(Still disorganised -- to be improved later).
(DRAFT: Liable to change)
A partial index of discussion notes is in
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/AREADME.html
Online papers and presentations
Also available here:
http://www.scifuture.org/metamorphogenesis-how-a-planet-can-produce-minds-mathematics-and-music-aaron-sloman/
27 Nov 2015
No also available here
http://www.scifuture.org/metamorphogenesis-how-a-planet-can-produce-minds-mathematics-and-music-aaron-sloman/
It includes a summary of the Chemoton Theory of Tibor Ganti.
His earlier book, which I have also not read yet,
seems to be very relevant too:
The Origins of Evolutionary Innovations: A Theory of Transformative Change in
Living Systems
OUP Oxford (2011) (Oxford Biology)
An interview with Wagner in 2012 is online at https://www.youtube.com/watch?v=wyQgCMZdv6E
For more on construction kits see this (draft) paper:
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/construction-kits.html
Please send me additional items for this list.
Email: a.sloman[AT]cs.bham.ac.uk
NOTE: an online PDF version of Hayek's The Sensory Order is available Hayek (1952).
NOTE: Jack Birner has recently written a draft paper that includes more on
Hayek, Popper, and theory of mind, available on Academia:
How Artificial is Intelligence in AI? Arguments for a Non-Discriminatory Turing
test. (2014)
Added 26 Aug 2014
The idea of a system with generative power was previously well understood in
mathematics and computer science: e.g. a turing machine has generative power,
and a recursive or iterative computer program can give a turing machine
or conventional computer infinite competence in Chomsky's sense, though with
performance limitations, in exactly the same way as he claimed human minds have
infinite competence but finite performance -- mainly because of physical size
limits. It was also known much earlier that a finite rule or set of axioms can
have infinitely many consequences, a point discussed by Kant in his Critique of
Pure Reason (1781).
One of the claims of the M-M project is that natural selection is also a mechanism with infinite competence and finite performance limitations. In part that is obvious insofar as natural selection can produce human brains. But long before that happened the mechanisms driving increases in physical complexity and increases in information processing powers had the same sort of "infinite competence", which could more modestly be described as "potentially unbounded competence".
[Crick, 1954]
F. H. C. Crick, 1954/2015
The structure of the hereditary material, in
Nobel Prizewinners who changed out world
Scientific American, Topix Media Lab, New York USA
1954/2015
pp. 6--15
More generally, since reading Dawkins' The Selfish Gene soon after it was published I've learnt much from his writings, though I don't think he is very good at debating with theists!
A major concern of this book is to explain how biological evolution and its products manage to resist the implications of the second law of thermodynamics (roughly: Total entropy of an isolated system cannot decrease = amount of non-random structure cannot increase), which seems to me to lead to totally unnecessary tortuous arguments and obscure concepts. In particular, there are many mechanisms that allow changes to occur that produce new self-maintaining structure, of which the simplest is a ratchet mechanism. An energy bump can move a physical component to a new notch (or tooth) on a ratchet mechanism where it can remain in a state that resists return to a lower energy state. A multi-lever spring-loaded mechanism that holds a car boot (trunk in USA) lid in an open position, resisting the pull of gravity that would otherwise shut it is another example. For reasons pointed out by Erwin Schrödinger in What is Life? (1944), chemical structures that play important roles in reproduction also make use of such mechanisms, as do vast numbers of mechanical toys and other products of human engineering. Because he misses the ubiquity and power of this "ratchet effect" Deacon seems to get involved in totally unnecessary tortuous terminology and obscure explanatory mechanisms.
Like many who put forward theories about the evolution of mind from matter,
Deacon completely ignores the need to explain how evolution could produce
animals with the kinds of mathematical capabilities that led to the
discoveries (and proofs) reported in Euclid's elements, discoveries that must
have been made originally before there were mathematics teachers, and which
could not have used modern axiomatic logic-based reasoning mechanisms developed
only since the 19th Century. The need to explain ancient geometrical and
topological capabilities has also been ignored by most researchers in AI,
Robotics, and Neuroscience, as far as I know. See:
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/bio-math-phil.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/kant-maths.html
This book, like much of what Dennett has written is mostly consistent with my own emphasis on the need to understand "the space of possible minds" if we wish to understand human minds. Simply trying to study human minds while ignoring all others is as misguided as trying to do chemistry by studying one complex molecule (e.g. haemoglobin) and ignoring all others.
Dennett and I have also written partly similar things about how to think about discussions of "free will" in the light of mechanisms produced by Biological evolution in different sorts of species: compare Dennett (1984) and Aaron Sloman (1992)
David Deutsch, 1997 The Fabric of Reality,
Allen Lane and Penguin BooksDavid Deutsch, 2011 The Beginning of Infinity: Explanations That Transform the World,
Allen Lane and Penguin Books, London,
In particular, much of what Merlin Donald has written about evolution of consciousness is relevant to this project, though it is not clear that he appreciates the importance of virtual machinery, as outlined in Sloman(2010), Sloman (2013, revised)), and other documents on this web site.
However, some of the "laws of form", which as far as I know they did not discuss, are concerned with forms of information processing and how possibilities are enabled and constrained by (a) the physical mechanisms in which the information processing machinery (even virtual machinery) has to be implemented and (b) the environments with which organisms need to interact in order to develop, learn, live their lives and reproduce -- some of which include other information processors: friends, foes, food, playmates, and things to observe or be observed by.
Kauffman's 1995 book is very approachable:
At home in the universe: The search for laws of complexity
http://www.amazon.com/At-Home-Universe-Self-Organization-Complexity/dp/0195111303
John McCarthy and Patrick J. Hayes, 1969,
"Some philosophical problems from the standpoint of AI",
Machine Intelligence 4,
Eds. B. Meltzer and D. Michie,
pp. 463--502,
Edinburgh University Press,
http://www-formal.stanford.edu/jmc/mcchay69/mcchay69.html
The ideas presented in this book seem to overlap with several major themes in the Meta-Morphogenesis project, including stressing the importance of trying to understand complex biological phenomena (e.g. various kinds of consciousness) in terms of their evolutionary origins and the layers of mechanism produced by biological evolution. However, there is no mention of the aspects of mathematical consciousness identified by Immanuel Kant(1781). A Searle-type rejection of computational explanations is based on what seems to be a failure to understand the importance of virtual machines and Virtual Machine Functionalism (VMF) as explained in Sloman (2013++).
Also used (with my permission) as the basis for Chapter 2 of
These ideas are closely related to those of Daniel Dennett in
Elbow Room: the varieties of free will worth wanting
(1984).
Our main difference is that I don't regard what Dennett calls "the intentional
stance" as a requirement for a science of mind, since reference to mental states
and processes is not merely a sort of useful explanatory fiction: those states
and processes, and qualia exist and their existence
can be explained in terms of actual entities, states, processes and causal
interactions in the operation of types virtual machinery produced by biological
evolution rather than human engineering. There is no presumption that the
operations of such a virtual machine are always, or even usually rational, as
required by the "intentional stance" (if I have understood Dennett correctly).
However, in discussions, Dennett sometimes also seems to hold that view. (There is more on Virtual Machine Functionalism in Sloman (2013, revised)).
Questions from the audience were also recorded. Near the end of the video (at approximately 1 hour 26 minutes from the start) I had a chance to suggest that what he was trying to say about human consciousness and its role in mathematical discovery might be expressed (perhaps more clearly) in terms of the kinds of meta-cognitive functions required in animals, children, and future robots, as well as mathematicians. The common process is first gaining expertise in some domain (or micro-domain!) of experience and then using meta-cognitive mechanisms that inspect the knowledge acquired so far and discover the possibility of reorganising the information gained into a deeper, more powerful, generative form. The best known example of this sort of transition is the transition in human language development to use of a generative syntax. (At one point I mistakenly referred to a "generative theorem" when I meant "generative theory".)
I suggested that something similar must have happened when early humans made the
discoveries, without the aid of mathematics teachers, that provided the basis of
Euclidean geometry (later systematised through social processes). I have
proposed that there are many examples, that have mostly gone unnoticed, of young
children discovering what I call "Toddler theorems", some of them probably also
discovered by other animals, as discussed in
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/toddler-theorems.html
This is also related to the ideas about "Representational Re-description" in the work of Annette Karmiloff-Smith, presented in her 1992 book.
Penrose seemed to agree with the suggestion, and to accept that it might also explain why the basis of some mathematical competences are biologically valuable, which he had previously said he was doubtful about. I don't know whether he realised he was agreeing to a proposal that instead of thinking of consciousness as part of the explanation of human mathematics, we can switch to thinking of the biological requirement for mathematical thinking as part of the explanation of important kinds of human (and animal) consciousness.
This is also connected with the need to extend J.J.Gibson's theory of perception of affordances discussed in http://www.cs.bham.ac.uk/research/projects/cogaff/talks/#gibson
Maintained by
Aaron Sloman
School of Computer Science
The University of Birmingham
Email: a.sloman[AT]cs.bham.ac.uk