Evolution of Self-Definition

Catriona M. Kennedy
Artificial Intelligence Institute
Dresden University of Technology
D-01062 Dresden, Germany

ABSTRACT

When considering an architecture for an artificial im-
mune system, it is generally agreed that discrimina-
tion between self and non-self is required. With cur-
rent immune system models, the definition of ”self” is
usually concerned with patterns associated with nor-
mal usage. However, this has the disadvantage that
the discrimination process itself may be disabled by
a virus and there is no way to detect this because
the algorithms controlling the pattern recognition are
not included in the self-definition. To avoid an infi-
nite regress of increasingly higher levels of reflection,
we propose a model of mutual reflection based on a
multi-agent network where each agent monitors and
protects a subset of other agents and is itself moni-
tored and protected by them. The whole network is
then the self-definition. The paper presents a con-
ceptual framework for the evolution of algorithms to
enable agents in the network to become mutually pro-
tective. If there is no critical dependence on a global
management, component, this property of symbiosis
can lead to a more robust form of distributed self-
nonself distinction.

1. INTRODUCTION

It is generally agreed that artificial immune systems
nust have the capability to discriminate between self
and non-self. However, a much more difficult question
is how ”self” should actually be defined: i.e. what
patterns, processes etc. should constitute it? The dif-
ficulty of this problem has been pointed by Ishida [6].
With current artificial immune system models (e.g.
Dasgupta and Forrest [2]), the self-definition is based
on patterns of normal usage. These patterns may,
for example, be represented as strings of commands.
Anything which does not match those patterns rep-
resents non-self and must be rejected.

There are two problems with this scheme. First, an
anomaly may disrupt the actual operation of the im-
mune system itself, meaning that the capability to
distinguish between self and non-self may itself be dis-
abled. Secondly, there is the possibility of ”allergic”
reaction (i.e. harmless anomalies are rejected).

To solve the first problem, it is necessary to include
the controlling algorithms (those underlying the dis-
tinction process) within the self-definition. However,
the “obvious” solutions to this problem leads to an
infinite regress. Assuming that we base the architec-
ture on patterns of activity, the self-definition would
have to include all patterns of access to data objects
including the activity pattern of the algorithm im-
plementing the pattern recognition capability (which
may be called Rg). To handle the situation where Rq
is affected by a virus and its own recognition capabil-
ity is impaired, a reflective meta-level R; is required
to detect anomalies in the activity patterns of Ry.
But R; produces additional patterns which must also
be monitored (which requires yet another meta-level
R> and so on). It follows that there is always some
part of the system which cannot be included within
the self-definition and therefore remains vulnerable to
attack.

This weakness has been called the “blind spot” or
“reflective residue” by some in the historical cyber-
netics community e.g. Kaehr [3]. Possible applica-
tions of their concepts to autonomous agents and the
formal description of living systems are discussed in
von Goldammer et. al. [13], [14].

Although natural immune systems are not invulnera-
ble in this way, there are convincing arguments that
living systems have mechanisms to compensate for
this problem or possibly eliminate it altogether. This
is the view of autopoiesis theory (Maturana [10] and
Varela, [12]), which emphasises the circular and non-
hierarchical nature of living systems. Our model is

based on some of these principles.

The main argument in this paper is that the reflective
residue problem can be compensated for in artificial
systems if the self-definition is something that evolves
so that it becomes increasingly “accurate”, i.e. it
should represent as far as possible all processes within
the system to be protected, including the immune
system itself. We will also show that the mechanisms
in this evolutionary process will also help solve the
second problem (allergic reaction).

Our approach is similar to existing immune system
models in that it also distinguishes between a mat-
uration phase (in the sense of a "negative selection”
algorithm) and an operational phase where external
anomalies can occur. Apart from this, it is not based
very closely on biological immune systems. One ma-
jor difference is that instead of simply establishing
self-tolerance, we try to evolve forms of active co-
operation (symbiosis) between agents where possible,
and for the whole network this takes the form of dis-
tributed self-preservation. Evolution of symbiosis is
already a research topic in artificial evolution (e.g.
Bull and Fogarty [1]).

Self-Definition on Two Levels

Since we are discussing evolution of self-definition,
some aspects of self should be continually changing.
However, there are also aspects that must be pre-
served against attack. For more conceptual clarity
therefore, it is necessary to define self on two levels
as follows:

a) Functional level: the capability of the system to
meet a set of requirements or goals; this must be pre-
served by the immune system.

b) Structural level: implementations of the capabil-
ity to meet the requirements; this may be changed
by the immune system as a process of adaptation to
anomalies. It consists of algorithms and particular
representations of requirements.

Mutual Reflection

Instead of a single agent with self-reflection as in
many AT systems (see e.g. Maes and Nardi [5]), we
propose a network of "mutually reflective” agents,
where each agent monitors and protects a subset of
other agents and is itself monitored and protected by
them. For example, if two agents A; and A, pro-
tect each other, the ”self” from the point of view of
A; is Ay and vice versa. The ideal solution (no re-

flective residue at all) does not then involve an infi-
nite regress because each agent is the other’s meta-
component. There remain only the practical limita-
tions of current technology which may be overcome.
For example, there should be no critical reliance on
global management of any kind (since it would be a
reflective residue).

Mutual Modification

During the operational phase (once symbiosis has de-
veloped), an agent A; may detect that the perfor-
mance of agents under its ”protection” is deteriorat-
ing due to external anomalies. Then it should be
possible for it to change the implementation of the
agent(s) being affected, i.e. it must select alternative
mechanisms which implement the same functionality
(or learn them if they are not already available). This
requires that the mechanisms implementing the func-
tional self-definition should be allowed to change and
evolve without artificially imposed restrictions. Oth-
erwise they would become vulnerable because they
are not allowed to be modified to escape attack.

2. FUNCTIONAL SELF-DEFINITION

We now consider in detail how to define (or evolve) a
functional self-definition. If we return to the principle
of mutual reflection above, and we assume there is a
task T' to be achieved by the system, the simplest
possible network would look as follows:

Aj: "Meta”-agent: checks if the operation carried out
by A, satisfies its requirements (i.e. does it continue
to fulfil task T'?).

Asz: ”Object”-agent: carries out 7' and checks if
the anomaly-detection program A; satisfies its
requirements (effectively looks for anomalies in the
anomaly-detection process).

This is the above-mentioned ”meta-” and ”object-”
architecture with the addition of the second function
of As in bold face, which makes the object-component
into a meta-meta-component.

However, this architecture has the problem that 7' is
allocated solely to Ay and if this agent fails, then the
whole functionality could be lost suddenly (until A4;
can find a way of recovering it which may not always
be possible). Instead, the functional self-definition
should be distributed evenly among all agents over
several perspectives. There are two approaches to

this.

Top-Down Specification: To ensure the po-
tential for symbiosis, the simplest solution is to spec-
ify one set of requirements (without conflicts), divide
it up into subsets and allocate each subset to a seper-
ate development team. In this case the functional
self-definition is predefined by a single agency, and
its evolution is restricted to refinements and modifi-
cations later in the software life-cycle.

Bottom-up Evolution: It is clearly better
if the requirements are oriented around what actual
users consider wvaluable. The requirements of secu-
rity and efficiency can be encoded differently with
varying degrees of emphasis, priorities etc. accord-
ing to perceptions and interests of individual users.
The functionality of the whole system may then be a
”democratic” representation of user interests. If the
system is complex enough, there will almost certainly
be some clusters of requirements from which symbio-
sis can develop. Conflict management strategies for
this kind of multi-perpective situation already exist
in the literature, e.g. [11] and [8].

Other Applications

In addition to the obvious requirements of computer
security, users normally have more specific wishes re-
garding content of information on the web and being
able to work efficiently. An interface agent can build
a model of the wishes and activities of an individual
user (or a group of users) directly. A ”destructive”
form of outside interference would be anything which
prevents the software from satisfying these user re-
quirements (e.g. junk mail).

3. STRUCTURAL SELF-DEFINITION

The structural self-definition can be defined as a set
of algorithms which mutually support each other in
satisfying their respective requirements. We now con-
sider how to evolve this mutual support during the
maturation phase. (Requirements are assumed to re-
main constant during this phase).

Terminology

We use Koza’s Genetic Programming (GP) [9] as an
evolutionary technique. A program in a population
undergoing evolution will be called a gp (lower case).

Since we have defined ”self” from the functional
point of view as the capability to satisfy a set of re-

quirements, self-tolerance can be defined as ”conflict
avoidance”. This means that in a group of agents
A1, As, ..., A,, the actions of each agent does not de-
crease the effectiveness of the remaining agents in the
fulfilling of their respective tasks, i.e. they do not in-
terfere with each other destructively. (In the initial
stages of evolution this will be the norm however).

Symbiosis means that the actions of each agent in-
creases the effectiveness of the remaining agents in
the fulfilling of their respective tasks, i.e. the agents
interfere with each other constructively. A minimal
degree of symbiosis requires that the actions of at
least one agent A; evolve so that they enable the fit-
ness of at least one of the remaining agents A; (j # @)
to increase above the fitness it achieved on its own.
For each agent in the group, the total amount by
which its fitness is increased by interaction must be
at least as great as any decrease. (The net increase
may be 0 for some agents).

Example of Symbiosis

To answer the question ”why symbiosis” an example
can be very helpful. To illustrate the type of symbio-
sis that can emerge between different perspectives, we
may consider two robots 4; and A, acting in a world
containing two types of objects A and B. A; is a con-
struction robot whose task is to search for objects of
type A and construct as many components as possi-
ble using these objects. Each completed component
must then be stacked in any position in the room. As
is a clearing-up robot whose task is to stack all free ly-
ing objects of any type in a corner in the room. This
may be any corner and there may be one or more
stacks. We will assume that individual objects are
continually appearing at random positions (disorder
is always being produced). Furthermore components
produced by A; are continually being consumed. Ob-
jects placed far away take longer to fetch than nearer
objects. Details of stacking or construction will not
be considered here.

The fitness function for A; can be the average number
of completed components stacked at position P dur-
ing its time of operation which means that it should
construct components as quickly as possible. For
A, the fitness function could be the ratio of objects
stacked in a corner to those lying around. It is of no
interest to As if these objects are assembled in com-
ponents or not. Then there are several possible ways
in which symbiosis can emerge:

A; can help A, as follows:

a) if there are any objects of type A lying around
unstacked, use them first to construct a component;
this reduces the amount of clearing up.

b) choose the stacking position to be a corner; this
also does part of Ay’s work since it only recognizes
stacked objects, regardless of whether they are as-
sembled in components or not.

Aj can help A; as follows:

a) start collecting objects of type A first, only collect
type B when there are none of type A.

b) stack them in the corner nearest to where A; is
working.

Both these actions reduce the amount of time A,
spends searching.

We can already make some interesting observations
here. First, each agent represents a different perspec-
tive. For example, the ”objects” recognized by A;
are type A objects and the larger components made
out of them; type B objects are of no importance (un-
less they act as obstacles). In contrast, A2 does not
recognise assembled components since they are not
important in the fulfilment of its goal. So when A;
will ”perceive” a stack of components, A> will ”per-
ceive” a stack of individual objects. This means that
we have a plurality or "redundancy” of representa-
tions for something which could be described as a sin-
gle problem (i.e. construct components and keep the
place tidy at the same time). This is where bottom-
up evolution of requirements has advantages.

Secondly, because each agent at least partly does the
work of the other, if one fails, then there is no catas-
trophic degradation in the satisfaction of require-
ments. We will show later that symbiosis of this kind
can also help detection of destructive anomalies in the
operational phase.

Initial Architecture

We can now consider an architecture for the above
kind of problem. First, we define two important con-
cepts:

a) A perspective is a representation of a particular
goal, along with the relevant objects and actions for
achieving it (world model). A goal-seeking agent rep-
resents a perspective (see example above).

b) Two agents A; and A (and perspectives they rep-
resent) have independent origins if no aspect of A;’s
functioning depends on explicitly encoded knowledge
of A,, i.e. they are initially ”foreign” to each other.

We then require a kind of ”mediation agent” M whose
task it is to find possible forms of symbiosis between
such independent agents, or at least establish ”self-
tolerance”. Although M has approximately the same
function as a ”negative selection” algorithm, it should
not be a global management component; it should
itself be subject to monitoring and corrective mod-
ification by parts of the immune system which are
already in the operational phase. However, for sim-
plicity we will not consider this at present. M can
be implemented as a co-evolutionary GP algorithm
which takes the perspectives to be mediated as pa-
rameters.

Since agents have no predefined knowledge of each
other and we wish to dispense with global manage-
ment, interactions between agents have to be defined
differently. Initially, any action of an agent A; which
interferes with another agent A, will be detected as
”disturbances” or anomalies by A, because they will
not usually fit into its internal model (due to its in-
dependent origin).

A perspective-representing agent A; can be imple-
mented as a process which executes a given strategy
(a gp), evaluates its fitness and detects anomalies. It
is assumed that it has an internal model of the world,
which is encoded according to its perspective. We
will not consider evolution of this model or any kind
of life-time learning at this stage. The gp that it ex-
ecutes is a candidate solution to a problem according
to the perspective which the agent represents (e.g.
construction of a component). A perspective can be
implemented as a GP specification < F,T, f > where
F is the function set, T is the terminal set and f is
the fitness function. Basically this defines the kind
of objects in the world and the operations on them.
For each perspective there is one population of gp’s.
Then for population size m and number of perspec-
tives (populations) n, g is the kth genetic program
in the ith population:

A g g1z e 9im
As: g1 g2 e 92m
An . 9nl gn2 ..eeen Inm

What this means is that an agent A; can be ”given”
any of the strategies g;r to use as part of its code.

Initially, during the maturation phase, this is done
by M but later in the operational phase, it may be
done by any other agent (see later).

An ”individual” I undergoing evolution is defined
as a multi-agent system, where each agent executes
and evaluates one gp from each population. In other
words, it is a candidate for symbiosis (or at least self-
tolerance). As with general co-evolution, one agent
acts as the "environment” for the other. The agents
are activated as concurrent processes during the test-
ing phase of each generation. The simplest variant is
to have a single population with m individuals, where
an individual is a column in the table, i.e.:

L L ... I,
A1 911 glg glm
Az ggl 922 me
An gn1 gn2 ---e-- 9nm

For the more general (and probably more effective)
multi-population variant, a particular g;; may be
tested in different ”environments” (i.e. in the pres-
ence of different gp’s).

Perspective-Dependent Fitness

Fitness must be evaluated at the micro-level (that of a
single gp) and at the macro-level (the whole network).
When considering the micro-level, the ”effective” fit-
ness of a gp may be defined as the actual measure
which is used to determine selection. For this mea-
sure, we wish to include the ”supportive” actions of
an agent for other tasks, in addition to its effective-
ness at its own task. Then for two agents, there are
four intermediate fitness values as shown in the table:

| AL Ay
Al Fll F12
A2 F21 F22

For any two agents A; and A;, F;; indicates the fit-
ness measure of agent ¢ from perspective j, i.e. the
”support” of agent ¢ for the task of agent j. These
values depend on the detection of anomalies (distur-
bances) produced by the other agent. Details of such
an anomaly-detecting agent are given elsewhere [7].

To show briefly how this works, we will consider what
happens from perspective j. To determine Fj; the
agent evaluates its own current gp j by calculating
its effects according to its internal world model. The
quality (beneficial or not) is then determined by the

fitness function associated with perspective j. The
same gp is then repeatedly executed in the current en-
vironment (i.e. in the presence of A; which is running
concurrently). An anomaly may then be detected as a
difference between model-predicted and actual state,
and is assumed to be due to A;. The quality of this
difference is evaluated according to the fitness func-
tion of A; (is the effect helpful or disruptive?). Then
the average effect of A; according to A;’s fitness func-
tion is assigned to Fj;.

Rewarding Helpfulness

The effective fitness E; used by the GP algorithm M
to determine selection of a gp g¢;; not only depends
on Fj; but also on Fj;. This could be e.g.

E; = Fii + wFj;

where w is the weight associated with effects on other
agents. Then the fitness of an individual k£ may be
calculated according to the degree to which the indi-
vidual agents carry out their own tasks and the degree
of cooperation based on the F;; values where j # .

Self-Nonself Discrimination

After the maturation phase, a self-definition should
have evolved which can be defined as a symbiotic net-
work of at least two agents. A distributed, multi-
perspective form of self-nonself discrimination can
now take place. What was previously ”environment”
from a particular perspective now becomes ”self”
from that perspective. This means that from the
point of view of an agent A;, "self” is A and con-
versely for Ay, ”self” is A;. For A; the functional
self (what is to be preserved) is the fitness F; of As
which is calculated according to the above algorithm.
This should be 0 or positive (self-tolerance or symbio-
sis); it should never be negative. The structural ”self”
relative to A; is the algorithm implementing As (in
particular its current gp). Self-reflection within a sin-
gle agent may also be included but this is not relevant
here.

In this architecture, the internal model of an agent
does not itself evolve and this means that anoma-
lies will continue to occur (because they continue
to contradict a static internal model). However, in
the operational phase, anomalies will either be harm-
less or constructive (because of symbiosis). Then for
Aj, a sudden negative change in the ”signature” of
"self” (i.e. As) indicates that some external destruc-
tive agency is interfering with the functionality of As
as measured by the fitness evaluation. This requires
an immune response. However, a harmless or con-

structive nonself is tolerated, since the functional self-
definition is based on functionality (fitness function)
instead of specific patterns. This avoids allergic re-
actions and makes additional symbiotic relationships
possible.

Autonomous Recovery of Functionality

Since there is no life-time learning in this model, a
gp cannot adapt directly to anomalies and recover
its own functionality (self-reflection). However, au-
tonomous recovery may still be possible with this ar-
chitecture if the agents have some form of ”modifi-
cation access” to each other’s code (effectively each
agent carries a ”benevolent virus”). At present, there
is a lack of suitable software tools and programming
languages which make this easier (although some
work is being done here, e.g. Kaehr and Mahler [4]).

A first step in this direction is possible as follows:
if A; detects a negative nonself anomaly, the func-
tionality of A» must be recovered. To do this there
is a whole population of gp’s which also implement
the functionality of A, although not optimally. If we
ensure that there is enough variation in the popula-
tion, one of them may have some features which can
respond more effectively to the anomalous situation
than the current gp. Then A; can take corrective ac-
tion by selecting an alternative implementation from
the population of gp’s for As. The selection could
take place as a form of parallel fitness evaluation.
This could be implemented by stopping the current
version of the process for A, and starting a different
version with the new gp, and possibly alternative al-
gorithms for the other functions of A, as well (i.e. its
own anomaly-detection and fitness evaluation capa-
bilities).

The greater the degree of symbiosis that has evolved,
the more effective such a corrective action can be,
because then the population should mostly consist of
gp’s which carry out their own function by construc-
tively interfering with the function of other agents as
well. This means that the fitness as seen from per-
spective 1 cannot differ too much from that of per-
spective 2 and a selection of the "best” gp for A;
(highest Fb;) will probably also be very good for A,
even though no fitness evaluation for A, has yet taken
place (i.e. F»). It is not expected to be near opti-
mal however, although subsequent improvements are
possible if we introduce life-time learning and single-
agent reflection.

4. DISCUSSION AND FUTURE WORK

In the architecture presented here, the ”self” from
the perspective of A; can still include parts of the
algorithm of A; itself (in the sense of traditional self-
reflection algorithms). However, because we insisted
on the perspectives having independent origins, mu-
tual reflection between agents is clearly more reliable
than self-reflection within one agent. This becomes
clear when we consider that in the case of single-agent
reflection, a virus has only to disable a single piece
of code (in particular, the mechanisms carrying out
the reflection can be attacked) whereas in the case
of mutual monitoring, an attack must be successful
against two completely independent software compo-
nents with no explicitly programmed ”knowledge” of
each other. There is therefore some progress in re-
moving reflective residues, although clearly it is still
far from the optimal solution at this stage.

Extensions and Improvements
Further progress in diminishing reflective residues will
require work in the following areas:

a) Introduction of life-time learning: further adap-
tation of evolved gp’s, in particular in response to
anomalies.

b) Increasing the number of components that are sub-
ject to evolution; e.g. the internal model, the methods
of detecting anomalies, strategies for life-time learn-
ing.

¢) More complex network topologies for mutual reflec-
tion: we have only presented a minimal architecture
of two agents. For three or more agents there are
many more possible ways in which mutual reflection
can take place.

d) Including the supporting infrastructure within the
mutually reflective architecture, i.e. the evolution-
ary process (M) in the maturation phase along with
any other supporting software (e.g. operating sys-
tem) and hardware.

Problems Still to be Overcome

There are still some fundamental challenges. First,
current evolutionary programming and automated
design techniques do not allow for evolution of sub-
stantially complex software components. However
this can be partly overcome by having a reserve of
alternative designs for the same functionality (which
can be autonomously replaced). Furthermore, evolu-

tionary techniques could be applied to selected com-
ponents of hand-crafted software.

Secondly, software tools and programming languages
are required so that independent programs can mod-
ify each other’s code, the most important requirement
being that they do not have destructive effects.

5. REFERENCES

[1] L. Bull and T.C. Fogarty, ” Artificial Symbiogene-
sis”, Artificial Life, Vol 2, No 3, 1996, pp. 269-292.

[2] D. Dasgupta and S. Forrest, ”Novelty-Detection
in Time Series Data using Ideas from Immunol-
ogy”, Proceedings of the International Conference
on Intelligent Systems, 1997

[3] R. Kaehr, "Zur Logik der ’Second Order Cy-
bernetics’™, Kybernetik und Systemtheorie - Wis-
senschaftsgebiete der Zukunft?, edited by ICS (In-
stitute for Cybernetics and Systems Theory), IKS-
Berichte, Dresden, 1991.

[4] R. Kaehr and T. Mahler, ”Introducing and Mod-
elling Polycontextural Logics”, Proceedings of the
18th European Meeting on Cybernetics and Sys-
tems Research, Vienna, 1996.

[5] P.Maes and D. Nardi (editors), Meta-Level Archi-
tectures and Reflection, North-Holland, 1988.

[6] Y. Ishida, ”The Immune System as a Self-
Identification Process: a Survey and a Proposal”,
International Workshop on Immunity-Based Sys-
tems 1996, held in conjunction with ICMAS 96.

[7] C. Kennedy, "A Conceptual Foundation for
Autonomous Learning in Unforeseen Situations”
IEEE International Symposium on Intelligent
Control ISIC 1998

[8] M. Klein, ”Conflict Resolution in Cooperative De-
sign”, International Journal for Artificial Intelli-
gence in Engineering, Vol.4, no.4, 1990, pp. 168-
180.

[9] J.R. Koza, Genetic Programming: On the Pro-
gramming of Computers by Natural Selection, MIT
Press, Cambridge MA, 1992.

[10] Maturana, H. and Varela, F. (1980): Autopoiesis
and Cognition: The Realization of the Living.
D.Reidel Publishing Company, 1980.

[11] G. Spanoudakis and A. Finkelstein, ”Reconcili-
ation: Managing Interference in Software Develop-
ment”, ECAI96 Workshop on Modelling Conflicts
in Al 1996.

[12] Varela, F. (1979) Principles of Biological Auton-
omy, North-Holland, 1979.

[13] E.von Goldammer, C. Kennedy, J. Paul, H. Ler-
chner, R. Swik, ” Autonomous Systems: Descrip-
tion and Construction”, Proceedings of the 13th
European Meeting on Cybernetics and Systems Re-
search, Vienna, April 1996.

[14] E. von Goldammer, J. Paul, C. Kennedy, ”Dead
and Living Systems: Their Relation to Formal Log-
ical Descriptions” in Proceedings of the 13th FEu-
ropean Meeting on Cybernetics and Systems Re-
search, Vienna, April 1996.

