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History of this paper (Installed 3 Oct 2017) 
This is a "side-shoot" of an online video and web page originally used for an invited workshop talk

at IJCAI August 2017 in Melbourne, presented remotely: 

Why can’t (current) machines reason like Euclid or even human toddlers? 

(And many other intelligent animals) 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/ijcai-2017-cog.html 

I’ll call that "The workshop web page" below. 

After I mentioned the triangle-stretching example in a CS theory group seminar in Birmingham

on 29th September 2017, Auke Booij pointed out the answer to a question I had left open. That

prompted me to move the discussion of the example into this new document. This paper is 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/deform-triangle.html 
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http://www.cs.bham.ac.uk/research/projects/cogaff/misc/deform-triangle.pdf 

The PDF version may be slightly out of date, from time to time. 

On 3rd Nov 2017 Diana Sofronieva heard me talk about this in seminar in Leeds University.
The next day, at a conference in Leeds, she gave me a surprisingly complex answer to one of the

questions I raised below, using the Apollonius construction in Euclidean geometry. 

Her answer is presented and discussed in a separate document created on on 17 Nov 2017. 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/apollonius.html 

----------------------------------------------------------------------------------------------- 

An incomplete draft paper on requirements for understanding cardinal and ordinal numbers
that generally go unnoticed by researchers on mathematical cognition and its neural underpinnings

can be found here: 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/cardinal-ordinal-numbers.html 

A closely related side-shoot of all these discussions is a speculation about missing

mechanisms in AI, Neuroscience, and psychology: 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/super-turing-geom.html 

A Super-Turing Membrane Machine for Geometers 

(Also for toddlers, and other intelligent animals) 

These are all part of the Turing-inspired Meta-Morphogenesis project

Updated: 
22 Nov 2017 Changed heading and related details. 25 Nov 2017 clarified ’history’. Added contents. 

21 Nov 2017 Part moved out to new paper on Apollonius construction. 

8 Nov 2017 Updated (below); 9-17 Nov 2017; 
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Background 

(Partly repeating the IJCAI workshop web page, 
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/ijcai-2017-cog.html.)

Updated 27 Nov 2017 

Why talk about deforming triangles? Because I think there are deep, largely unnoticed, aspects of

the ways human and non-human animal minds work that are closely connected with the

mechanisms underlying important non-numerical mathematical discoveries by ancient

mathematicians, i.e. topological and geometrical discoveries (which I’ve argued elsewhere are at

the root of competences relating to cardinal and ordinal numbers, as opposed to spuriously similar

pattern recognition capabilities). 

It is not always remembered that for ancient mathematicians the axioms and postulates in

Euclidean geometry were not arbitrarily chosen starting formulae from which conclusions could be

derived using pure logic, in modern axiom-based mathematics: the ancient axioms were all 

discoveries. 

There were also important discoveries that were not included: for example the possibility of

extending Euclidean geometry with the "neusis" construction, which was known to Archimedes and

which made it easy to trisect an arbitrary triangle -- impossible in Euclidean geometry. For more

information see: http://www.cs.bham.ac.uk/research/projects/cogaff/misc/trisect.html 

I suggest that the mechanisms involved in thinking about what happens to angles of a triangle as it

gets stretched by motion of one vertex relative to the other two were also available to ancient

mathematicians, whether they thought of this example (explained below) or not. 

Other things ancient mechanisms are good at include topological categorisations, e.g. X and Y are 

connected/disconnected, X is contained in or overlaps with or outside Y, and more complex cases. 

Those mechanisms, or closely related mechanisms, are also needed for intelligent perception and

action in richly structured, extremely varied spatial environments, especially 

I suspect that all the core mechanisms for making and using such discoveries were available in

brains that had evolved in environments in which how things look, and what you can see, change

as you move, or as objects move. In some animals those mechanisms were extended to enable

consideration of structures and processes that are not actually occurring, but which might occur,
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whether caused by the perceiver or not. (I have previously labelled these, and other examples of

perceived possibilities for change in the environment, "proto-affordances", extending Gibson’s

theory of affordances Gibson(1979).) 

The reflective ability to notice uses of such abilities, think about them, discuss them, and

understand why they work, probably evolved only in humans, though the perception and use of

proto-affordances and other sorts of affordances seems to occur in many intelligent species. 

Many researchers, especially AI vision and robotics researchers, and some psychologists and

neuroscientists assume that spatial percepts necessarily require use of numerical measures, e.g.

of distance, width, height, speed of motion, angles, areas, etc., or at least probability distributions

over numerical measures. 

However, biological sensors are mostly not good at precise numerical measurement, though some

of them are good at detecting changes, or direction of change (increasing/decreasing) in physical

relationships across space or time -- often using partial orderings, e.g. A is further than B, A is

further than B by more than C is further than D, and many more, without being able to tell whether

A is further from C than from D. 

Such competences with partial orderings allow use of descriptions of structures and processes that

are accurate but not precise, and which therefore, when they are available, suffice for control of

actions without complex numerical computations of probabilities, now widely used in AI, including

robotics. (For some simple examples explaining the power of partial orderings and topological

relationships, see Sloman(2007-14).) 

I suspect that at some (remote?) future date we’ll understand how those non-metrical spatial

detection mechanisms can contribute to rich and extremely useful structural and ordering

information used by our remote ancestors and some other intelligent species interacting with

complex structures and processes, including other agents -- offspring, mates, friends, live food, and

foes, and perceived structures and materials used for many purposes, including feeding, building

nests, and in some cases making tools. 

I suggest that the current concern of scientists and engineers with numerical measures and 

numerical control mechanisms, combined with use of probabilities to compensate for limitations of

accuracy and completeness in available measures in studying and modelling various aspects of

natural intelligence, is more a product of the prejudices currently built into our scientific and

engineering educational practices than requirements for working mechanisms -- natural or artificial. 

Biological optical sensors in birds and mammals (e.g. as described in 

https://en.wikipedia.org/wiki/Visual_system#Retina) seem to have far more complex functionality

built in to their low level design than any human-engineered video camera, even those with the

complexity of "Three-CCD" cameras, summarised in 

https://en.wikipedia.org/wiki/Three-CCD_camera. 

Perhaps in future we’ll learn more by finding out what all that complexity is actually used for than by

building models based on assumptions about what it must be used for! 
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Some of the hypothesised topological and geometrical reasoning abilities are analysed below, and

will be discussed further in a separate document exploring the idea of a Super Turing machine,

mentioned briefly below. Many more examples of mathematical impossibilities and necessities are

presented in 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/impossible.html 

Later I’ll discuss the problem of specifying mechanisms that can perform these tasks. Since the

relationships found involve extreme modalities necessity and impossibility, they cannot be inferred

from empirical evidence: they do not involve probabilities, for example, as explained in my DPhil

Thesis Sloman 1962, defending claims in Kant(1781). 

Note: 
I think related topological mechanisms were originally required for (gradual) development and

use of concepts of cardinal and ordinal number, both based on implicit understanding of

properties of 1-1 correlations, long before anyone thought of modern axioms for natural

numbers. Some relevant ideas are in chapter 8 of Sloman 1978, and Sloman(2016) (in the

Section: "What about arithmetic?" Pages 10-13), expanded in this draft document (Nov 2017): 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/cardinal-ordinal-numbers.html 

If those conjectures are correct then all claims that cardinal or ordinal number concepts are

innate are false. What seems to be innate (and shared across several species) is merely a

superficially related template-based pattern recognition ability that for small numbers produces

what look like answers to questions about cardinality. [Links/references to be added.]

This is one of several online discussions of human (and in some cases non-human) abilities to

perceive impossibilities and necessary connections that seem to have evolved in the mechanisms

required for dealing with spatial affordances, and later formed the basis of number competences.

Those abilities were used in ancient mathematical discoveries long before the development of

modern logic and formal systems. Some aspects of those ancient mathematical competences also

seem to characterise abilities of pre-verbal toddlers and other animals, illustrated in videos linked

from my IJCAI 2017 AGA Workshop web page: 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/ijcai-2017-cog.html. 

The currently dominant strategy in AI, psychology, and neuroscience for explaining natural

intelligence postulates use of statistical evidence to build up re-usable information about

probabilities. In contrast, for many years I have been collecting examples suggesting that that is a

completely misguided theory of natural intelligence, and a poor basis for robot intelligence. (My

work is partly inspired by ideas in Kant(1781).) 

Some of the evidence comes from close observations (preferably video recordings) of pre-verbal

humans and other animals and from analysis of requirements for intelligent decision making and

the kinds of information (e.g. about topological structures and partial orderings rather than

numerical measurements) readily available in the environment, discussed in Sloman(2007-14) and

related online documents. 

For example, you can safely walk through a doorway by aiming for a location between the left and

right doorposts and well clear of both, without having either precise measurements of the locations

and distances of the doorposts or probability distributions over numerical values. 

5

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/impossible.html
http://www.cs.bham.ac.uk/research/projects/cogaff/crp/#chap8
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/cardinal-ordinal-numbers.html
http://www.cs.bham.ac.uk/research/projects/cogaff/misc/ijcai-2017-cog.html


Many examples can be found in spontaneous, often surprising, reactions to objects or opportunities

in the environment, in young children and other animals. Many of these are not repeatable, but that

does nothing to diminish their relevance to deep science in which the primary advances come from

discovery and explanations of what is possible, rather than discovery of laws or regularities, as

explained in Chapter 2 of Sloman 1978. (This contradicts Popper’s widely, but mistakenly,

accepted claim that all scientific statements should be empirically falsifiable.) 

For several decades I have been collecting examples of ancient mathematical discoveries in

geometry and topology, and some previously apparently unnoticed discoveries (like the triangle

stretch discovery below) that seem to be linked to achievements of pre-verbal humans and other

intelligent animals, e.g. when using perceived spatial structures and relationships to select and

control actions. How such abilities, not specified in the genome, can depend on and be related to

more general and abstract features of the genome is the topic of another document: The

meta-configured genome (based on work with Jackie Chappell): 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/meta-configured-genome.html 

In contrast, most published research on human and non-human mathematical intelligence focuses

on numerical competences, ignoring the possibility that those competences were built on older,

more fundamental abilities to reason about spatial or spatio-temporal structures and relationships,

including features of structural changes from which ideas about one-to-one correspondences

(bijections) emerged, later followed by spatial reasoning abilities used in discoveries and theories

concerned with numbers of various types. Centuries (or millennia) later, those were supplemented

by use of much more formal mechanisms known to and understood by professional

mathematicians, but irrelevant to most of those who regularly use number concepts. 

The developments I am trying to understand must have occurred long before the advent of modern

formal methods in mathematics. Numerical competences are not the main topic here, however.

This paper is about older, deeper competences. 

Any theory of intelligence or design for intelligent machines that does not take account of these

ancient spatial reasoning components of natural intelligence will fail to explain commonplace

abilities of humans and other intelligent animals and their computer models will fail to replicate

important aspects of natural intelligence, including failing to model processes of mathematical

discovery, even if they produce results that look superficially similar, achieved by very different

mechanisms. 

What needs to be explained?

There have been many attempts to understand brain mechanisms supporting mathematical

abilities. Unfortunately, most start from an inadequate characterisation of what needs to be

explained (a topic for another time). In a talk at the International Conference on Cognitive Modelling

(ICCM) in July 2017, I decided to use a new problem that, as far as I know, does not figure in

mathematical text books, namely 

"If ABC is a triangle of any shape, and the vertex A is moved in a straight line away from the

opposite side BC, what happens to the size of the angle at A?"
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Figure 1: Stretch-internal 

Possible forms of reasoning are discussed in the main presentation. 

The example is also discussed in the video for the IJCAI talk: [VIDEO LINK] 

Everyone I talked to (adult academics of various sorts) seemed to find it obvious that the angle at A

must steadily decrease in size as A moves further from the opposite side -- no matter how far it has

moved and how small the angle already is. 

I use this question and the general form of the responses obtained, to motivate questions about the

nature of the perception and reasoning mechanisms that allow such a discovery to be made and to

be seen to express a necessary truth (provided that the line on which A moves passes between B

and C, i.e. crosses the opposite side of the triangle). That raised interesting questions about the

cognitive machinery required to grasp such a necessary truth, including questions discussed by

Immanuel Kant in Kant(1781). 

Insofar as people notice that the angle necessarily grows smaller as the distance from the opposite

side increases, and do so without having done any measurements or physical experiments or

collected statistics (except perhaps implicitly and unwittingly over sub-ranges of shape change),

they cannot be reporting an empirical generalisation. 

There’s an interesting discussion by Francesco Beccuti of what happens in the limit, in 

Beccuti(2018). 

Instead they are somehow conscious that there is a necessary connection between the change of

length and the change of angle. Consciousness of such necessities is a characteristic feature of

mathematical discoveries (as Kant pointed out). So any theory of consciousness that does not

account for mathematical consciousness (including consciousness of mathematical necessities and

impossibilities) must be inadequate as a general theory of consciousness: which applies to almost

everything I have read about consciousness, except in Kant’s work. (Mathematical theories of
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consciousness are easily found online, but the examples I have encountered do not explain, or

even describe, mathematical consciousness!) 

What if the vertex moves on a line outside the triangle?

Returning to the observation that size of an angle at a vertex shrinks as the vertex moves further

from the opposite side, things are not so clear if A moves further away from the opposite side along

a straight line that does not pass between B and C, instead intersecting the base BC outside the

triangle, as in Figure 2 below. 

During a presentation to the Theoretical Computer Science group in my department on 29th Sep

2017 based on the material in the workshop web page, I mentioned these examples of reasoning

about consequences of triangle deformations, including the conjecture that motion of a vertex away

from the opposite side always caused the angle at the vertex to shrink in size. This was challenged

by Auke Booij. 

During a subsequent email discussion he pointed out my omission: I had not thought about some

of the details, presented below, using diagrams depicting shape-changing triangles. Later it turned

out that this problem had extraordinary mathematical complexity linked to a problem and a solution

discovered by ancient mathematicians -- about which I first learnt from Diana Sofronieva after she

heard me talk about this topic in Leeds University in November 2017. 

This suggests to me that requirements for perception and reasoning about spatial structures in the

physical environment led to evolution of increasingly sophisticated topological and geometrical

(mostly non-numerical) forms of information processing in biological organisms eventually

producing forms of perception and reasoning that used abilities to consider unperceived, but

possible, spatial changes with structural features that increased in sophistication over many

generations long before the knowledge acquired was organised by ancient mathematicians. 

By the time the first humans existed the mechanisms that had evolved to meet a wide collection of

practical perception and reasoning problems, including those presented in Sloman(2007-14),

already had the power also to support hypothetical, theoretical reasoning about surprisingly

complex changing structures and processes. I suggest that these laid the foundations for later

discoveries presented in Euclid’s Elements. 

Why the stretched triangle example? 

The example of reasoning about a stretched triangle is worth considering as one among many

windows into unobvious sophistication in those animal competences. The initial observation about

the effect of stretching a triangle seems so obvious and simple that it is (at least to me) surprising

how quickly it leads into a sophisticated problem in Geometry, pointed out to me by Diana

Sofronieva (henceforth Diana). 

I’ll start with the observations of Auke Booij who had previously helped me notice some unobvious

complexities in other geometric problems). A separate document presents the analysis provided by

Diana, who identified a connection with the problem of Apollonius, which I had not previously

encountered. 
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The deforming triangle example

To illustrate the sort of discovery process enabled by the postulated (but still under-specified)

"membrane" system, I gave examples related to Figure 1 above (repeated below for convenience). 

What will happen if you start with a triangle, like the blue triangle ABC in the figure, and move the

top vertex (corner), A, away from the opposite side (the base of the triangle) along a line going

through the base. (Other traversal lines are considered below.) The red triangle in the figure, with a

new vertex A’, illustrates one of the possible new locations to which the triangle could be moved.

Try to formulate an answer that is independent of the size, shape, and orientation of the triangle. 

You probably find it obvious that the angle at the moving vertex will continually decrease in size as

the vertex moves further from the base, the side opposite it in the triangle. How can one know that? 

Most people asked the question about the figure on the left seem to find the answer obvious,

saying that as the vertex A moves further from BC the angle at A must get smaller. It is not at all

clear what form of reasoning they are using -- nor what their brains are doing. 

Two mathematical continua 

The people I have asked don’t seem to be aware that in answering the question they have

identified two mathematical continua (the continuum of locations of the moving vertex on the line

through the triangle, and the continuum of angle sizes for the vertex as it moves), and a systematic

(monotonic) relationship between them. 

Each continuum is involved in the motion of the vertex, and each can be attended to separately.

Everyone I have asked also finds it obvious that the two are rigidly connected: changes in the

location cannot occur without changes in the angle size. This is not an explicit mapping between

individual vertex locations and individual angle sizes, rather it is a rigid relationship between

directions of change in the two: each direction of motion of the vertex is necessarily connected with

one of the directions of change of size of the angle at the vertex. What sort of reasoning

mechanism can make such a discovery so quickly will be discussed later in connection with a

proposed new non-digital computing machine. 

I have so far not asked anyone whether returning the vertex to a previous location will necessarily

restore the previous angle size. Anyone with knowledge of Euclidean geometry will find the answer

obvious because the initial and restored triangles must be congruent, insofar as restoring the

(relative) location will produce sides of the same lengths as the initial triangle. But that background

knowledge is not required for answering the question about direction of change. 

In general, however, two processes may have necessarily linked directions of change without

having necessarily linked locations in the space of possibilities. (E.g. there could be "hysteresis" i.e.

dependence of state on previous history. I’ll leave that possibility for discussion another time.) 

Moving on a different line 

The situation changes if the direction of motion of the vertex changes so that it moves on a line that

does not intersect the base of the triangle (the side opposite the moving vertex)? This case was

discussed briefly in the workshop web page, leading up to the idea of the membrane mechanism.

Below I’ll discuss alternative lines through A along which A can move, and ask what difference the

line makes to how the size of the angle at A varies. This apparently simple question uncovered

(with help from Auke, then Diana) a surprising "bag of worms", extending requirements for the
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Super-Turing machine, for which ideas are under development here: 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/super-turing-geom.html 
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Figure 1: Stretch-internal (repeated) 

I claim, but will not argue here, that all of these examples are related to mechanisms that form part

of everyday perception of spatial structures, processes, and affordances in humans (including

infants) and other intelligent animals Sloman(2007-14). In particular, changes of relative size or

angle as you move towards or away from something, or move one thing relative to another, can

produce perceived changes in visible relationships between edges, corners and other features of

objects. I argue in Sloman(2007-14) that this plays a far more important role in spatial intelligence

than has been generally noticed, and if implemented in robots could simplify some of their control

problems. 

Evolution also produced mechanisms for envisaging or imagining such changes when they are not

actually occurring, without doing any numerical calculations of values of point coordinates or angles

or areas, as a typical current robot or other AI system would have to do. (Future AI systems may be

more like humans as a result of this work.) 

An example is looking at two blobs of colour and deciding whether one is larger than another by 

visualising one sliding over the other rather than doing measurements and calculations. 

There have been attempts to give machines related competences, e.g. machines that have

mechanisms for painting an image into a spatial data-structure. Those may be fairly close to some

of the cases considered below, but without the meta-cognitive abilities to notice and reason about

consequences of such spatial operations. 

Traversal in a visual field can arise in various contexts, including monitoring of an object moved by

the perceiver, perception of an object that is moving independently of the perceiver, monitoring of

effects of changes of view direction (e.g. saccades), consideration of a possible, visually imagined

motion, or motion of the perceiver. 
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In some cases the object seen to be moving is fixated, so that everything else moves in the visual

field. In other cases an object moves without being fixated, so that it moves across the visual field.

We’ll ignore those differences here, though they are important for a complete account of visual

cognition. 

These features of spatial perception are important in previously unnoticed ways, for a complete

account of mathematical cognition. Consideration of unnoticed details in many different geometrical

examples can help to draw attention to unnoticed features of much broader classes of perception,

reasoning, planning, and control of actions. 

What if the triangle is tilted away from you?

A quite different question arises if the triangle is drawn on a vertical plane surface, facing you, with

the base of the triangle, BC, horizontal, e.g. close to the bottom edge of the surface, perhaps

resting on a table or on the floor in front of you, and is tilted backwards. Assume that the base of

the triangle remains close to the fixed horizontal edge of the plane, while the rest of the plane

moves away from you, while remaining in the plane as it tilts. (Easier to demonstrate than to

describe.) 

Questions: 
What will happen to the appearance of the triangle in that case? In particular, what will happen to

the perceived angle at vertex A as the tilting causes A to move away from you? Will the angle in

your visual field increase in size, remain the same, or decrease? How do you know? 

NOTE on Pylyshyn’s FINST Visual Indexing Theory

The mechanism required here may be related to "The FINST Visual Indexing Theory" of Zenon

Pylyshyn and colleagues around 1990, summarised in 

http://ruccs.rutgers.edu/val-current-research/23-labs/val/231-the-finst-visual-indexing-theory I don’t

know whether Pylyshyn attempted to use his mechanism to explain geometrical discoveries made

by ancient mathematicians (and young children, intelligent non-human animals, etc.). I think the

mechanism was mainly intended to allow internal processes to refer to objects of attention,

including moving objects. The ideas are relevant to my topic, though at present I only dimly recall

the details. (I think Pylyshyn and I have discussed some of these issues in the very distant past.) 

The variety and prevalence of perceived changes involving two or more related changes of

structures or relationships when intelligent organisms perceive or produce changes in the

environment, some of them produced by other intelligent organisms, does not explain how

evolution produced these detection mechanisms, but it does explain why they should be preserved

by reproductive and other processes after they first become available, and why their absence in

current AI spatial perception mechanisms is a very serious deficiency. 

NOTE: 
This problem about how angles change as one corner of a triangle moves is loosely related to

ways of reasoning about how the area of a triangle changes as the triangle is deformed (the "area

stretch" theorems) explored in another document. 
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A modified version of the triangle stretch theorem

Now consider what difference it makes if we modify Figure 1, above, so that the line along which

the top vertex moves intersects the opposite side (the base) of the triangle outside the triangle as in 

Figure 2, below. What will happen to the top angle if the vertex moves upwards (and to the left)

along the new line? Does the size of the moving vertex necessarily get smaller, as in Figure 1? 
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Figure 2: Stretch-external 

Vertex moves upward along a line through base extended. 

The new type of case is harder to reason about. In Figure 2 neither of the top angles is contained in

the other. The new example requires a notion of comparison of size of two angles that is

independent of orientation of the angles, and whether one angle can obviously be moved so as to

be contained in another. In the workshop web page, finding a proof for the new configuration was

left as an exercise for the reader, and as stimulation to investigate the differences between the two

cases. 

I turn now to an objection raised when I conjectured that in Figure 2 it is also the case that as the

vertex moves up along the line intersecting the base of the triangle (extended here) the angle at the

vertex constantly gets smaller. 

Auke Booij’s Counter Example

During the presentation on 29th Sept, I suggested that the size of the top angle in Figure 2 would

always decrease while the vertex moves "upwards" along a line through the base extended. Auke

pointed out that it depends where the vertex starts on the line, and clarified this by email later. 

Figure 3, below, illustrates his objection. 

If the vertex starts far enough to the right on the line of motion, e.g. at A’, close to where the line of

motion meets the extension of the base of the triangle, at location X in Figure 3, below, the angle at

A’ is smaller than the angle at A, and as A’ moves closer to the intersection at X, the angle at A’

must get smaller. (Why?) 
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Figure 3: Stretch-obtuse 

Consider the red triangle whose shape is represented by A’BC, in Figure 3 above, and how it might

be deformed into red triangle A"BC by moving the vertex at A’ in a straight line towards A". At an

intermediate stage the triangle’s location is shown in blue as triangle ABC. (Compare the blue

triangles in Figure 1 and Figure 2 above.) There are some "implicit" discontinuities in the trajectory

depending on 

whether A’ is on the extended line BC, at location X. The angle there must be 0 degrees. 

whether A’ is to the right of the line through C perpendicular to BC, for example the location A’

shown in Figure 3. 

whether A’ is on the line through C perpendicular to BC, not drawn on the diagram, 

whether A’ is between the lines perpendicular to BC at B and at C, an example of which is

shown at location A in the diagram, 

whether A’ is on the line through B perpendicular to BC, not shown, 

whether A’ is to the left of the line through B perpendicular to BC, e.g. the location shown as

A". 

Some readers may also by now have considered the perpendicular bisector of line BC,

introducing three new sub-cases, namely, whether the location of A where the angle is largest

is on either side of the bisector or on the bisector.
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Figure 4: Perpendiculars 

Figure 4 shows how lines perpendicular to BC can divide up the sloping line. A mathematician may

investigate whether one of those perpendiculars defines a location of maximum angle for the

moving vertex, and then conclude that perpendiculars to BC do not help to identify a point at which

the vertex A is maximal. However this is not at all obvious. Is there any other way to identify a point

at which the angle A is largest? 

Ingenious readers may be able to think of more subdivisions between possible types of location of

the moving vertex, arising out of the relationships between items involved in the initial problem

formulation. For example, another subdivision, involves circles. 

Introducing circles 
Added/updated 8-9 Nov 2017

At a seminar in Leeds on 3rd Nov 2017 I presented Figures 1 to 4 above as examples of geometric

reasoning that are different from logical or arithmetical reasoning, and posed the problem of finding

the location along the line A’A" at which angle BAC is largest. A philosophy student at the seminar,

Diana Sofronieva thought about the problem and the next morning gave me a very helpful solution.

My discussion of circles below is based on her solution. The solution depends on a problem in

Euclidean geometry, Apollonius’ problem (which has several different forms), which I had never

previously encountered. Some of the key ideas are summarised below, but the detailed analysis is

somewhat specialised, so it has been moved to a separate file 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/apollonius.html 

16

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/apollonius.html


Figure 5: Circles 

There are no circles visible in the earlier diagrams (before Figure 5), yet the Euclidean plane allows

infinitely many circles to exist. In particular, there are infinitely many different circles passing

through the two points B and C, the bottom vertices of triangle ABC in Figure 5 above. It turns out,

surprisingly, that the answer to the question where the angle size is maximal depends on circles! 

Three examples are the blue circles shown. Each circle passes through points B and C, and

because the centre of each circle must be the same distance from B and from C, the centres must

all be on the perpendicular bisector of the line BC, shown in Figure 5 as a vertical black dashed

line. 

Exercise for the reader 
Added 10 Nov 2017 

Think about circles with centres at various locations on that vertical line, with various diameters,

and see if you can divide the circles into different categories in terms of how they relate to points B

and C and the line XA". For points consider whether they are outside the circle, or on the circle, or

inside the circle. For an infinite line consider whether it goes through the interior of the circle, or

merely touches the circle as a tangent, or has no point in common with the circle. 

What brain mechanisms make it possible to engage in such thinking? 

Could you design a robot that could have such thoughts -- visualising various configurations and

noticing how certain changes inevitably produce other changes, and also discovering

impossibilities, like the impossibility discussed as a "Transitional case" below?

Contemplating Fig 5 should convince you that there are infinitely many circles that pass through the

points B and C and are entirely below the line from A’ to A", and share no point with that line, as

illustrated by the lowest blue circle in Figure 5. Likewise there are infinitely many circles through B
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and C that pass above the line A’A", cutting it in two different points, as illustrated by the highest

blue circle. 

However, as the diameter of a circle through B and C shrinks or expands, while the centre moves

up or down the perpendicular bisector of B and C, there must be one, and only one, circle through

points B and C that has line A’A" as a tangent, i.e. exactly one circle that touches the line at exactly

one location above the line through the base of the triangle, indicated by the middle circle in Fig 5. 

There is another, much larger, circle through points B and C, that touches the line A"X extended

from below, far to the right of the points in the diagram. For details see the paper on the Apollonius 

construction. 

The required Super-Turing mechanism

The IJCAI workshop presentation mentioned some features of logical reasoning that enabled such

reasoning to be replicated on a turing machine or digital computer, namely the reasoning can be

based on manipulation of discrete structures that do not vary continuously, and which can be

combined to form larger structures, e.g. by insertion into adjacent cells on a Turing Machine tape,

or into a logical or algebraic string of atomic symbols. 

But symbols on a Turing machine cannot be superimposed in the way that generates new

geometrical sub-structures two shapes are superimposed, e.g. a circle and a triangle, or a straight

line and a triangle. A Turing machine does not allow two or more symbols to be superimposed:

each has a part of the tape to itself. 

Example: Circle and triangle problem 

For example you can combine a circle and a triangle on a planar surface, and by sliding them

around you can produce different numbers of points common to the triangle and the circle,

including no points if they do not overlap, a maximum of six points, and intermediate numbers.

(Exercise for the reader: apart from 0 and 6 points common to the circle and triangle, what other

numbers are possible, and in what configurations?) 

Below, I’ll try to show how exploration of the initial hypothesis that vertex size always decreases

steadily with distance from the opposite size of a triangle, can lead to unobvious counter-examples

as a result of unanticipated consequences of interactions between parts of the diagram: changing

some geometric relationships can cause surprising new relationships, or constraints, to emerge. 

These examples help to extend the requirements specification for a conjectured "Super-turing

membrane mechanism" for spatial reasoning, explored in a parallel document: 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/super-turing-geom.html 

I conjecture that biological evolution originally produced such a mechanism to support processing

of visual information of mobile animals, including perception of changing affordances, as discussed

in Sloman(2007-14), and from time to time added increasing complexity to the mechanisms, as the

organisms became more sophisticated in their needs, physical capabilities, and uses of spatial

information. 
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The changes included forms of meta-cognition, and meta-meta-cognition, including what could be

called "experimental meta-cognition" namely consideration of how contents of cognition (percepts)

would change under various conditions. 

It is worth noting that humans born blind may have a-modal spatial reasoning mechanisms that

originally evolved as parts of visual perception then visual reasoning, but became amodally

accessible so that they could also be related to tactile, haptic and auditory spatial perception.

Perhaps also vestibular perception of self-motion?

I think such a mechanism was used by ancient mathematicians (unwittingly of course). Parts of the

mechanism that evolved long before humans, are already present in human toddlers and other

intelligent animals, but without the meta-cognitive additions available to adult humans, especially

mature mathematicians, which allow the spatial reasoning processes to be attended to, recorded

for later access, and eventually facilitated teaching and learning processes in which one individual

thinks about, refers to and comments on the thinking processes of another. 

Understanding the nature of those ancient (mostly unconscious) mathematical competences, and

their evolutionary and developmental histories is an important part of understanding what animal

minds are and how they work (as I think Kant understood, though I shall not argue for that here). 

It is also an important part of the project to replicate intelligence of humans and other animals in

machines. It is not yet clear to me whether virtual machines implemented on digital computers can

support implementation of this competence, or whether another kind of machine, tentatively

labelled a "Super Turing Membrane machine" can do the job. 

Note: Kenneth Craik 

There is an extraordinarily perceptive (partly prophetic), though incomplete, discussion of how

brains might represent and reason about geometric figures and their relationships in Craik (1943)

before digital computers were available, in Chapter 6, section headed "Abstraction and brain

mechanisms". 

Craik also anticipated some of the arguments in Sloman(2007-14)) concerning the relative

importance of partial orderings vs absolute measures for intelligent perception and action. (It’s

possible that I was influenced by having read Craik’s book around 1967, before I encountered AI.) 

Note: Answer to question about triangle and circle 

The number of points common to a triangle and a circle can vary between 0 and 6. Some of them

are ’touching’ points, others overlap points. What sort of machine can discover (a) that there are

exactly 7 possibilities and that all of them can occur, some of the numbers in more than one way. 

Would inspecting lots of randomly generated pictures of a circle and a triangle be a good strategy?

If not, why not?

Relevance to theories of consciousness 

Any theory of intelligence, or theory of consciousness, that does not address this ancient kind of

mathematical intelligence or associated types of consciousness of impossibility or necessity cannot

be a serious candidate for a general theory of human or animal consciousness, including

consciousness of pre-verbal toddlers, nest-building birds, hunting mammals, octopuses, cetaceans,

orangutans, elephants, and ancient mathematicians! 
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Eventually I hope that the evidence collected in this and related documents will help us assemble

new deep requirements for the information-processing mechanisms that explain those ancient

discoveries and related aspects of natural intelligence, including perception of affordances, and

reasoning about affordances. 

Some of the material previously in the IJCAI-17 workshop web page(above) has been moved out

into a first draft (incomplete) attempt to specify features of the information-processing machinery

that evolution seems to have provided that so far has not been replicated in AI and has not been

studied in psychology or neuroscience, which I have loosely labelled "The super-turing membrane

machine", with requirements and speculative partial designs collected in this incomplete draft: 

http://www.cs.bham.ac.uk/research/projects/cogaff/misc/super-turing-geom.html 

The remainder of this document focuses on a collection of increasingly complex spatial discoveries

that can emerge from use of spatial imagination in idle reflection on possible distortions of a

triangular shape. A slightly different problem, first drawn to my attention by Auke Booi, turns out to

have a far more complex solution, found by Diana Sofronieva, and explained in a separate

document. It raises issues about highly specialised cognitive abilities of ancient mathematicians

whereas this document is about mathematical features of commonplace widely shared, but largely

unnoticed, abilities. 

Note on background to this paper

The work reported here is part of a long term project to identify forms of virtual machinery with

causal powers required to explain varieties of biological information processing. My earliest attempt

was Sloman(1971), followed by Sloman 1978, and various papers on vision, motivation, emotions,

and other aspects of mind. 

Sloman and Chrisley(2003) showed how certain kinds of virtual machinery could explain the

ineffability and incomparability of forms of consciousness in different individuals. Further work on

causal powers of virtual machine events and processes that in an important sense are not

reducible to the physical mechanisms in which they are fully implemented are explained in Sloman 

(2013). A closely related viewpoint was presented in Maley and Piccinini (2013). 

Gilbert Ryle’s theory of consciousness as polymorphous is related to this, but I don’t think he ever

applied it to mathematical consciousness. However, the chapter on imagination in Ryle (1949)

shows that he had come close to pre-inventing the idea of a virtual machine with causal powers. 

A quick reading of 
https://www.wired.com/story/new-math-untangles-the-mysterious-nature-of-causality-consciousness/

suggests that Erik Hoel has produced some related ideas, without noticing what has been learnt

about phenomena in engineered virtual machinery that are not based on the mathematical

mechanisms of noise reduction. 

Evolution is a deeply creative (blindly mathematically sophisticated) engineer, so far unmatched by

human engineers in many respects, though overtaken in others, as explained in the theory of

evolved construction kits Sloman(2017) (work in progress). 
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A new paper, added: 23 Jul 2020 

Some new, more complex, ideas regarding biological evolution, individual development,

environmental changes, and the complex interactions between all three used by genetic

mechanisms in humans and other animals, are presented in 

Aaron Sloman, (2020), Varieties Of Evolved Forms Of Consciousness, Including Mathematical

Consciousness, Entropy, MDPI, 22(6:615), 

https://doi.org/10.3390/e22060615 

21 Nov 2017 

The section previously here concerned with properties of the Super Turing machine has now been

moved into the paper discussing requirements for the Super-Turing machine) 
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