann, but equally free from contradiction. I shall give only one of these theorems, and I shall

not choose the least remarkable of them. A real straight line may be perpendicular to itself. 

This seems to be related to the method used to trisect an angle referenced below. 

See also: Foundations of Geometry and Induction 

By Jean Nicod 

With an introduction by Bertrand Russell 

Available on google books 

Origami Geometry 
Added 21 Aug 2013:

I have just discovered the existence of Origami Geometry which starts from a subset 

of Euclidean geometry and adds folding operations. In this geometry it is possible to 

trisect an angle: 

http://plus.maths.org/content/power-origami#angle 

http://plus.maths.org/content/power-origami-0 

It is also possible to replace this geometry with a modified version of Euclidean 

geometry without folds. 

    Euclidean Constructions and the Geometry of Origami

    Robert Geretschlager

    Mathematics Magazine

    Vol. 68, No. 5 (Dec., 1995), pp. 357-371

    Published by: Mathematical Association of America

    http://www.jstor.org/stable/2690924

See the discussion here:

    http://en.wikipedia.org/wiki/Angle_trisection

How to trisect an angle in P-geometry 
Added: 26 Feb 2015; Modified 29 Mar 2015

A separate file, added in 2015, shows how, in P geometry, it is possible to trisect an angle, using

the "Neusis construction" (apparently known to Archimedes) in which a straight-edge with two

marks a set distance apart can move in a plane, subject to constraints. See 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/trisect.html 

This includes a brief (Kantian) criticism of Poincaré’s "conventionalist" philosophy of mathematics. 

Toward robot mathematicians discovering geometry

It will be some time before we have robot mathematicians that understand Pardoe’s proof, or can

think about the axioms. 
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Even longer before a robot mathematician spontaneously re-invents it? (Or the proofs in Nelsen’s

book.) 

For some speculations about evolution of mathematical competences see 

http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#mathcog 

If learning maths requires a teacher, where did the first teachers come from? 

http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#toddler 

Why (and how) did biological evolution produce mathematicians? 

http://www.cs.bham.ac.uk/research/projects/cosy/papers#tr0802 

Kantian Philosophy of Mathematics and Young Robots (MKM08) 

http://www.cs.bham.ac.uk/research/projects/cosy/papers/#tr0807 

The Well-Designed Young Mathematician (AI Journal 2008)

TO BE CONTINUED 

Nerlich on geometry and metaphysics 
Added 22 Jul 2018

I have just stumbled across this paper: 

Graham Nerlich, 1991, How Euclidean Geometry Has Misled Metaphysics, The Journal of 

Philosophy, 

88, 4, Apr, 1991 pp. 169--189, 

http://www.jstor.org/stable/2026946

It points out that a common philosophical argument, namely that if everything were to gradually

double in linear dimensions during a period of time that would be undetectable, and therefore there

is no such thing as absolute size, breaks down if space is non-Euclidean. 

This has implications for the status of the Pardoe proof and also the status of P-geometry. I may

later add some comments about that here. 

Nelsen’s examples of wordless geometric proofs

There is a wonderful book full of wordless proofs that use only diagrams 

Roger B. Nelsen, 

Proofs without words: Exercises in Visual Thinking, 
Mathematical Association of America, Washington DC, 1993, 

Viewable on Google Books 

Or online as PDF here

It does not include a proof of the triangle sum theorem, though it does include a 

proof close to it (by Fouad Nakhli): 
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14: "The vertex angles of a star sum to 180 degrees"

From the presentation in Nelsen’s book, which presents only a star with five vertices it is not clear

how general the definition of "star" is for the purposes of the proof. The proof given uses parallel

lines, and there is nothing to indicate how it could generalise to a larger number of vertices. 

Conjecture: 
Assuming that a "star" is defined as a closed, possibly complex polygon formed by repeatedly

drawing lines then turning through an acute angle, always turning in the same direction, then it

seems that the method suggested by Pardoe, using monotonic rotation of a single line segment

about several points in the plane will prove a general form of the star theorem, provided that the

number of vertices is odd. 

Extras

(Needs a section on mathematical education, and the roles of the different proofs.) 

In an email discussion Peter Michor made some important-sounding comments on Riemannian

geometry and conformal geometry. I am unfamiliar with both and need to learn about them in order

to understand how they can help. 
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NOTES: 
I am aware that there has been a great deal of work on geometry about which I know nothing and

that it is very likely (a) that there is nothing really new in this paper, and (b) if there is anything new

it is likely to turn out to be either mistaken or not as well formulated as it should be. 

Since September 2020 I have been thinking about hatching processes in the eggs of vertebrate

species that emerge from their eggs not only with complete, functional, highly complex,

physiological structures, but also spatial cognitive competences that they use too soon after

hatching to have had time to acquire them by learning (e.g. training neural networks). The analysis

of requirements continued during 2021 and 2022 and eventually produced a complex theory about
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interactions between evolution and developmental processes in eggs. A summary of some of the

issues and my still evolving ideas can be found in this document, and others it refers to: 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/evo-devo-figs.html 

Offers of help in making progress will be accepted gratefully, especially suggestions regarding

mechanisms that could enable robots to have an intuitive understanding of space and time that

would enable some of them to rediscover Euclidean geometry, including Mary Pardoe’s proof. I

believe that could turn out to be a deep vindication of Immanuel Kant’s philosophy of mathematics.

Some related thoughts are in my online talks, including this old talk: 

http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#toddler 

Why (and how) did biological evolution produce mathematicians? 

Maintained by Aaron Sloman 

School of Computer Science 

The University of Birmingham 
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