
The iSoft affair:
Open Letter to my MP about government IT procurements
(Originally sent August 2006)
Aaron Sloman
School of Computer Science, University of Birmingham
http://www.cs.bham.ac.uk/~axs

NOTE ON FORMATTING:
Adjust length of lines by adjusting the width of your browser window.

A PDF version of this document (generated by html2ps and ps2pdf) is available here, though the html version is the
’master’ version.

CONTENTS

SEPARATE DOCUMENTS REFERENCED
(including comments on this letter)
ABSTRACT
Updates
Open Letter to my MP: Lynne Jones
Why large IT development projects are problematic
The mathematics of searching for a design

Richard Feynman wrote:
Getting requirements right from the start is impossible
Are problems unique to IT projects?

Physical constraints
Implications for Government policy
What can be done?
Some suggested prerequisites: requirements for openness
A precedent for this proposal: The internet
How the internet grew
Implications for government policy (continued)
Are some projects exceptions?
Concluding Comment
NOTE: Related comment

SEPARATE DOCUMENTS REFERENCED
(including comments on this letter)
Anyone wishing his/her message or name associated with a message to be deleted should let me know immediately.
My original message soliciting comments stated that comments would be posted here.

1

http://www.cs.bham.ac.uk/
http://www.bham.ac.uk/
http://www.cs.bham.ac.uk/~axs
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/isoft-government-projects.pdf

Pointers to the NHS project and news about it,
including a disturbing report from Computer Weekly suggesting that the National Audit Office
has been involved in a ’whitewash’, and a letter to the Guardian suggesting that alongside the
NHS disaster is another disaster in government schemes for IT in schools.
Comments from members of South Birmingham Linux Users Group
(several in local companies)
Comments from academics on a list for professors and heads of CS departments
including some signatories to the open letter criticising management of the NHS IT project in
April 2006, and suggesting

that the Health Select Committee help resolve uncertainty about NPfIT by asking the
government to commission an independent technical assessment with all possible speed.

Comments from others.

ABSTRACT

The nature of large, multi-million pound long term (multi-year) IT contracts (and many non-IT contracts) with fixed
requirements and budgets, including for example the UK Government project to provide a single IT system for the
National Health Service in England, is that they are almost all doomed to fail, no matter how they are managed,
monitored, audited, etc. I explain why, in terms of

a) the intrinsic complexity of the tasks, which makes accurate advance budgeting impossible, and specification of
satisfactory design solutions in the original contracts impossible,

b) the complexity and unpredictability of the environment with which such systems must interact, which makes it
impossible to find out all the important requirements in advance, especially in long term projects where
external developments -- including changes in technology and culture -- will change the constraints and the
opportunities and where the end users include many different kinds of individuals in many different
organisations.

On the basis of this analysis, an incremental, experimental strategy is recommended for large scale IT development
projects, in which the nation can learn what is worth doing and what is possible, by building, using and comparing
partial systems developed in parallel. A collection of contractual requirements can then ensure that partial results
achieved through public funding are available for future publicly-funded developments whether or not the original
contractors remain involved.

A crucial condition for obtaining requirement specifications and design recommendations over such a long time time
scale is involvement of end-users of all subsystems, preferably including some with a deep understanding of
programming and other relevant technology. Asking senior managers in large end-user organisations (e.g. senior
NHS managers) to specify or approve requirements at the beginning of a five or ten year project is a recipe for
disaster, since they are in no position to understand or predict detailed requirements of a large and complex
organisation with many sub-organisatins over a long period of time, and for various reasons often fail to understand
all the detailed requirements already known to staff in their organisations. (Comparisons can be made with
management decisions in the Challenger Shuttle disaster, where middle management staff told senior staff what they
wanted to hear rather than the truth).

The only long term (multi-year) IT projects that can meet their specifications are those whose tasks are essentially
routine because they involve little innovation, and even those will fail because at the end the requirements specified
will be out of date.

There may also be issues of bad management, dishonesty, ignorance or wishful thinking that contribute to failures of
large projects. But removing all those sources of poor performance will not overcome the intrinsic problems:
non-routine, innovative, long term monolithic projects are doomed by their very nature to fail and need to be replaced
by a totally different development process which is far more experimental, incremental, and flexible, allowing for
large and unknown gaps in our knowledge at any time, which can only be identified and filled through further
experiment, allowing for new relevant information and design ideas to come from totally unexpected sources.

2

http://en.wikipedia.org/wiki/NPfIT
http://www.fotuva.org/feynman/challenger-appendix.html

An open society needs to engage in open problem-solving.
(Responding to an earlier draft Colin Tully commented that this proposal could be summarised in words echoing the
writings of Karl Popper.)

Updates

Updated 14 Mar 2007
Added table of contents. Minor additional reformatting.
Updated 10 Oct 2006
A significant new development. The signatories to open letters calling for an independent inquiry into the NPfIT
Programme have set up a web site here.
Updated 24 Sep 2006
Added a note on different uses of the word ’requirements’.
Updated 23 Sep 2006
In response to comments from Dennis de Champeaux, attempted to clarify the scope of the claims being made, e.g.
more clearly excluding certain sorts of commercial IT projects, where existing systems and tools are applicable to a
well-understood problem. He bears no responsibility for any remaining errors or omissions and has not checked the
revisions.
Also added new comments from John Knapman here.
Updated 19 Sep 2006:
Expanded the References document to refer to the ’Down at the EPR (Electronic Patient Records) Arms’ web site,
which includes pointers to the 2003 invitations to tender, and a useful presentation by Sean Brennan in December
2005. Sean Brennan commented in this web site here.
Updated: 5 Sep 2006:
Added a further comment on differences between software and physical designs.
Updated: 31 Aug 2006: added abstract above.
Update: 29 Aug 2006 (Fixed some typos and minor errors.)

Open Letter to my MP Lynne Jones
(Liable to be updated. Comments welcome: they will be added to this
web site.)
Dear Lynne

This letter is prompted by yet another botched high cost government procurement exercise: the iSoft
affair, though the points made here are more general.

According to the BBC:

The firm has been blamed for delays to the 10 year multibillion upgrade of the NHS computer system.

It is supplying software to health trusts in the Midlands and north of England which will operate a new national
electronic patients register.

The National Audit Office warned in June that the huge project faced "significant challenges" if it was to be
delivered on time and budget.

Additional press comment can be found here.

In view of your apparent interest in IT issues (I’ve read your sensible comments on the identity card
proposals and seen this approving press comment on your criticisms), I thought I’d pass on some
reflections on government IT procurement procedures.

3

http://editthis.info/nhs_it_info/
http://www.lynnejones.org.uk/
http://news.bbc.co.uk/1/hi/business/5284388.stm
http://comment.silicon.com/0,39024711,39157161,00.htm

Why large IT development projects are problematic

Although triggered by the iSoft affair, this document is actually a comment on all large IT
development projects that involve designing large and complex novel systems over many years
with contracts fixed in advance -- especially government-funded contracts like the UK NPfIT
project.

This is unlike many commercial projects where the customer is a single organisation with strong
management, making it possible for requirements and constraints for a solution to be developed
using existing technology, in a fairly short time. My comments do not apply to such projects,
which tailor and deploy existing systems in a new environment, using tools designed for that task.
Multi-million pound long term government projects involving multiple types of users in multiple
organisations are different in ways I shall try to explain, using the development of the internet as
an example of how such projects might work.

Despite being a philosopher in a computer science department I am an experienced programmer,
and I have experience of managing a project development team, including a team at Sussex
university which produced Poplog, a system that won a ’Smart’ award for exceeding $5M sales
around 1991. So I have some experience that is relevant. In addition I offer an analysis of the
unavoidable causes of the problems of predicting delivery times and budgets, and make some
recommendations. The analysis is also relevant to some high technology physical construction
projects, though similar solutions may not always be possible.

The root of the problem is whether software development can follow a predictable path. While
managing software developments, I noticed that there was an interesting relationship between the
size of a task and the reliability of the best estimates programmers could make as to how long the
task would take. They nearly always underestimated, but if it was a task that they estimated
would take up to a few days they were usually fairly accurate.

If they estimated that it would take longer, their estimates turned out to be incorrect by a factor
that grew rapidly with the estimated time. So if they thought a task would take several weeks, I
learnt to expect results in a few months, and if they thought it could take several months I learnt
not to expect it to be finished in under a year, and sometimes it could take much longer. Why was
this?

The mathematics of searching for a design

There is a fairly simple, partly mathematical, explanation for what seems to be something like
exponential growth of the prediction error as time estimates increased.

The explanation has three main components.
1. The more complex the task, the less likely it is to resemble in detail previous tasks. So there

will be many new design decisions to be taken, as opposed to simply applying previous
designs with minor modifications (like writing control software for a slightly modified
version of an old hardware device, or specifying parameters to tailor a large existing tool for
a class of applications to a new application in that class).

2. The more complex the design task, the harder it is to tell at the time when early design
decisions are taken whether they will prove successful, or whether they will lead to dead
ends (e.g. because of unforseen interactions between different decisions) requiring
back-tracking and new options to be explored.

4

http://en.wikipedia.org/wiki/NPfIT
http://en.wikipedia.org/wiki/NPfIT
http://www.cs.bham.ac.uk/research/projects/poplog/poplog.info.html

3. Finally a point that probably requires study by social psychology. Programmers who are
asked to estimate how long some novel development task will take are under pressure from sales,
marketing or management staff to produce an answer when in fact they ought to say that they cannot
answer. So they try to guess, or worse, give way to pressure from their superiors (like some of the
people involved in the Challenger shuttle disaster, as reported by Feynman[*]). If they are
forced to guess, they inevitably use relatively superficial features of the problem specification to guess
on the basis of other tasks they have performed. The more novelty there is in the solution to the new
problem, the larger the number of new design decisions that will have to be taken and that, as we’ll
see, can dramatically increase the error in the time estimate. Moreover, the more novelty is required in
the solution to the problem, the less likely it is that programmers can detect that novelty in advance.

[*] Richard Feynman wrote:
Finally, if we are to replace standard numerical probability usage with engineering judgement, why do we find
such an enormous disparity between the management estimate and the judgement of the engineers? It would
appear that, for whatever purpose, be it for internal or external consumption, the management of NASA
exaggerates the reliability of its product, to the point of fantasy.
http://www.fotuva.org/feynman/challenger-appendix.html

[I suspect that this is an example of a general phenomenon. A.S.]

How search spaces grow
The first point, about the number of design decisions, has mathematical implications. The more
complex and novel the design task, the more it will require searching in a complex space of
possibilities for a solution, instead of directly applying known techniques and solution patterns. It
is a simple mathematical fact that if you have to take N decisions and at each stage you have at
least D options, then you have a space of size at least DN (i.e. D raised to the power N) options.
So if you have only 2 options at each point and there are 3 decisions to be taken then there are 23

= 8 options. If there are 20 decisions to be taken then there are 220 = 1,048,576, i.e. over a
million options. But the numbers grow ever faster as N grows.

If there are 50 binary decisions to be taken the space grows to 250 = 1125899906842624 options.

If there are 10 alternatives at each point and 50 decisions to be taken it explodes to

 100

options. If each decision takes only a second and everyone works 40 hours a week, 52 weeks a
year, the number of person years required for exhaustive search is (1050)/(52x48x60x60) i.e.
approximately (after rounding):

 13354700854700854700854700854700854700854701

So a team of 10,000 people working on the problem and doing an exhaustive search could take
(1050)/(52x48x60x60x10000) i.e. about

 1112891737891737891737891737891737891738 years

Now a large and complex IT project lasting several years can require hundreds, or even thousands
of decisions to be taken, adding hundreds or thousands more digits to the number of person years
for an exhaustive search for an optimal solution. In fact if there are several hundred independent
design decisions, the number of possible combinations can exceed the estimated number of
electrons in the universe.

5

http://www.fotuva.org/feynman/challenger-appendix.html

Of course, I am exaggerating the point for effect, since exhaustive searches are not required: there
are many ways of reducing search, some based on the structure of the problem (e.g. symmetries), some
based on decomposing the problem into many independently solvable sub-problems, some based on
previous experience (or luck) that can lead engineers quickly to good solutions to some of the
sub-problems, and some based on the fact that dead ends are often detectable at an early stage.
Moreover abandoning the requirement for optimal solutions and accepting workable solutions
(’satisficing’ instead of ’optimising’) can enormously reduce the task, by removing the need for
exhaustive search.

But the remaining search space may still be very large and very deceptive -- a subject of much
theoretical research in Artificial Intelligence in the last few decades. The biggest difference I found
between really experienced programmers and less experienced programmers who were equally
intelligent, was that the experienced ones were able to produce good solutions with much less
searching, though even they produced imperfect first drafts, because of the enormous difficulty of
anticipating all the complexities of a non-trivial (or more precisely, non-routine) novel design. This
suggests that even automated design mechanisms using advanced AI techniques will not entirely
remove the problems, except in cases where the machine is solving problems of a type with which it
(or its design team) is already familiar from past experience. (As seems to have happened with great
success in the design of computer components containing very large numbers of elements.)

Consequences for tendering
I have used 50 decisions as an example. However, a programming task requiring only 50
decisions is very small compared with the multi-million pound projects governments (and some big
companies) like to commit our money to, which I expect (though I am not in a position to check this)
include thousands of design decisions at various levels of abstraction and various degrees of novelty.
So governments unwittingly give companies a completely impossible tendering task. Rather than lose
business, companies do their best, and then governments enter into horrendously wasteful contracts. Is
this avoidable?

Partly, but there’s another fact about the problem that needs to be noted.

Getting requirements right from the start is impossible

The situation is made worse by the fact that often it is impossible even to get the requirements for
new complex system right, let alone the design, because people cannot tell what they want until
they have had time to try out various alternatives, in order to educate themselves about what the
possibilities are, and what the tradeoffs are in choosing some possibilities rather than others.
Also, if the project is going to take a long time, changes in other things may lead to changes in
the requirements, including for example new technologies that make unforeseen kinds of
interaction possible, or changes in security threats that make unforeseen kinds of protection
desirable.

No amount of prior consultation among experts, potential users, focus groups etc. can overcome
the problem of specifying requirements, if nobody has had prior experience of working with a
system of the sort being planned, which by definition is always true of very large software
projects of the sort discussed here.

After writing the above I found the following news report on the iSoft affair which seems to illustrate the
problem of identifying requirements in advance:

6

The company agreed to satisfy early stages of the NHS contracts with existing software. It would
simultaneously develop its Lorenzo software to satisfy their later stages.

However, it found that the needs of GPs, hospitals and health professionals differed enormously. It was
unable to agree with Accenture and CSC, the two IT groups managing the deployment, on whether the
software it was providing was meeting the needs of those working in the NHS.
Timesonline, 26 Aug 2006

Certainly the computer experts cannot predict in complete detail what their systems will do,
because usually the systems interact with humans, with the physical environment, with complex
machinery and with social and economic processes in the environment (e.g. changes in power or
salary costs, or in safety or privacy legislation), and computer experts are not usually experts on
all of those parts of the total system. Nor is anyone else.

My own experience suggests that the best systems depend on a small subset of very bright users
who also learn to develop software. They are then in a much better position to explore solutions
that are both implementable and relevant to users, though of course there may never be unique
solutions that work for all the users of a certain category if there are many of them. An illustration
of what can be achieved by the combination of software engineering expertise and first hand
experience of being a user is the outstanding OCAD map-making system, used world-wide,
originally designed by a software engineer, Hans Steinegger, who was also a map-maker and an
orienteer who used the maps. Of course this is not a networked, multi-site application.

Others working on the project have also been users. This product has been developed since about 1992. But it
was not a product for which anyone tried to provide requirements specifications for the long term in 1992. It
evolved in response to the developing needs of users and a changing environment, including changing rules for
orienteering maps produced by the International Orienteering Federation. I expect there are many other
examples of successful products designed and developed incrementally over a long period of time in close
interaction with users, but without a fixed budget, fixed time scale, or fixed requirements specification. Even
some operating systems are like that. An outstanding, very much larger, example is described below.

A biologist will appreciate that the chances of coming up with a good solution in a reasonable
time to a very large new software problem are analogous to the chances of a sequence of genetic
mutations, even deliberately chosen mutations, leading rapidly from a microbe to a monkey, or
even from a cat to a dog.

Are problems unique to IT projects?

Software designers construct new virtual machines that run on computers. This is in many ways
different from building physical machines, because the space of virtual machines is not subject to
as many constraints as physical machines that cannot escape the laws of geometry, physics,
chemistry, etc. Adding a new connection between two arbitrary components in a virtual machine
is normally always possible, whereas in a physical machine there may be no possible route
available for such a connection because of the layout of other physical components.

So there is not so much scope for novelty in physical design. So building a large new bridge, or
even a large new aeroplane, does not normally involve such a large search space because the fact
that there are necessarily so many physical similarities between different bridges with the same
sort of function and between different aeroplanes with the same sort of function will normally
strongly constrain the search space for a new design.

7

http://business.timesonline.co.uk/article/0,,9075-2328827,00.html
http://www.ocad.com/en/index.htm
http://www.ocad.com/en/portrait.htm
http://www.orienteering.org/rules.htm
http://www.orienteering.org/rules.htm
http://www.orienteering.org/

Physical constraints
Moreover, in many cases, as a design for a physical system grows, it will, because of the
geometry and physics, and the total space limits for the entity being designed, constrain further
additions more and more strongly, whereas in general as a software design grows, the possibility of
making further additions increases rapidly, although it may be temporarily limited by amounts of
physical memory in available machines, limits of cpu speed, etc. However those computational
constraints tend to recede rapidly over time, unlike physical limits constraining new bridges, buildings,
vehicles, machines, etc.

Even so, jumping to an entirely new physical design, or a physical system requiring a very
different kind of software control system (as happened years ago with with the Comet airliner, then
with Concorde, and later with Airbus) can lead to huge search spaces, and very little chance of finding
optimal solutions without a lot of search (and usually accidents, possibly including deaths). The failure
to take account of effects of human bodies and brains in specifying requirements for the
Millenium bridge is another example. Probably many delays in development of new physical
weapon systems are another example (e.g. give "laser weapon" to google). I don’t know whether the
Wembley stadium delay is due to simple management incompetence or is another case of not
understanding the implications of venturing into unfamiliar design territory.

It might be thought that the fact that features of physical systems can vary continuously will
always make the search space of possible designs infinitely large. However it is often useful to chunk a
continuous range of values into a relatively small discrete set of (possibly overlapping) intervals, and
searching only in the set of intervals. Moreover, continuous variation sometimes allows ’hill-climbing’
mechanisms to speed up search (repeatedly perturb everything a little and follow the direction of
maximum improvement). However this can lead to a low grade local optimum requiring further
search.

Anyhow it should not be thought that any software design task will require a larger search space
than every physical design task, as there are special cases of both that are exceptions.

Implications for Government policy

There is a simple conclusion that follows from all this. Governments should never invest in huge
long-term IT projects by entering into monolithic long term contracts with suppliers to provide
the required systems, (a) because it is impossible for any software company to make reasonable
estimates of costs or delivery times, and (b) because nobody can work out in advance what the
detailed requirements are -- even if many people deceive themselves into thinking they can, e.g.
because politicians who do not understand the intricacies of software engineering think that
design requirements follow from high level political goals. (How many members of the UK
government cabinet, or members of the civil service involved in detailed contractual negotiations,
have had careers in engineering design, especially software design, especially design of powerful
user interfaces required to meet multiple, evolving sets of requirements? I call that ’very soft
ware’.)

A corollary is that any political party that puts into its manifesto promises to deliver highly desirable results by
introducing complex new mechanisms, policies, procedures, laws, etc. shows itself to be incompetent at
understanding complex systems and how they change.

8

http://www.arup.com/MillenniumBridge/challenge/
http://www.arup.com/MillenniumBridge/challenge/

What can be done?

If there is a national problem that seems to require the development of a large and complex
system, then governments must find a way to grow our understanding of the problem as we grow
the solution, and thereby grow our understanding of all the detailed sub-problems, in small steps
with a lot of parallel exploration of options.

There should never be a presumption that the companies that start on the projects will be the ones
who finish them: contracts with such presumptions make it easy for contractors to go on milking
tax-payers for a long time.

This means that all large IT contracts must allow for partially completed tasks to be taken over by
new contractors with new ideas, possibly in parallel with and in competition with others. It should
also be possible for adventurous companies to learn about the partial solutions and remaining
problems and develop new solutions independently of any government funding, though they may
then bid for funding for further development work.

All contracts must allow for regular ’check-point’ (e.g. at least annual) reviews on the basis of
which the project may be aborted or revised in various ways, including the possibility of
assigning further contracts to new competing developers. Moreover, in order to make this
feasible, it should be a contractual requirement that all the partial results must be made fully
public wherever possible, so as to allow transfer of partially completed projects, and so as to
allow new companies to gain expertise and produce potential extensions initially at their own
expense, with the possibility of bidding for contracts for future extensions on the basis of
demonstrable achievements. Legal and financial expertise may come to be far less important in
contract negotiations and progress monitoring than technical and scientific expertise.

Some suggested prerequisites: requirements for openness

To make all that possible, there probably has to be a requirement for all solutions developed by
the review check-points to be fully open:

1. so that alternative solutions can be compared properly,

2. so that others can both interface to the solutions and also, if they wish to try modified
versions using new ideas, can implement variations of current versions, instead of having to
waste time reinventing from scratch details already produced using tax-payers’ money.

I.e. the outcome of such public ventures must never simply be proprietary code. (Even though
that means that other rival economies can learn from our mistakes and our solutions. If they do,
they may produce better final solutions than we can, and we may benefit by buying their
solutions. It’s a two way process).

If some contractors insist that optimal solutions require proprietary code that they have previously
developed at their own expense (so-called ’prior art’) then there are at least the following options:

They can offer their proprietary code for sale to the government, including full
documentation of file formats, protocols and programming interfaces, so that it can
thereafter be made open source and freely available for other developers working on the
system, who then have the option of using it, or improving it, or studying it as a basis for
producing better systems.

9

They can undertake to make the prior proprietary code available in closed source form to all
others working on the project at a fixed price per licence, agreed in advance.

There may be other solutions to the problem of allowing partial solutions to be further developed
by new contractors. In all cases, any contractor paid from public funds to produce a working
system that includes any proprietary code should, in the public interest, be required to make all
the file and communication formats, used by their proprietary code, and all the programming
interfaces, fully public, so that rival developers can attempt to produce alternative components
with the same functionality as the proprietary ones, and so that if the original contractor goes out
of business or withdraws its services the nation is not left with unmaintainable systems, and also
so that a publicly funded project never permanently requires the use of a particular piece of
proprietary software till the end of its life, which could stifle some developments, and waste huge
amounts of money over the years.

Companies that refuse to agree to these conditions are too risky to do business with in very large
and expensive projects.

Projects managed in this way may look messy and complex, and the companies involved may
find that they have to get used to smaller, shorter, contracts than they have been accustomed to.
However, the good ones will benefit from the openness, causing technology to advance faster
because of the sharing of ideas and results, and newcomers with powerful ideas will have
opportunities to show how they can do better than the established giants: something we have seen
happen often in the world of hardware and software development (especially software). Such a
project can grow organically over years, with requirements and designs being reshaped as more is
learnt about what is useful, what works, and what the tradeoffs are and the knowledge gained at
public expense is shared among many with the potential to make good use of it, instead of being
hoarded for use by companies who may lack some of the people who are best able to follow up
the developments.

Is this beginning to sound familiar? You already know of a spectacular example, whose
development had many of these features.

A precedent for this proposal: The internet

Suppose some government or international authority had decided 35 years ago that we need an
international communication system allowing anyone on earth to find available information about
anything, and allowing anyone with a product or service to sell it to anyone willing to buy. And
suppose they then invited tenders from large IT companies (which existed in 1971) to produce
such a system. In that case we might still be waiting for it; or there might be a partial
implementation with many flaws being tested somewhere after hugely overrunning its timetable
and its budget. The project might still be in the grip of one of the companies that existed 35 years
ago, but has since failed. Tax-payers’ funding might have prolonged its life, but without much
public benefit.

That’s not how the internet actually started. There were some US government-funded contracts to
produce experimental computer networks, with limited functionality, notably US funding for
what was then called ARPANET, later supplemented by funding in other countries to do
collaborative experiments with the US, but not funding to do the whole of what we now know as
the Internet. Nobody at that time could have produced a requirements specification listing all the
current uses of the internet. (See also the wikipedia summary.)

10

http://www2.dei.isep.ipp.pt/docs/arpa.html
http://en.wikipedia.org/wiki/ARPANET

That’s partly because I doubt that anyone could have anticipated all the technological changes
that now support that functionality. I remember sitting at a teletype at Sussex university in 1973 or
1974, connected by a telephone link to a computer in London, and from there to a transmitter in
Norway, signalling via satellite to a receiver in California, connected to Xerox research lab in Palo
Alto, where they had a big experimental computer (MAXC) on which I was running test programs,
and typing email messages to people at Xerox. However, in those days each time I pressed a key it
could take a few seconds for the echo to come back. Transmitting images or sounds in real time was
just out of the question.

In fact the main original objective was to allow expensive computing resources to be shared for
running programs. So it was assumed that data would be transferred for a computing task, and the
results would be transferred back, so that most of the computing power was to be used for executing
programs on one machine. What was not predicted and was not built into the initial specification was
the requirement that the network should meet another major need: human to human communication.
That soon proved far more important than the original goal of distributing computing power, a
requirement whose importance diminished as both the power and the power to cost ratio of computers
grew rapidly. (However the original goal was recently revived as one part of the e-Science
initiative.) The importance of networks for human interaction was not understood by many who
would be using that functionality a few years later. I recall a letter from someone in industry to
Computer Weekly arguing that 300 bits per second would suffice for terminal connections
because nobody can read more than 10 characters per second.

How the internet grew

Instead of being a monolithic long-delayed project wastefully consuming many billions of tax
dollars, the network grew through successive parallel and often unplanned developments of a
collection of key ideas and many partial experiments using techniques that became publicly
available for others to try out and extend. There were thousands of small, medium and large
experiments of different sorts, often done in parallel and often done independently except for the
requirement to conform to publicly available standards that had been agreed at the time (many of
which later changed in the light of experience), where many of the experimental ideas worked for
a while and then were replaced by better ones, a process that is still going on.

The internet did not all start with Berners-Lee: key steps were made much earlier, though his
contribution was catalytic for many subsequent developments. Others had grasped the enormity
of what was going on a decade earlier, as shown by the brilliant slogan of Sun Microsystems:
’The network is the computer’ around 1984. (Some features of that vision are only now being
realised as more and more of what individuals do happens on remote machines, not the machine
they are currently using, e.g. reading and writing email messages stored on a remote host, filling
in tax forms, submitting research council grant proposals, doing banking transactions, running
educational software, running spreadsheets on google, exploring digitised maps, making travel
reservations, etc.: I would be surprised if the government’s IT plans are based on understanding
of that trend, making PCs redundant for many users in the near future, because ’thin clients’ will
suffice.)

For about 20 years, there were many different experiments and a whole sequence of different
resulting inventions that produced what was essentially the internet without the world wide web.
Some of us were by then regularly using email, posting to electronic bulletin boards, transferring
files using ftp, and using remote login to run programs, even interactive programs, on big remote
computers. Some of those developments might have happened faster if the near monolithic power
of IBM in the commercial world had not prevented deployment of much better alternatives to

11

http://www.rcuk.ac.uk/escience/
http://www.rcuk.ac.uk/escience/
http://www.w3.org/People/Berners-Lee/

IBM PCs (e.g. products from Sun, Apple, Apollo and other smaller companies using non-Intel
based cpus, and non-Microsoft software). It’s not easy to tell whether there would have been the same
drop in costs because of growth of numbers and the existence of clone makers. (Sun Microsystems
from the start allowed others to build hardware to run their operating systems, unlike Apple, for
instance.)

Then Berners-Lee produced a collection of platform-independent ideas that made it much easier
for most people to use those facilities to share information and that was a catalyst for a host of
extremely rapid new developments that nobody could have planned and whose solutions no software
company on earth could have delivered.

Some of the history of the ten years from 1990 can be found here. It mentions several standards
that were developed in that period but there were lots more formal and informal standards connected
with the growth of the internet. Of course, there are many more histories of computing and the internet
available online, emphasising different things.

I have given the development of the internet as an example because everyone reading this has already
encountered it, and knows something about its profound importance. As indicated in one of the comments on
this document there are other examples.

Implications for government policy (continued)

If all this is correct, Governments have to stop thinking they can make promises about what will
happen or that by taking decisions they can make good things happen on a large scale. Instead
they have to understand that at best they are like experimental breeders, trying many things out,
learning, and using things that work well as a basis for further developments.

I think the arguments about designing complex software systems apply to designing almost
anything complex at government level, e.g. a transport system, a fiscal system, a primary school
educational policy, etc., for the same reasons: the future is always too complex and too unknown
for good decisions to be taken except on a small scale and as a result of parallel experiments
where outcomes of alternatives are compared over time. Wishful thinking about desirable
objectives is no substitute for that cumulative growth of understanding of problems and
opportunities.

Are some projects exceptions?

Some people may feel that military projects, a major source of income to high technology
companies and their shareholders, must be an exception because the processes cannot be made
public for fear of actual or potential enemies getting the benefit of the results.

A cynical response is if that happens then it may be faster to learn from what those enemies
achieve than to continue as originally planned. An alternative answer is to adopt the above
recommendations but instead of having complete openness as specified above, have openness
within a collection of companies and research and development organisations that have passed
some test for trustability. After all, if any commercial organisation is trusted with military
technology secrets there have to be tests for their suitability, and in that case the same tests can be
used for a pool of potential co-developers and competitors.

A snag is that having a closed collection of allowed developers increases the risk of collusion
between the companies in order to cheat governments, but that risk has to be dealt with through
monitoring processes. Also if the list is not closed permanently and other companies can be

12

http://www.xmission.com/~comphope/history/19902000.htm

added, the resulting competition could defeat the colluders.

A bigger risk is that the best solutions are sometimes available only in companies or organisations
that for whatever reason are not in the trusted set (e.g. because the requirements for being trusted with
military developments impose too many restrictions on activities that are crucial for other kinds of
innovation and deployment -- e.g. university teaching and research).

Concluding Comment

I am not recommending a free market and non-interventionist government, as some may think.

On the contrary, all this is consistent with government-inspired and government-funded parallel
experiments with a government-enforced policy of openness regarding outcomes produced using
funding from tax-payers, so that learning is maximised and benefits are shared. This may produce
experiments that will not happen through market forces in a capitalist system.

If all this is correct, then probably the huge monolithic project based on a single contract should
never have happened, and the government should re-structure the project instead of wasting more
money. I don’t know enough about that project to know exactly what should happen, but I suspect
the best way forward is to fund several small scale experiments in parallel, constantly comparing
results and after each major review building on the best results so far, with all partial results being
in the public domain, for the reasons given above.

It’s a bit like managing a complex ecosystem with a provisional set of high level goals for
change, where the goals themselves may have to change over time. Sometimes the ecosystem
manages its managers.

From a report in the Guardian in March 2007, it appears that moves in this direction are now
starting. Look at this

NOTE: Related comment

For a related document, see my response to a UK government consultation on personal internet
security.

This work is licensed under a Creative Commons Attribution 2.5 License.
If you use or comment on my ideas please include a URL if possible, so that readers can see the original (or the latest
version thereof).

Maintained by Aaron Sloman
School of Computer Science
The University of Birmingham

13

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/security.html
http://creativecommons.org/licenses/by/2.5/
http://www.cs.bham.ac.uk/~axs/
http://www.cs.bham.ac.uk/
http://www.bham.ac.uk/

	
	The iSoft affair: Open Letter to my MP about government IT procurements (Originally sent August 2006) Aaron Sloman School of Computer Science, University of Birmingham http://www.cs.bham.ac.uk/~axs
	CONTENTS
	SEPARATE DOCUMENTS REFERENCED (including comments on this letter)
	Updates
	Open Letter to my MP Lynne Jones (Liable to be updated. Comments welcome: they will be added to this web site.)
	Why large IT development projects are problematic
	The mathematics of searching for a design
	Getting requirements right from the start is impossible
	Are problems unique to IT projects?
	Implications for Government policy
	What can be done?
	Some suggested prerequisites: requirements for openness
	A precedent for this proposal: The internet
	How the internet grew
	Implications for government policy (continued)
	Are some projects exceptions?
	Concluding Comment

