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Abstract. Automated geometry theorem provers start with logic-based
formulations of Euclid’s axioms and postulates, and often assume the
Cartesian coordinate representation of geometry. That is not how the an-
cient mathematicians started: for them the axioms and postulates were
deep discoveries, not arbitrary postulates. What sorts of reasoning ma-
chinery could the ancient mathematicians, and other intelligent species
(e.g. crows and squirrels), have used for spatial reasoning? “Diagrams
in minds” perhaps? How did natural selection produce such machinery?
Which components are shared with other intelligent species? Does the
machinery exist at or before birth in humans, and if not how and when
does it develop? How are such machines implemented in brains? Could
they be implemented as virtual machines on digital computers, and if
not what human engineered “Super Turing” mechanisms could replicate
what brains do? How are they specified in a genome? Turing’s work on
chemical morphogenesis, published shortly before he died suggested to
me that he might have been considering such questions. Could deep new
answers vindicate Kant’s claim in 1781 that at least some mathemati-
cal knowledge is non-empirical, synthetic and necessary? Discussions of
mechanisms of consciousness should include ancient mathematical dia-
grammatic reasoning, and related aspects of everyday intelligence, usu-
ally ignored in AI, neuroscience and most discussions of consciousness.
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1 Introduction

Some theories of consciousness make use of mathematics, e.g. mathematical mod-
els of neural processes, but no theory that I have encountered explains how brains
enable great mathematical discoveries to be made, e.g. the deep discoveries in
geometry and topology, made many centuries ago, some of which, in Euclid’s El-
ements, are still in regular use world-wide.1 AI geometry theorem provers since
the 1960s start with logical formulations of Euclid’s axioms, whereas for ancient

1 A 16 page paper introducing aspects of the Turing-inspired Meta-Morphogenesis
project http://goo.gl/9eN8Ks submitted to the 2018 Diagrams conference, was ac-
cepted as a short paper. The original version is at http://goo.gl/39DRCT



mathematicians the axioms and postulates were not arbitrarily chosen starting
points but deep discoveries, selected as “axioms” because other geometrical facts
could be derived from them, even if originally discovered independently. More-
over, such mathematical discoveries concern necessary truths and impossibilities,
which are not discoverable (or even representable) by statistics-based learning
mechanisms. Necessity is not extreme probability. However, it is important not
to confuse the necessity/impossibility in the content of mathematical discoveries
with any claim that human mathematical reasoning is infallible. Many mathe-
maticians have made mistakes that were later corrected by mathematical reason-
ing, sometimes triggered by empirically discovered counter examples. (However,
the forms of consciousness involved in those discoveries seem to have been ig-
nored by philosophers and scientists studying consciousness in recent decades.)

Not all geometrical reasoning is based on Euclid’s axioms. Standard proofs
that angles of a triangle sum to 180◦use Euclid’s parallel postulate, but around
1970 Mary Pardoe discovered, while teaching school mathematics, that it can be
proved without using parallel lines, by considering an arrow lying on one side of
the triangle then rotated in turn through each (internal) angle of the triangle.
It must end up on the initial side pointing in the opposite direction, after turns
totalling half a rotation, as shown in Fig. 12 What brain mechanisms allow such
discoveries to be made and understood? As far as I know, nothing in current
neuroscience or in current AI explains such discovery capabilities.

Fig. 1. Mary Pardoe’s proof of the triangle sum theorem. Her pupils understood
and remembered this more easily than the standard proof, using parallel lines. See
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html

Many important geometrical discoveries can be made without starting from
Euclid’s axioms. For example, Origami techniques allow forms of reasoning that
go beyond what is provable in Euclidean geometry. Extensions of Euclidean
geometry include the Neusis construction, known to ancient mathematicians,
but not included in Euclid’s Elements. It involves use of a movable straight edge
with two marks, and allows arbitrary angles to be trisected easily.3 The discovery
of non-euclidean geometries was another important example, famously used by
Einstein in his General Theory of Relativity.

Topological reasoning seems to be even more widespread, as discussed in
[1]. Young children who have never studied logic or algebra can tell that it is

2 See http://www.cs.bham.ac.uk/research/projects/cogaff/misc/triangle-sum.html
3 http://www.cs.bham.ac.uk/research/projects/cogaff/misc/trisect.html



impossible for two linked rings made of solid, impermeable matter to become
unlinked without at least one of them changing shape (e.g. ceasing to be a ring).
This can be seen in their responses to clever stage magicians who make it look
as if the impossible has been achieved. What brain mechanisms enable us to see
that such things are impossible?

Some researchers seem to believe that given appropriate training, deep learn-
ing mechanisms could replicate all ancient geometrical discoveries. But statistics-
based mechanisms and can only discover that certain generalisations have high,
or low, probabilities. They cannot discover necessities and impossibilities, as
Kant[2] showed when he pointed out gaps in Hume’s classification of types of
knowledge. Neural nets cannot even express the idea of something being impos-
sible, or necessarily the case. Kant argued that there are important types of
non-empirical mathematical knowledge about necessary truths and impossibili-
ties, for which statistical evidence can never suffice.4 What enables humans to
understand these concepts, if neural nets cannot express necessity or impossi-
bility? Is there a spatial configuration in which a planar triangle and a circle
have have exactly seven boundary points in common? You can do mental exper-
iments with imagined triangles and circles to answer this, unlike AI systems that
use Hilbert’s axiomatisation of geometry, and cartesian coordinates, to answer
such questions, unknown to ancient mathematicians. Cartesian coordinates were
not discovered until centuries later. Can any current AI system replicate that
discovery?

2 Why Is Non-empirical Knowledge of Non-contingent
Truths Important?

The kind of mathematical knowledge under discussion, is not just a philosoph-
ical oddity. It is of great practical importance to intelligent agents. Knowledge
of impossibility makes it possible to rule things out without testing. Likewise
knowing that having one feature of an object or process necessarily implies an-
other allows complex decisions to be taken and used with confidence, including
choice of routes in a cluttered environment, and many others.

Not only humans benefit from this kind of reasoning. Evolution has used
many mathematical discoveries in selecting both physical or chemical structures
and control mechanisms for those structures. Negative feedback control is used
in many “homeostatic” control mechanisms from the very simplest organisms to
control of blood pressure, temperature, chemical balances etc., in complex or-
ganisms. This required evolved construction kits with mathematical properties.5

A particular example of non-spatial mathematical intelligence in young hu-
mans is the ability to create subsuming generative grammars after many patterns
of verbal communication have been found to work in the environment. This has

4 However, modal operators, e.g. “necessary”, “impossible” should be analysed using
“possible configuration” not “possible world” semantics.

5 Some speculations about evolved construction kits are online here:
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/construction-kits.html



the great benefit of allowing novel linguistic structures to be created, or to be
understood, without first learning them all from examples.

In language development, this process is followed by a further level of compe-
tence in adjusting the mechanisms to cope with exceptions to the grammatical
rules. That is a rather messy kind of mathematical process. Unlike other forms
of mathematical reasoning, the ability to derive new linguistic utterances to
communicate novel thoughts is not guaranteed to be successful because of its
dependence on the competences and vagaries of other humans.

3 Meta-level Competences

A creative engineer requires additional layers of competence: meta-meta- knowl-
edge about how to search spaces of mathematical structures to find new tech-
niques when faced with novel problems. I don’t claim that evolution produces
built-in knowledge of all the kinds of mathematical knowledge used by humans:
some are products of individual discovery or cooperative cultural evolution, in-
cluding full understanding of cardinal numbers, which requires understanding
that one-one correspondence is a transitive and symmetric relation, which Pi-
aget’s work suggests does not develop in young humans for five or six years.[3]

I suspect various types of mathematical development are special cases of stag-
gered gene expression: over time, brains develop new layers of meta-competence
that evolved later than others, and which provide new forms of learning/discovery
applicable to products of layers that evolved earlier and develop earlier in in-
dividuals, as suggested crudely in Fig 2, allowing greater developmental leaps
across generations, based on a “Meta-configured” genome. (This is very different
from fashionable deep learning mechanisms.)

Individual multi-layered development seems to depend on the features of
genome expression in intelligent animals summarised (roughly) in Fig 2,6 Re-
cently developed genetic abstractions from previously evolved competences can
be instantiated in novel ways in each generation, illustrated crudely in the figure,
allowing greater developmental variety in products of a shared genome, includ-
ing greater leaps across generations than could be achieved by a fixed learning
mechanism provided by the genome. The history of human uses of various types
of diagram seems to provide examples of this mechanism.

Current AI, including logic-based reasoning mechanisms (argued by Mc-
Carthy and Hayes to be adequate for intelligent systems [5]) and the fashionable
“brain-inspired” mechanisms based on statistical learning, e.g. those surveyed
by Schmidhuber in [6], cannot match the spatial insight-ful reasoning capabili-
ties produced by these mechanisms. Current neural models deal with networks
of nodes with numerical attributes and linked numerical relationships, whereas
for the kinds of mathematical discovery I am discussing it is not necessary to
collect statistical data from samples. E.g. mathematicians often reason using spa-
tial manipulations of represented spatial structures: “diagrams in the mind”[7].

6 goo.gl/3N1yQV gives more detail (still expanding).



Fig. 2. Staggered “waves of expression” of the Meta-Configured Genome: lower layers
begin development earliest via genetic influences crudely depicted on the left. Processes
further to the right and higher up occur later, building on records of earlier processes
that help to instantiate more recently evolved genetic abstractions that are expressed
later in development, including new motive-generators. (Based on [4].)

Perception and use of spatial affordances, by humans and other animals acting
in natural environments, require abilities to perceive and reason about spatial
structures and spatial relationships, including topological relationships such as
containment and overlap, and partial orderings (nearer, wider, more curved, etc),
rather than precise measures [8].

4 Back to Ancient Mathematical Reasoning/Discovery

By examining examples of the spatial (diagrammatic) reasoning involved in an-
cient mathematical discoveries we may hope to gain some insights into what is
missing from current forms of computation. An example that has a number of
interesting features, including very easy comprehension by non-mathematicians
is looking at a configuration of cup and spoon on a saucer and thinking about
how to get the saucer and spoon onto the cup, using only one hand.

Similar points could be made about various stages of nest construction by
birds, e.g. weaver birds,7 that require abilities to perceive structures, select items
to manipulate, moving them to new required locations, and then taking actions
to enable the new items to be part of a growing stable structure.

Conjecture: Information processing mechanisms required for practical pur-
poses in structured environments evolved in many species, mainly using reason-

7 Illustrated by the BBC here https://www.youtube.com/watch?v=6svAIgEnFvw



ing about topological structures and relationships and partial orderings (e.g. of
distance, size, speed, angle, etc.) rather than metrical information. In humans,
the mechanisms were used in new ways, in conjunction with new meta-cognitive
and meta-meta-cognitive mechanisms, leading eventually to explicit mathemat-
ical reasoning, discussion, and teaching, about topological and geometrical as-
pects of structures and processes in the environment.

As organisms evolve to cope with more complex structures and processes in
the environment, they use increasingly complex abilities to create and manipulate
new internal information structures, representing parts and relationships of ex-
ternal structures and processes, and supporting reasoning about consequences of
possible actions, as hypothesised by Craik in 1943 [9]. Later, newly evolved meta-
cognitive mechanisms, for reflecting on and comparing successes and failures of
such reasoning processes, allowed new, mathematical, aspects of the structures
and relationships to be discovered, thought about, and, in some cultures, com-
municated and used in explicit teaching and discussion. Much later, via social
and cultural processes for which I suspect historical records are not available, the
materials came to be organised systematically, recorded in various external “doc-
uments”, such as Euclid’s Elements and taught in specialised sub-communities.

If, as I suspect, understanding of cardinality depends on such mechanisms,
then psychological evidence purporting to show innate understanding of car-
dinality, shows nothing of the kind: only that there are some simpler pattern
recognition abilities that give observers the illusion that young children or other
animals understand cardinality.

5 Towards a Super-Turing Geometric Reasoner

There are deep, largely unnoticed, aspects of the ways human and non-human
animal minds work that are closely connected with the mechanisms underlying
important non-numerical mathematical discoveries by ancient mathematicians,
i.e. topological and geometrical discoveries. For ancient mathematicians the ax-
ioms and postulates in Euclidean geometry were not arbitrarily chosen start-
ing formulae from which conclusions were derived: the axioms were all major
discoveries, using mechanisms still available to us. And they did not use the
arithmetisation of Geometry based on Cartesian coordinates.

What mechanisms allow you to discover what happens to angles of a trian-
gle as it gets stretched by motion of one vertex relative to the other two. E.g.
what will happen to planar triangle ABC, such as the triangle depicted in Fig.3,
if vertex A continually moves further from the opposite side, BC, along a line
through A that intersects BC, as illustrated in Fig. 3. Even non-mathematicians
can work out that as A moves further from BC the angle BAC will steadily de-
crease, without knowing exact lengths of lines and sizes of angles. Despite being
so obvious to non-mathematicians, this answer has surprising mathematical so-
phistication. It involves both the continuum of locations of the angle A, and the
continuum of sizes for the angle A, and a systematic relationship between the
two continua: as the distance increases the angle size decreases. It is not obvious



Fig. 3. How does the angle at A change as A moves further from BC, along a straight
line that passes between B and C, e.g. moving to A′? What brain mechanisms allow
reasoning about such questions?

exactly how the angle size and the length are related, though it is obvious that as
one increases the other decreases, unless the line along which A moves intersects
the line through B and C outside the segment BC.8 What mechanisms would
enable a future robot to find the relationships in Fig. 3 as obvious as we do?
Brains seem to do much that is not explained by current neural net mechanisms
nor by current AI models of spatial reasoning using logic or logic plus algebra,
trigonometry etc. How might the mechanisms differ from a Turing machine,with
its linearly ordered tape, divided into locations each of which can contain exactly
one symbol?

6 Conclusion

A challenging research problem is to find a way to specify a type of machine that
could replace a Turing machine’s tape, tape-head, and symbol table, with some-
thing like a membrane on which marks can be made and which can be stretched,
rotated, translated, and its new position compared with the old position, to
see what has changed, with at least two layers of meta-cognition detecting and
reasoning about what does and does not, and what can and cannot change. Hu-
mans thinking about the triangle problem seem to construct imagined states on
which very much more complex operations can be performed, including two or

8 The case where A moves along a line that intersects BC outside the triangle is
discussed in another document. See
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/apollonius.html.
Surprising additional complexities are discussed in that and
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/deform-triangle.html



more co-ordinated continuous changes, and two or more levels of meta-cognition
operating in parallel: e.g. one detecting and summarising changes, and another
reasoning about the nature of those changes – e.g. discovering necessities and
impossibilities. Is there a minimal set of basic mechanisms (perhaps chemical
mechanisms in brains?) from which all the forms of spatial reasoning required
for an intelligent animal can be derived? 9

The Meta-Configured genome hypothesis sketched above implies that intel-
ligent animals do not have a uniform innate learning mechanism that operates
from birth on increasingly complex and varied data sets. Different mechanisms,
with different evolutionary origins modified to fit the individual’s environment,
come into operation at different stages of development over an extended time
period. Compare language development and Karmilof-Smith’s ideas about “Rep-
resentational Re-description”[10].

I suspect Alan Turing may have been working on a problem of this sort when
he wrote “The chemical basis of morphogenesis” [11], now his most cited paper.
What would he have done if he had not died two years after it was published?
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