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Abstract

A decision made by an autonomous system
to adjust its autonomy status (e.g. over-
ride manual control) must be based on reli-
able information. In particular, the system’s
anomaly-detection mechanisms must be in-
tact. To ensure this, a high degeee of self-
monitoring (reflective coverage) is necessary.
We propose a distributed reflective system,
where the participating agents monitor each
other’s performance and software execution
patterns. We focus on two things: monitor-
ing of the anomaly-detection components of
an agent (which we call meta-observation) and
evaluating the “quality” of the agent’s actions
(does it make the world better or worse?). Us-
ing a simple scenario, we argue that these fea-
tures can enhance the reliability of autonomy
adjustment.

1 Introduction

In some anomalous situations, it may be appropriate for
an autonomous system to suspend its operations while
in others it may be necessary to override manual control.
This paper addresses the problem of how the system
should obtain accurate and relevant information about
the world and about its own operation in order to sup-
port the correctness of such adjustments. We assume
that that the system already has some degree of auton-
omy in that it can detect an anomaly and react to it
independently. Very roughly, adjustments to autonomy
fall into three categories:

e wait for user intervention (reduce autonomy)

e continue to initiate own activity, but allow manual
control if available (stay the same)

e override manual control (increase autonomy)

The reliability of these decisions depends crucially on
the accurate detection of anomalies. For example, if any
of the system’s sensors or anomaly-detection software is
faulty, it may not detect a serious problem in its hard-
ware (e.g. engine temperature).

We assume that anomalies can occur in the following
areas:

e external world, e.g physical anomalies
e system hardware
e system software

An anomaly is defined here as a discrepancy between
the model-predicted next state of the component un-
der consideration and the actual next state as shown by
sensors. The simplest methods include things like self-
testing, parity-checking etc. where the “models” do not
involve explicit reasoning. An example of more sophis-
ticated modelling is [Pell et al., 1998], although this is
concerned with hardware components only.

Provision of such models and sensors may be called
coverage. We focus on the problem of reflective cover-
age, where the system must detect anomalies in its own
software.

2 Improving Reflective Coverage

A system which reasons about its own software is gen-
erally called a reflective architecture (see e.g. [Maes and
Nardi, 1988]). However, such systems are usually not
designed for autonomy, but instead allow a programmer
to inspect and modify any part of the system on request.
An exception is the self-monitoring system of [Kornman,
1996), although its purpose is to detect specific failure
patterns (e.g. loops) and not anomalies as defined here.

As an example of type of reflection we are aiming for,
we look briefly at the emerging area of artificial immune
systems (AIS). The requirement is to detect computer
viruses or other forms of intrusion which do not necessar-
ily follow a known pattern (in contrast with typical virus
scanning software). In the language of immunology, the
system must distinguish between “self” and “nonself”.
For details, see e.g. [Forrest et al., 1994]. A survey of
immune-system inspired models can be found in [Das-
gupta and Attoh-Okine, 1997].

In the context of adjustable autonomy systems, this
requirement can be translated roughly as follows: all
monitoring and control components should themselves
be subject to monitoring by the system itself. In other
words, there are no meta-levels (things which do the



monitoring or control) that are not simultaneously ob-
ject levels (things which are monitored).

This is clearly an ideal situation but we take the view
that an approximation is possible. The concept has its
historical roots in“Second Order Cybernetics” (see e.g.
von Foerster [von Foerster, 1984]) and the related idea
of organizational closure of a network ([Maturana and
Varela, 1980], [Varela, 1979]). (We subsequently use the
term “meta-level closure”).

2.1 Why Meta-Level Closure?

To show in detail why it is desirable to solve this prob-
lem, and why existing methods do not solve it, we use
current AIS models as an example. Typically a database
of “normal” patterns is used to define “self”, which is
collected in advance by running the system in isolation
(in a “protected” environment). This database contains
characteristic patterns produced by the execution of all
legitimate programs and may be called the “signature”
of the system being protected. There are many pos-
sible forms of recording such activity, e.g. file access
patterns or system call sequences. Later, in the opera-
tional phase, the immune system continually compares
actual patterns produced by currently active programs
with the system’s signature. If there is any significant
deviation, a “nonself” has been detected. For details,
including the definition of “significant”, see [Dasgupta
and Forrest, 1997].

To distinguish between self and nonself, an algorithm
must ensure that the comparison between sets of pat-
terns is carried out in the intended way. We call this
algorithm the meta-level R. To our knowledge, existing
AIS always have such a meta-algorithm. Even if the ar-
chitecture is based on distributed pattern detectors e.g.
[D’haeseleer et al., 1996]), a meta-algorithm must “man-
age” the detectors and ensure that recognition of nonself
occurs as intended. But if the underlying algorithm R of
the anomaly-detection process behaves anomalously as a
result of an intrusion, there is nothing that can sense this
state in current AIS systems. One can say that there is
a serious “gap” in their reflective coverage.

Simply including the pattern produced by the meta-
algorithm R within the signature does not solve the prob-
lem, because this assumes that R will always be intact.
If R becomes compromised then the whole immune sys-
tem becomes unreliable. Indeed, R could be replaced by
a “disinformation” algorithm which raises false alarms
and covers up real anomalies. It follows therefore, that
meta-level closure is desirable.

2.2 Distributed Reflection

If we are aiming for meta-level closure, the most imme-
diate problem is to avoid an infinite regress of monitor-
ing levels. We therefore propose a distributed, multi-
agent architecture where the agents mutually observe
each other’s operation (mutual reflection). We assume
that each agent has a “homeostatic” task, i.e. maintain-
ing the quality of the world within critical values. The
architecture of a single agent is summarized as follows:

e Reflection, R, detects anomalies in own operation
and environment.

e Model, M, makes predictions about own next state
and next state of environment.

e All other functions: in our present implementation,
this is purely reactive and does not include any
planning or scheduling.

We assume that an agent is a single thread. The idea of
mutual observation is that an observing agent A; should
compensate for another agent A;’s inability to detect
certain kinds of anomaly in its own operation. In par-
ticular, A; will not be able to detect the failure of its
component R.

Our approach has some similarities with existing mod-
els of mutual observation such as agent tracking e.g.
[Tambe and Rosenbloom, 1996], and in particular so-
cial diagnosis [Kaminka and Tambe, 1998], where agents
observe other agents’ actions and infer their beliefs to
compensate for deficiencies in their own sensors. How-
ever, such models are normally based on the “society”
or “team” metaphor; i.e. the agents are separate entities
which observe each other as if they were individuals in
a society. Our architecture is intended as a distributed
control system where the type of interactions between
agents is much less restricted. For example, they may
inspect (and perhaps even repair) each other’s software.

In existing distributed control systems, decentralisa-
tion is normally not done for the purpose of improv-
ing reflective coverage. Advantages of decentralisation
mentioned in the literature usually relate to issues such
as agent specialisation and teamwork (e.g. [Laengle
and Rembold, 1996]) or resource management and load
balancing (e.g. [Meyer et al., 1995]) although fault-
tolerance and redundancy is sometimes mentioned in a
more general sense, e.g. [Lueth and Laengle, 1994].

3 An Example Scenario

To describe our kind of architecture in detail, we present
a simple scenario which is a modification of the “minder”
scenario [Wright and Sloman, 1995]. This was originally
designed to simulate motivation and emotional states in
a nursemaid which is taking care of a number of ba-
bies. The reason for selecting this scenario is that we are
also interested in agents which represent the “values” of
users; i.e. the agents’ autonomy (and its adjustment)
should be centred around those things that the user is
most concerned about (see e.g. [Norman, 1996] for re-
lated work on motivated agents). We will return to this
later when considering design constraints for reflective
coverage.

In our scenario, the nursemaid “looks after” a single
baby, but the baby is gifted and can detect changes in the
nursemaid’s activity. Both agents are components of a
larger “body” which is moved around the virtual world as
a single entity. We call this the “vehicle”. The agent soft-
ware is embedded into this (simulated) hardware. For
our purposes, the relevant hardware components are the
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Figure 1: External world for modified minder scenario

sensors and effectors. The internal components of the ve-
hicle (hardware and software) are called the “network”.
This includes the software of both agents, the processors
on which they run and internal interconnections between
them.

It is assumed that there is a human user whom the
agents are acting on behalf of (i.e. the agent tasks rep-
resent the user’s goals) and that any detection of an
anomaly is accompanied by a report to the user.

3.1 External World

The homeostatic aspect of each agent is simulated using
a 2D virtual world which contains the following:

e A static energy supply,
e a ditch, which the vehicle might fall into,

e various treasure stores near the ditch which the
baby finds interesting.

The baby’s task is to find as much treasure as possible in
order to maintain its level of interest, which falls rapidly
in the absence of anything new. It seeks out the trea-
sure stores and collects treasure from them (although in
practice this only means that it remains stationary until
its interest level falls off). The nursemaid’s task is to
maintain the energy level and safety of the whole vehi-
cle. Normally the baby has control of the vehicle but it
is taken over by the nursemaid if the energy level falls
below a certain level or if the vehicle is in danger. Both
agents can detect anomalies in each other’s activity as
well as in the external world. A schematic diagram of
the scenario is shown in Figure 1. Depending on the
amount of redundancy built into the design, an agent
can take over another’s task in a failure situation. How-
ever, the ability to do this is limited since the nursemaid
is intended as a specialist in energy and safety while the
baby is a specialist in treasure.

3.2 Internal World

In order to approximate the meta-level closure require-
ment, our architecture provides the following features
which contrast with existing multi-agent systems: First,

the agents’ world (which is being observed) includes exe-
cution patterns of software (in addition to hardware and
external world). We call this the “internal” world. The
method of software monitoring may involve the checking
of expected signatures with actual patterns (e.g. rule-
firing patterns [Kornman, 1996] or statistical analysis
of time-series as used in immunity-based systems [Das-
gupta and Forrest, 1997]). Any software which is used to
detect actual execution patterns of other software may
be called an “internal sensor”.

Secondly, there should be no critical reliance on a
single method of global coordination (e.g. a particular
communication protocol). Any coordination method C
should be monitored by a meta-level R that does not
rely on it. Otherwise if C' fails then R may also fail and
the detection of the failure of C' may not be possible.
Therefore we have a serious fault that goes undetected.

Thirdly, not only must the decision-making software
be monitored but also the software which detects anoma-
lies, i.e. we require monitoring of the monitoring process
(which we call “meta-observation”). Since this is a dif-
ficult problem it is necessary to show how it works in
more detail.

Meta-Observation

Meta-observation requires monitoring of software using
internal sensors. An architecture with those components
is shown schematically in Figure 2. The external world
is labelled “EW”. The internal world (“IW”) is divided
into nursemaid (N) and baby (B) and includes all their
hardware and software. Their different components Sg
(external sensors), Eg (external effectors), Sy (internal
sensors) and Ej (internal effectors, e.g. error-recovery)
are assumed to be low-level software in which the high-
level agent software C (for control) is embedded. The
IW is embedded within the vehicle which is in turn em-
bedded in the EW. The meanings of the term “sensor”
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Figure 2: External and internal interfaces



or “effector” include not only the boxes in the diagram
but also their input and output connections shown by
arrows. Incoming (small) arrows to a control system are
sensor values while outgoing (larger) arrows are effector
activations. The arrows to/from the control system typ-
ically contain more abstract data while those to/from
the environment will have a more physical nature (but
we need not be concerned with those issues). For space
reasons, only the set of connections to N’s internal sen-
sors are shown. B is in control of the vehicle.

We assume for simplicity that an agent repeatedly
“calls” its internal sensor in the same way that it calls
any other procedure. (We will ignore timing consider-
ations for the moment). We use the following conven-
tion: The pattern of execution of the internal sensor
of an agent A; will be labelled S;(). In contrast, the
value returned by the sensor when applied to an object
X will be labelled S;(i,X). Then we can write A;’s
meta-observation of A; as Si(i, Sr(j)).

Meta-observation of internal sensors appears at first
to lead to an infinite regress:

Sf(ia SI(j: SI(ia SI(ja )))

However, this need not occur in an implementation.
There should be two concurrent threads monitoring each
other: Sy(i,S51(j)) which is part of the execution cycle
of the observing agent A; and S;(j, Sr(4)) which belongs
to the execution cycle of the observed agent A; (if we
assume for simplicity that each agent is a single thread).
A;’s thread does not wait to evaluate the content of
S1(j,...); instead A; monitors the pattern of operation
of S;(j,-..).- The result is A;’s specific way of describing
S1(j). For illustration we can imagine a thermometer T
whose operation is monitored using a device D (e.g. by
ensuring that there is mercury in it). But D can only
work at a certain temperature, which in turn needs to
be monitored using T.

In the same way, the high-level anomaly-detection
software can be monitored, i.e. the observed control sys-
tem C(j) which repeatedly calls S;(j) and checks its
value against a signature, can be monitored by C(i) us-
ing Si(i). Instead of simply using a stored signature,
a model may be used to predict the next state of the
software as it behaves in a “normal” situation.

3.3 Fault Injection

An “enemy” is simulated by a random number generator
which determines when the baby or nursemaid should be
damaged or if there should be an environmental anomaly,
e.g. the ground around the ditch becoming unexpectedly
slippery. The enemy can only inflict direct damage on an
agent’s components (by deleting, corrupting or otherwise
modifying its software), e.g. there is no deception or
stealing of resources at present.

It is assumed that the enemy cannot damage two
agents simultaneously. Furthermore, it can only dam-
age one agent component within a certain time period
which should allow detection and recovery. A “compo-

nent” is defined as of the above categories (e.g. control

system or internal sensor).

3.4 Implementation

For exploratory implementations and rapid prototyping,
we use the SIM-AGENT development environment [Bax-
ter et al., 1998]. This environment provides generic ob-
ject classes which may be specialised into agents or inani-
mate entities. Each agent class has its own database and
rulebase (called a rulesystem). A scheduler “runs” each
agent by first updating the agent’s sensors with the cur-
rent state of the world, then using a rule interpreter to
run its rulesystem, and finally updating the spatial world
according to any external actions required by the rules.
Normally each agent is run once in a single time-slice.

Each agent uses its own method of observation. The
nursemaid has a copy of the rulesystem code of the baby
and regularly compares this with the actual state of the
baby’s code (in this way it can detect random damage
or unauthorised modification); the baby has a model of
the nursemaid’s rule firing pattern, which it compares
against the actual pattern.

When monitoring the firing pattern of the nursemaid’s
anomaly-detection rules, the baby will observe one of
three classes of patterns. First, there are two patterns in-
dicating “correct” activity: the nursemaid’s recognition
of a normal situation and its recognition of an anomaly
(in which case the baby can indirectly infer a problem
that it had not detected itself - as in the social diagno-
sis approach). We may label these patterns “no” and
“yes” patterns respectively. Any pattern which does not
fall into the “no” or “yes” categories is an anomaly in
the nursemaid’s anomaly-detection. Details of the im-
plementation are in [Kennedy, 1999).

4 Focusing on What Matters

The above implementation only concentrates on mon-
itoring of anomaly-detection (meta-observation). This
alone does not provide an approximation of meta-level
closure, although it is a necessary component of it. How-
ever, we can arbitrarily extend the coverage to include
other software components, e.g. decision-making. In
particular, those components which the observed agent’s
anomaly-detection relies on should be given priority, e.g.
its mechanisms for predicting the next state and for eval-
uating quality (see later). Similarly, the “resolution” of
internal sensors can be arbitrarily increased, so that they
do not just determine whether something is a yes/no
pattern but also detect fine differences between patterns
within a “no” or “yes” class.

The aim is to make the reflective coverage “sufficient”
for a particular application, i.e. anomalies should be
detected in any system operation which is necessary to
meet critical requirements.

Quality evaluation

All of the above is concerned with the detection of pat-
tern anomalies. Sufficient reflective coverage should also
include the evaluation of quality of the world, i.e. the



observing agent evaluates the quality of the observed
agent’s actions. This is important because a change in
pattern does not necessarily indicate problems unless it
is coupled with a negative change in external behaviour.
In the minder scenario, a modification to the nursemaid’s
control software may result in an anomalous trace, but
it may still continue to maintain the energy level as re-
quired. It would look problematic only if the nursemaid
ceased to act at all or acted in a destructive manner.
(Using the immune system metaphor, it is important to
minimise “allergic” reactions, particularly during learn-
ing or authorised software upgrades).

It is therefore necessary to ask “what is important?”
and this depends on the human or other agent the sys-
tem is acting on behalf of: for example, in a network
security system, data integrity must be preserved; in a
life-support system, oxygen supply must be maintained
etc. Maintaining minimal quality is a critical require-
ment.

4.1 Overriding another Agent’s Control

We now show how meta-observation and quality evalua-
tion can enhance the reliability of adjustable autonomy.

If a system is to override manual control, it must de-
termine whether a critical requirement is being violated.
E.g. an operating system detects an anomalous pattern
of commands typed in by an intruder who has the super-
user password and is trying to delete all files. Such a se-
quence of commands would be anomalous from the point
of view of pattern (it is extremely irregular) and from
the point of view of quality (it is a violation of require-
ments). Therefore the system should override the user’s
commands.

Adjustable autonomy in the Minder scenario

In the Minder scenario, the user is normally a passive
observer (although this is modifiable). Normally there
is an exchange of vehicle control between the baby (B)
which does the treasure collecting and the nursemaid (N)
which replenishes the energy level.

In anomalous situations, there may be an exceptional
override of control. This happens when the quality of
the world is perceived to have deteriorated beyond ac-
ceptable levels. The reason for the deterioration may be
due to an environmental anomaly or a system failure.
The following are of situations which N may encounter
while monitoring B’s control of the vehicle:

e B remains stationary for more than ¢ cycles (where
t is much longer than the longest “observation” pe-
riod). If this is accompanied by an internal pattern
anomaly in B’s software then N concludes that B’s
software has failed. Otherwise it reports (to the
user) a possible fault.

e B has led the vehicle too close to a ditch. This is
anomalous because the B’s software should prevent
this, but it may also be due to an environmental or
hardware anomaly. N takes over control of the vehi-
cle (since it is a specialist in ditches) and reports a

possible fault. If this is accompanied by an internal
pattern anomaly in B’s software then N concludes
that B’s software has failed.

In any of the situations where N concludes a definite fail-
ure, it takes over control of the vehicle and tries to repair
the fault or damage. Taking over control in the event of
certain failure means that it may also attempt to do some
of B’s work depending on the amount of redundancy we
want to build into the system. Full redundancy would
mean that N has the potential to do the job of B as well
as B itself can and vice versa.

The following are examples of situations where B de-
tects that the minimal requirements are violated during
its monitoring of N:

e The energy level has dropped to the danger level
and N has not yet taken control of the vehicle. B
takes over the task of N in this case and concludes
there is a failure.

e N moves the vehicle towards the ditch. If it moves
into the danger zone or there is also an internal
pattern anomaly, B takes over the task of N and
reports a failure.

If B detects that N is damaged, it attempts to repair N.
During its repair attempt, it is “cautious” i.e. it stops
being interested in treasure, moves into the vicinity of
the energy supply and stays there, replenishing its energy
level as soon as it drops below the “high” level. This is
because energy has the highest priority (both agents are
dead without it), followed by safety and interest-level
in that order. The degree of “caution” may be varied;
for example, a more “adventurous” baby may still like
to explore the treasure without the nursemaid. If B is
successful in its repair of N it goes back to its normal
state.

It may be argued that there is no need to monitor soft-
ware execution patterns here, since external anomaly-
detection and quality evaluation alone appear to be
enough. However, if the quality evaluation software is
corrupted or modified, there would be no way to detect
this if we did not have pattern anomaly detection. To
ensure that the pattern anomaly detection is intact, we
require meta-observation as outlined above.

Clearly, there are many other complex issues here that
we have not addressed, such as making a decision on
the basis of a prediction or using uncertain information.
However this goes beyond the scope of the paper.

5 Conceptual Exploration of Designs

The main purpose of the simulation is to investigate the
feasibility and advantages of meta-level closure, and in
particular, how does it affect the reliability of autonomy
adjustment decisions. We are also exploring the follow-
ing design tradeoffs:

e Number of agents: what are the advantages of more
than two? It would appear that three agents would
be more reliable. For example, if agents detect



failures in each other’s anomaly-detection, an addi-
tional agent must determine which one has actually
failed.

e Design redundancy vs. wversion redundancy: what
is the difference between agents based on the same
design and those based on independently developed
designs (as for example in [Minsky, 1996]. It would
seem that independent designs are more robust.
However, this makes it more difficult for agents to
repair each other’s code. Similarly, the agents will
generally not have the ability to do each other’s
tasks equally well (E.g. B is motivated by the need
to maintain its “interest” level but N is not).

e Load distribution vs. specialist monitoring agents:
should there be agents whose sole task is to monitor
other agents? In the present implementation, both
agents switch attention between their monitoring
tasks and their “normal” tasks. Quality evaluation
of the performance of a specialist monitoring agent
is difficult (as it is mostly a passive observer).
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