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Introduction

I’ll state a problem, and present a solution, below. Some readers may prefer to confront the

problem without any hints regarding a solution. There is a separate web page that states this

problem without presenting a solution here: 

multicirc-problem.html http://www.cs.bham.ac.uk/research/projects/cogaff/misc/ 

multicirc-problem.html 

It makes some comments about the nature of the problem and its relationship to Immanuel Kant’s

ideas about mathematics, and mathematical limitations of AI systems based on

statistical/probabilistic reasoning, e.g. Deep Learning mechanisms. 

------------------------------------ + ------------------------------------ 
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Touching Circles

Fig 1 Two circles with centres at A and B of radius R touching as shown. 

If two circles touch at a point (i.e. each is tangent to the other at that point) 

then their centres and that point are co-linear. How do you know that’s true? 

I’ll use two touching circles, and a third circle passing through the point of contact, to formulate a

problem, then show how to solve the problem, in a surprising way, by embedding the three circles

in a larger, more complex four-circle structure, in which some relationships become "obvious",

thereby revealing the solution to the problem.[Thanks] 

Initial problem statement

Fig 2 Add a third circle with centre C, also of radius R, above the line through A and B, 

with C placed symmetrically in relation to circles A and B, and passing through the point 

of contact of circles A and B, as shown. The line AB must then be a tangent to C. Why? 

Note: The symmetry specified in Fig 2 implies that the centre of circle C is perpendicularly above

the line joining the centres of the circles A and B. The centre of each circle must be a distance R

from the intersection point, since they all have the same radius: R. 

QUESTION 

What is the area of the portion of circle C in Fig 2 that is outside the circles A and B, i.e. the area of

the darker region? 
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That looks like a difficult question to answer because of the peculiar shape of the darker region. It

is bounded by a convex curved portion at the top of circle C, and two concave portions below,

meeting at a pointed cusp, where circles A, B and C intersect. 

We’ll adopt a round-about strategy for working out the area, using a new drawing, Fig 3, below,

which has a new circle D, also of radius R, embedded in it, but without the shading in Fig 2. 

Circle D is placed below Circle C, symmetrically in relation to circles A and B, and passing through

the point of contact of circles A, B, and C as shown in Fig 3. 

Fig 3 There are several ways of thinking about this figure, derived from Fig 2. 

The original two circles A and B and the two new circles C and D interact to produce new

intersection points, in addition to the intersection point at the center where they all meet. In Fig 3

blue lines have been added joining intersection points common to pairs of circles. 

Because the construction has vertical, horizontal and diagonal symmetries, the four short blue lines

form two co-linear pairs, forming two longer blue lines intersecting at the point where the circles

intersect. 

By reasoning about features of the new figure we’ll find a simple way to calculate the shaded area

in Fig 2. (You may already find it obvious.) 

Note on creation of Fig 3 from Fig 2 

One way to create Fig 3 from Fig 2 is to produce Circle D and the lower two blue lines by

reflecting region C through the horizontal line joining A and B in Fig 2. 

Another way is to construct Circle D in Fig 3 in the same way as Circle C was constructed in 

Fig 2: i.e. draw a new circle of radius R, with center at distance R perpendicularly below, not

above, the point of contact of circles A and B, then add the lower two blue lines joining points

of intersection of new and old circles. Here the process of construction is the "mirror image" of

the process of construction of Fig 2.
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Whichever way Fig 3 is created, it now has four symmetrically located regions similar to the shaded

region in Fig 2, each with a sharp cusp pointing at the centre of the whole figure, where all four

circles meet. 

If L is the length of each blue line in Fig 3, then either of the above constructions produces four

blue lines of the same length L, each joining a pair of intersection points of two overlapping circles. 

The blue line segment of length L passing between A and D, and the blue line segment of length L

between C and B must be collinear and of equal length. (Why?) 

Likewise the two blue line segments passing between A and C, and between D and B must be

collinear and of equal length L. 

Consequently, there is a pair of blue lines, each of length 2xL, intersecting at right angles, and at

their midpoints, in the center of Fig 3, where all the circles intersect. 

Fig 2 was constructed to be symmetric about a vertical line. So reflecting it to make it symmetric

about a horizontal line, produces a new figure with both vertical and horizontal symmetry. We’ll use

this as the basis for constructing the next figure, with horizontal and vertical lines through the

centre of the figure, shown as dashed black lines in Fig 4, below. 

We then add red lines joining pairs of end points of the dashed lines. Because of the symmetries in

the construction process, the red lines form a square as shown in Fig 4. 

There are now eight circle sectors outside the red square, but inside the circles, in addition to the

eight sectors inside the red square, previously visible as areas of overlap in Fig 3, above, where

they were separated by the blue lines, also shown in Fig 4, below. 

Fig 4 Extra dashed lines, and a red square joining their endpoints, added to the previous figure. 

The new red square must also pass through the ends of the blue lines, where the circles intersect. 
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Each pair of blue half-lines of length L meeting at right angles can be taken as two sides of a

square. Completing each square with two red lines of length L is another way to produce Fig 4

above, with four axes of symmetry, two diagonal, shown in blue, as previously, and one horizontal

and one vertical axis of symmetry shown as dashed black lines in Fig 4. 

Each dashed line has two halves, where each half is a diameter of length 2xR of one of the four

circles. In Fig 4 the symmetries (reflections) imply that the four blue lines meeting at the center,

meet at right angles and that the four quadrilaterals formed by adding two red lines to each pair of

blue lines are all squares, as shown in the figure. 

Answering the question about areas 

We can now answer our original question about the shaded area in Fig 2 (replicated below on the

left of Fig 5). 

Figures 3 and 4 show that the shaded area in Fig 2 (=Fig 5) is formed by removing four regions

from circle C, where each of the four regions is bounded by a straight line and a circular arc in the

new figure on the right of Fig 5. 

But the symmetries in Fig 4 show that the remaining area after removing the four regions from a

circle is the same as the area of the square inscribed in the circle, that’s because four such

segments surround the square in each circle. 

Figures 3 and 4 show that the shaded area in Fig 2 (or Fig 5 below) in the circle C is produced by

removing from the circle four portions each equivalent to one of the four sectors surrounding the

square inscribed in the circle. 

So the "strangely shaped" shaded area must be the same as the area of the square that would be

obtained by moving two of the shaded circular sectors at the circumference of the circle, into the

central region of Circle C, as shown in Fig 5: 

      

Fig 5 Transforming the shaded region of Fig 2 (on the left) to a square by 

moving two sectors of the shaded region at a1 and b1 into the unshaded 

regions at a2 and b2. In this process regions a2 and b2 become shaded, 

and regions a1 and b1 become unshaded, leaving a square region shaded. 

So the shaded region on the left has the same area as the square on the right. 
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Merely inspecting the original figure (on the left of Fig 5 does not reveal the equality between

regions that is achieved by embedding the figure in the larger construction in Fig 4, whose

symmetries allow equalities of regions to be guaranteed without using any explicit calculation of

areas. Neither does inspection of the left side of Fig 5 reveal that the blue chord common to circles

A and C, and blue chord common to circles B and C, shown on the right side of Fig 5 meet at a

right angle. 

Question 

The derivation of Fig 3 and Fig 4 from Fig 2 can be seen as using a combination of Euclidean

Geometry (e.g. drawing circles) and Origami Geometry, using paper folds, for which axioms

are given in http://mathworld.wolfram.com/Origami.html. 

Is there is a more direct, purely Euclidean, way of showing that the two blue lines in Fig 5 must

meet at right angles, without drawing the extra circles and lines?

Now we know that the area requested in the initial problem statement, above is the same as the

area of the inscribed square, on the right of Fig 5. We can use Pythagoras’ theorem to derive the

area of the square, using Fig 6, below. 

Fig 6 A circle of radius R with an inscribed square of side L 

A square bounded by a circle of radius R through the corners of the square is made of four

right-angled triangles each of which has two sides of length R meeting at right angles, and a third

side, the hypotenuse, of length L. Given R we can compute L using Pythagoras’ theorem. 

     L² = R² + R² = 2xR² 

So the area of the square, and therefore the area of the shaded portion of Fig 2 is simply 

     L² = 2xR². 

This result is so simple that the derivation given above is probably unnecessarily complex. Please

let me know if you find a simpler derivation. 

6

http://mathworld.wolfram.com/Origami.html


Two solutions provided by Steve Vickers 
https://www.cs.bham.ac.uk/~sjv/ 
6 Sep 2018

I showed Steve Vickers the problem statement at the top of this file 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/multicirc-problem.html 

using this figure, copied from above: 

Fig 2a 

After which he thought about it then a short time later wrote to me saying (with my inserts in red): 

"Here’s my solution to your problem of the three circles. 

I was trying to think of a slick geometric argument, and failed, so in the train I just went for the

calculation. 

The area required is the circle C less two lenses. 

Half a lens is a quarter circle less half a square, so has area 

     πR2 /4 - R2 /2 

where R is the common radius of the circles." 

Note[AS]: 

At first I failed to understand because I thought Steve was referring to half the blue square

of side L in 

Figure 6, copied here as Figure 6a. 
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Fig 6a A circle of radius R with an inscribed square of side L 

Then I realised he was talking about the four smaller squares of side R. However, only

half of each smaller square is drawn in the figure. 

The blue square of side L is made up of four right-angled triangles each of which is half of

a smaller square of side R, not drawn. 

As Figure 6a shows, the big square of side L has area composed of 4 half squares of side
R. So the total area of the big square is twice the area of one small square, i.e. the area of the big

blue square is: 

     2*R2 .

Continuing Steve’s reasoning: 

"Half a lens is a quarter circle less half a square (of side R), i.e.    πR2 /4 - R2 /2 

where R is the common radius of the circles. 

(It is not hard to see that circle C, in the original figure, is the same size as the other two, and

that the intersection lenses subtend angles of 90 degrees at the centre of C.) 

Hence the required area is:    πR2  - 4(πR2 /4 - R2 /2) = 2R2  

A problem: 

What exactly justifies the claim that the two chords produced by the intersections between

Circle C and the two other circles A and B are of the right size to form the side of an

inscribed square, rather than an inscribed quadrilateral of some other shape, e.g. with

two short and two long sides meeting? 

It is obvious from the symmetry between circles A and B that the inscribed quadrilateral

must have a vertical axis of symmetry joining the top and bottom corners. But the

assumpton that the quadrilateral is a square requires a proof that the horizontal line

joining the intersection between A and C and the intersection between B and C is also an

axis of symmetry. 

In the proof based on Fig 4 the required symmetry came from the construction of circle D

adding a new axis of symmetry. Is something equivalent implicit in Fig 5a ?
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Steve continued with his second solution: 

Having calculated that, I immediately saw a geometric argument. If you slice each lens into

two, you can rearrange the four halves around the circumference of circle C and they leave a

square hole in the middle. Its area (circle less four half lenses) is the same as the answer we

are looking for. The side of the square is √2*R by Pythagoras, so the area is 2*R2 . 

This is essentially the the same as the reasoning given just below Figure 6a, above.

.... It would be interesting to know how other people do it. For myself, I couldn’t see the

geometric argument until the algebra had given me clues about what to go for. I think I realized

straight away that since the πs had gone I could look for a rearrangement with no curved

sides, and then the actual answer was easy.

Thanks 

Thanks to Manfred Kerber Manfred Kerber for drawing my attention to this problem, after learning

of it from Colin Rowat. So thanks also to Colin Rowat. 

QUESTION 

What sort of brain is capable of discovering and solving problems like this, or understanding the

reasoning used above? 

What can we learn from this about mathematical consciousness and the mechanisms it uses in

humans? 

In particular, since I am sure I am not the only person able to work out the proof by thinking about

the diagrams presented above, what does that imply about mechanisms of human visual/spatial

memory? 

What kind of robot brain would enable a robot to discover and solve a problem like this one? 

Can any existing neural net model of brain function accommodate such mathematical discovery

processes? 

This is part of the Meta-Morphogenesis project: 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-morphogenesis.html 

LOOSELY RELATED

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/mathstuff.html 

Mathematical phenomena, their evolution and development 

(Examples and discussions on this web site.) 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/impossible.html 

     (or ...../.pdf) 

Some (Possibly) New Considerations Regarding Impossible Objects 
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http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html 

Meta-Morphogenesis and Toddler Theorems: Case Studies 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html 

     (or ...../.pdf) 

The Triangle Sum Theorem 

Old and new proofs concerning the sum of interior angles of a triangle. 

(More on the hidden depths of triangle qualia.) 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/torus.html 

Using Apollonius’ construction to find the solution to a "maximum angle" problem. 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/apollonius.html 

     (or ...../.pdf) 

Reasoning About Continuous Deformation of Curves on a torus and other things. 

http://www.cs.bham.ac.uk/research/projects/cogaff/movies/ijcai-17/small-pencil-vid.webm 

A 17 month toddler discovers and solves a 3D topology problem 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/super-turing-geom.html 

     (or ...../.pdf) 

A Super-Turing (Multi) Membrane Machine for Geometers 

(Also for toddlers, and other intelligent animals) 

Maintained by Aaron Sloman 

School of Computer Science 

The University of Birmingham 
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