
A Comparative Study of Approaches to
Multi Agent Planning

Dave Gurnell

A thesis submitted

to the University of Birmingham

for the degree of Doctor of Philosophy

School of Computer Science

The University of Birmingham

Birmingham B15 2TT

United Kingdom

September 2005

Abstract

This thesis investigates planning in multi agent environments. A hypothesis is formed that in

order to function effectively in the “real world”, agents need to be able to plan efficiently and

independently within a social context. Standard refinement planning algorithms are unsuited to

such situations because each agent is essentially situated in a changing external world.

Most multi agent planning approaches avoid this problem by centralising some aspect of plan-

ning. This reduces the multi agent problem to a set of single agent problems, enabling the use

of refinement planning techniques but compromising agents independence.

From an independence point of view it is preferable to decentralise planning, allowing agents

to exchange relevant information as they plan. This approach has received little attention in the

literature, arguably because of the inapplicability of refinement planning.

In this thesis, a novel decentralised “distributed local planning” algorithm is developed and

compared to related centralised and plan merging approaches. While the novel approach is

found to be slower than its counterparts, it is shown to be applicable to a wider range of problems

than plan merging. The advantages and disadvantages of each approach are discussed, and

research is suggested for further development of distributed planning techniques.

Acknowledgements

I would like to express my gratitude to my supervisor, Aaron Sloman, for his continued help

and guidance, and for repeatedly showing me that problems in AI are larger, richer and far more

complex than I had previously considered.

Many thanks also to Nick Hawes, Manfred Kerber and Mark Ryan, who have provided much

valuable input.

Special mention must go to my house-mates, David Brooks and Will Byrne, with whom I have

spent many valuable hours drinking inspirational cups of coffee, shouting at computer screens

and discussing problems over the living room whiteboard.

I would also like to thank my friends and fellow research students at the University of Birming-

ham for their procrastinatory input and their sage (and sometimes constructive) advice. I won’t

mention names for fear of leaving someone out: you know who you are.

Finally, I would like to offer the greatest thanks to my Mum and Dad, whose faith, support and

encouragement have been indispensable over the last few years.

Contents

1 Introduction 1

1.1 A taxonomy of multi agent planning problems 5

1.1.1 What is an agent? . 5

1.1.2 Common properties of problems . 8

1.1.3 Problem specific properties of goals and plans 10

1.1.4 Problem specific properties of agents and the environment 13

1.1.5 Problem specific properties of sensing and execution 16

1.2 Planning problems addressed in this thesis . 18

1.2.1 Reasons to cooperate . 19

1.2.2 Motivational examples . 21

1.3 Summary of contributions . 23

2 Review of the literature 26

2.1 Single agent planning . 26

2.1.1 Refinement planning . 27

2.1.2 STRIPS representation . 32

2.1.3 State space planning . 35

2.1.4 Least commitment planning . 37

2.1.5 Hierarchical Task Network planning 39

2.1.6 Local search planning . 43

2.2 Multi agent planning . 46

2.2.1 Centralised planning . 46

2.2.2 Plan merging . 48

2.2.3 Distributed planning . 53

2.3 Summary of multi agent planning approaches 58

3 A common planning mechanism 61

3.1 Requirements . 62

3.1.1 Joint and multi executive plans . 62

3.1.2 Expressive temporal model . 63

3.1.3 Flexible refinement . 64

3.1.4 Accurate heuristics . 65

3.2 Overview of task trees and summary information 65

3.2.1 Task trees . 66

3.2.2 Histories . 68

3.2.3 Summary information . 69

3.2.4 Heuristics and test functions . 71

3.2.5 Advantages and limitations of the approach 72

3.3 Propositional plans . 74

3.3.1 Agents and ownership . 75

3.3.2 World state . 75

3.3.3 Actions and tasks . 77

3.3.4 Task networks and temporal constraints 78

3.3.5 Problem definitions: initial plans and methods 85

3.3.6 Task trees . 86

3.3.7 Summary conditions . 89

3.3.8 Achieving, clobbering and undoing 91

3.3.9 Summarising task tree nodes . 96

3.4 Propositional planning . 100

3.4.1 Abstract detection of solutions and failures 100

3.4.2 Planning operators . 102

3.4.3 Plan refinements . 105

3.4.4 Simplifying task trees . 108

3.4.5 Splitting and merging plans . 110

3.5 First order plans and planning . 111

3.5.1 First order plans . 111

3.5.2 Approaches to handling first order problems 115

3.5.3 Planning with first order task trees . 118

3.6 Recursive problems . 121

3.6.1 Estimating optimal tree size . 122

3.6.2 Adaptive task tree resizing . 127

3.7 Task tree generation algorithm . 127

3.8 Summary of planning mechanisms . 129

4 Planning algorithms 130

4.1 Client-server model . 131

4.2 Centralised planning . 132

4.3 Plan-then-merge . 134

4.4 Distributed local planning . 139

4.4.1 Distributed constraint satisfaction . 143

4.4.2 Distributed planning with DisCSP techniques 146

4.5 Summary of planning algorithms . 152

5 Experiments and empirical analysis 154

5.1 Evaluation criteria . 154

5.2 Experimental domains . 156

5.2.1 The Blocksworld domain . 156

5.2.2 The Navigation domain . 159

5.2.3 The Holes domain . 161

5.3 Comparison of planning mechanisms . 163

5.4 Comparison of planning approaches . 166

5.4.1 Blocksworld problems . 168

5.4.2 Navigation problems . 175

5.4.3 Holes problems . 183

5.5 Summary of empirical analysis . 192

6 Conclusions and future work 194

6.1 Summary of contributions . 194

6.1.1 Taxonomy of multi agent planning problems 194

6.1.2 Approaches to multi agent planning 195

6.1.3 Common planning mechanism for multi agent planning 196

6.1.4 Comparison of multi agent planning approaches 198

6.1.5 Conclusions . 203

6.2 Future work . 204

A Guide to notation 207

A.1 Data structures . 207

A.2 Pseudocode . 208

B Domain descriptions and sample problems 210

B.1 Blocksworld . 210

B.1.1 Domain description . 210

B.1.2 Sample problem: bwReverse 3 . 212

B.2 Navigation . 213

B.2.1 Domain description . 213

B.2.2 Sample problem: navRing 3 2 . 214

B.3 Holes . 215

B.3.1 Domain description . 215

B.3.2 Sample problem: holesSpecial 3 1 3 1 218

C Experimental data 220

List of Figures

1.1 Sample Blocksworld problem. 21

1.2 The airlock problem. 22

1.3 Sample pegs-and-holes problem. 23

2.1 Generalised algorithm for refinement planning. 29

2.2 Refinement search in a space of candidate plans. 29

2.3 Planning graph for a simple route planning problem. 37

2.4 Example of HTN planning: preparing an exotic meal. 42

2.5 Local search in a space of candidate plans. 44

2.6 Flow of information in a simple centralised planning system. 46

2.7 Flow of information in a simple plan merging system. 48

2.8 Flow of information in a simple distributed local planning system. 55

2.9 A distributed goal search tree. 57

3.1 Example HTN planning problem: going to work/town. 66

3.2 Preconditions and effects of primitive tasks from Figure 3.1. 67

3.3 Task tree for the abstract task and methods in Figure 3.1. 68

3.4 Summary information for the task tree in Figure 3.3. 70

3.5 Example of a recursive task: the clear task from Blocksworld. 74

3.6 Time-line of a precondition state constraint. 76

3.7 Time-line of a postcondition state constraint. 77

3.8 Allen’s thirteen basic temporal relationships between two finite intervals. . . . 81

3.9 Algorithm for the commutative temporal operator inv 82

3.10 Algorithm for the transitive temporal operator trans 83

3.11 Propositional task tree for the problem in Figure 3.1. 87

3.12 Algorithm for propositional task tree generation. 88

3.13 Algorithm for summarising a task network. 98

3.14 Algorithm for summarising a task. 99

3.15 Algorithm for, and example of, the propositional select op planning operator. . 103

3.16 Algorithm for, and example of, the propositional block op planning operator. . 103

3.17 Algorithm for, and example of, the propositional decompose op planning oper-

ator. 104

3.18 Algorithm for the order op and add env op planning operators. 105

3.19 Algorithm for the propositional decompose ref refinement. 106

3.20 Temporal relationships created by order ref when an achiever is selected. . . . 107

3.21 Temporal relationships created by order ref when no achiever is selected. . . . 107

3.22 Algorithm for the propositional order ref refinement. 108

3.23 Example of simplification. 109

3.24 Algorithm for simplifying a propositional task tree. 110

3.25 Example type hierarchy and planning variables. 112

3.26 Algorithm for “unification” in first order problems. 114

3.27 Initial plan and example method from a first order package delivery domain. . . 115

3.28 Algorithm for the first order bind op planning operator. 119

3.29 Algorithm for the first order decompose op planning operator. 119

3.30 Algorithm for the first order decompose ref refinement. 120

3.31 Abbreviated methods for single robot navigation. 122

3.32 Single robot navigation problem. 123

3.33 Initial task tree for the problem in Figure 3.32. 123

3.34 Abbreviated methods for multi robot navigation. 124

3.35 Multi robot navigation problem demonstrating shortcomings of value counting. 125

3.36 Solutions to the problem in Figure 3.35. 125

3.37 Methods for the independent two robot navigation action, travel avoid 126

3.38 The unit of recursion of a method m. 126

3.39 Algorithm for first order and compiled propositional task tree generation. . . . 128

4.1 Algorithm for centralised planning. 133

4.2 Two agent Blocksworld problem suitable for the plan-then-merge approach. . . 135

4.3 Solutions to the individual problems in Figure 4.2. 136

4.4 Coordinated joint plan created by merging the individual plans in Figure 4.3. . 137

4.5 Rules for client-server communication in distributed local planning. 141

4.6 Example constraint satisfaction problem. 143

4.7 Algorithm for distributed local planning. 147

4.8 Algorithms for message passing in distributed local planning. 151

5.1 Redundancy in level 3 achieve clear tasks in bwReverse 4 158

5.2 Topology of navLine 5 1 to navStar 5 4 . 160

5.3 Topology of navRing 6 1 to navRing 6 4 . 160

5.4 Topology of navStar 3 y to navStar 6 y . 161

5.5 Planning and plan merging times for two agent and three agent plan-then-merge

for bwReverseSeq problems. 169

5.6 Individual plans produced during three agent plan-then-merge for

bwReverseRobin 10 and bwReverseSeq 10 170

5.7 Average solution times for bwRandom problems. 173

5.8 Plot of heuristic value against time showing weight explosion in distributed

local planning. 175

5.9 Comparison of solutions times for centralised planning and plan-then-merge for

navLine problems. 177

5.10 Sub-optimal plan produced by centralised planning for navRing 5 3 179

5.11 Plot of heuristic value against time showing a heuristic plateau in distributed

local planning. 182

5.12 Plot of heuristic value against time showing escape from a plateau in distributed

local planning. 183

5.13 Example holesGeneral problem. 186

5.14 Initial task tree for the problem in Figure 5.13. 186

5.15 Algorithm for domain specific task tree simplification in Holes problems. . . . 187

5.16 Average solution times for holesGeneral problems. 189

5.17 Average solution times for holesSpecial problems. 191

List of Tables

3.1 Inverses of members of the BTR. 83

3.2 Transitive relationships between members of the BTR. 84

5.1 Tree generation and planning data for bwUnstack and navLine problems. . . . 164

5.2 Success rates and average solution times for bwSwap problems. 168

5.3 Average numbers of tasks per plan for bwSwap problems. 168

5.4 Success rates and average solution times for bwReverse problems. 171

5.5 Average numbers of tasks per plan for bwReverse problems. 171

5.6 Success rates and average solution times for bwRandom problems. 172

5.7 Average numbers of tasks per plan for bwRandom problems. 174

5.8 Success rates and average solution times for navLine problems. 176

5.9 Average numbers of tasks per plan for navLine problems. 178

5.10 Success rates and average solution times for navRing problems. 178

5.11 Average numbers of tasks per plan for navRing problems. 180

5.12 Success rates and average solution times for navStar problems. 181

5.13 Average numbers of tasks per plan for navStar problems. 184

5.14 Success rates and average solution times for holesGeneral problems. 188

5.15 Success rates and average planning times for holesSpecial problems. 191

C.1 Complete experimental data for bwSwap problems. 222

C.2 Complete experimental data for bwReverseRobin problems. 222

C.3 Complete experimental data for bwRandom problems. 222

C.4 Complete experimental data for navLine problems. 223

C.5 Complete experimental data for navRing problems. 223

C.6 Complete experimental data for navStar problems. 224

C.7 Complete experimental data for holesGeneral problems. 225

C.8 Complete experimental data for holesSpecial problems. 226

Chapter 1

Introduction

The concept of an agent is important in modern computer science, and particularly in Artificial

Intelligence (AI). There are many different interpretations of agency in the literature, one of the

most general being that of Franklin and Graesser (1996):

“An autonomous agent is a system situated within and a part of an environment that

senses that environment and acts on it, over time, in pursuit of its own agenda and

so as to effect what it senses in the future.”

Wooldridge and Jennings (1994) suggest a more specific definition that captures some features

commonly expected of agents in qualifying adjectives:

• Autonomous agents operate without direct intervention from humans or others;

• Proactive agents follow their own goals and take the initiative to achieve them;

• Reactive agents perceive their environment and react to changes;

• Social agents interact with other agents in their environment.

In other words, an agent is a problem solving process that is capable of acting independently

and continuously to achieve its own internal goals, but that is capable of responding to factors

in its environment such as unpredictable changes to the state of the world and the presence of

other agents.

1

Chapter 1. Introduction

This is clearly a desirable ideal in AI. An agent that embodies these concepts would be able to

perform complex tasks, overcoming unexpected problems with no human intervention, sharing

information and resources with other agents to save time and effort for all participants. Goals

could be directly set by a human user or could arise in response to environmental factors such

as the availability of new information or resources.

Planning Agents typically have goals that cannot be achieved with a single action. In these

cases it is useful for an agent to build a plan (or a number of plans) for what to do. In its simplest

form a plan is a sequence of actions to perform, although much more complex models of time,

action and resource usage are also possible. The field of AI planning has long been concerned

with building systems that plan proactively and autonomously. However, many planning algo-

rithms make assumptions that are incompatible with the reactive and social aspects of agency.

Two assumptions follow that are relevant to this discussion:

1. The world can only change as a result of the actions in the agent’s plan.

2. The planning agent is aware of the entire state of the world.

Planning and agency In order to plan in “real world” situations, agents need to be able to

respond to external factors such as the arrival of new goals, unexpected changes in the environ-

ment or the presence of other agents. Such factors may cause goals or plans to become invalid

during planning or plan execution. This may necessitate the changing of goals, or the recreation

or “repair” of current plans. In addition, because changes may be occurring continuously, plan-

ning and plan execution must be treated as interleaving processes rather than a cycle of “create

plan” and “execute plan” steps.

Multi agent planning Both of the assumptions above are violated in some way in many multi

agent situations. No agent has exclusive control over the state of world because each agent is

independently forming its own plan to achieve its own goals. In addition, agents cannot be

aware of the entire state of the world because each agent has internal state (goals, candidate

plans and so on) that cannot be directly accessed by other agents1.

1If agents are able to directly sense each others’ internal state, then the second assumption may not violated.

2

Chapter 1. Introduction

There are four ways of dealing with these violations, any or all of which can be used in different

combinations or sequences to produce a particular approach to multi agent planning:

Isolated planning Agents can ignore each other, producing plans in isolation and hoping they

will be executable or useful in later stages of planning.

Centralised planning Agents can outsource planning to a single agent, which is capable of

producing plans for everybody without worrying about the implications of multi agent

search.

Plan merging Agents can plan in isolation and employ a third party to take the completed

plans and coordinate them to remove conflicts.

Distributed planning Agents can plan socially, communicating with each other as they

progress to make sure their plans are executable when they finish.

The problem with isolated planning is that, if agents ignore each other during planning, conflicts

may arise that that render their plans useless during execution. For example, if Alice plans to

use the car to go to town, her plan becomes invalid if Bob takes the car out to visit friends for

the rest of the day. Centralised planning avoids this by giving one agent complete knowledge of

the environment. However, centralisation is not without its disadvantages. If agents outsource

planning or other problem solving activities, they reduce their own control over how plans are

formed. This raises issues of other agents’ interpretation (or misinterpretation) of their goals,

knowledge and opinions, along with issues of privacy and trust if agents are in competition.

Centralising planning can also create a single point of failure or a processing bottleneck in the

team.

Plan merging and distributed planning are decentralised techniques that can be used when cen-

tralisation is inappropriate. Plan merging (Section 2.2.2) is the most popular current approach

to multi agent planning: it essentially decomposes the multi agent problem into a number of

smaller single agent problems, that are not allowed to interact with one another. The disadvan-

tage of this approach is that the decomposition can prevent the agents finding solutions to some

problems, when interaction is required during planning (Section 1.2.2). Distributed planning

(Section 2.2.3) is ideal from an independence perspective, as agents can share as much or as

3

Chapter 1. Introduction

little information during planning as is necessary to find solution plans, without relying on a

central process. However, because of the problems of changing external environments men-

tioned above, distributed planning cannot be implemented with “standard” planning techniques

that make the assumptions listed on page 2.

Agent independence The term independence is used to refer to a measure of how much an

agent relies (or does not rely) on other agents during planning. Agents have higher indepen-

dence if they are able to plan without the direct assistance of others. For example, if Alice

allows Bob to plan her day for her, she has little independence because she is relying on Bob to

make all the decisions: she may well end up dropping Bob off at his friends’ house and picking

him up again late at night, when really she would prefer some other arrangement. If, on the

other hand, Alice and Bob are able to arrive at a mutual decision about car use, Alice has a say

in the decision making process. She may persuade Bob to leave a little later to go out so she has

time to go to town beforehand. The more independence agents have, the more they are able to

adapt to different situations and problems, whether they are small or large, simple or complex,

isolated or social.

Summary of this thesis Most current approaches to multi agent planning are based on cen-

tralised planning or plan merging. In both of these approaches, some agent independence is

sacrificed to allow the use of single agent planning techniques, which are well developed in the

literature. This thesis compares implementations of each with a new type of approach called

distributed local planning. In this approach, agents plan concurrently and exchange coordina-

tion messages as they do so. This kind of distributed approach is needed if agent independence

is to be preserved.

To ensure a fair comparison, the three approaches are implemented on top of a common HTN

planning mechanism called the Multiagent Planning Framework (MPF). MPF is an extension

of work done by Clement (2002) in which summary information (Section 3.2) is extracted from

the agents’ plans to allow them to reason about potential conflicts at high levels of abstraction.

Clement’s work is restricted to propositional, non-recursive HTN problems (Section 2.1.5).

Many interesting HTN problems contain first order state information and recursive methods;

4

1.1. A taxonomy of multi agent planning problems

MPF’s extensions allow it to represent these kinds of problems.

The three approaches mentioned are compared empirically in Chapter 5 on a number of planning

problems, including problems in which agents have heterogeneous planning abilities, resource

control and knowledge of world state. Comparison criteria include: the approaches’ efficiency

(see below), the different types of problem they are able to solve, and the independence they

offer agents. While distributed local planning is found to generally be the slowest approach of

the three, it is able to solve some problems that plan merging cannot. The strengths and weak-

nesses in all three algorithms are discussed in Chapter 6, and a revised plan for implementing

distributed local planning is outlined as future work that will avoid some of the weaknesses in

the current implementation.

Unfortunately, the range of problems in multi agent planning is far too large to cover within the

time and space available. The next section provides a taxonomy of problems and issues in multi

agent planning, from which a specific subset is chosen in Section 1.2 for empirical analysis in

Chapters 3 to 5. This chapter concludes with a summary of major contributions in Section 1.3.

1.1 A taxonomy of multi agent planning problems

The term “multi agent planning problem” can be used to describe a large and diverse range of AI

problems. This section attempts to classify these problems by introducing a common problem

definition and features that are common to specific problem subsets. Such a taxonomy is useful,

firstly because it removes ambiguity in terminology used in the rest of the thesis, and secondly

because it helps define the range of problems present in a particular scenario or solvable using

a particular technique.

1.1.1 What is an agent?

The term “agent” is used with several different meanings in planning literature. Each meaning

places a different interpretation on the phrase “multi agent planning”:

Agents as plan executives Executives are agents dedicated to the execution of plans. An exec-

5

1.1. A taxonomy of multi agent planning problems

utive is responsible for interpreting a plan and issuing appropriate instructions to motors,

software interfaces, muscles and so on to make sure it is carried out successfully. Plans

can be produced containing instructions for a single executive or multiple executives.

Single executive plans are either coordinated or uncoordinated. Coordinated plans con-

tain enough information to guarantee success when they are executed in the presence of

other executives; uncoordinated plans do not contain coordination information. Coordi-

nation information may include but is not limited to: timestamps on actions, prearranged

points for inter-executive communication (Biggers and Ioerger, 2001), and diagnostic ob-

servations of world state (Weld et al., 1998).

Agents as subordinate problem solvers Specialist problem solvers may be used as compo-

nents in a larger architecture such as a multi-process distributed planner or an architecture

with more advanced cognitive abilities (Sloman, 2002). Planning is a complex task: prob-

lem solvers including specialist planning algorithms, scheduling algorithms, and domain

specific knowledge bases may be applied to such diverse areas as action selection, re-

source allocation and causal reasoning. Homogeneous problem solvers may tackle large

problems using divide-and-conquer techniques (Ephrati and Rosenschein, 1994), while

heterogeneous solvers may be used to do special purpose reasoning or tackle a single

subproblem with several algorithms (Wilkins and Myers, 1998).

Problem solvers can exist in master-slave relationships, in which one solver directly con-

trols processes in the other, or peer-to-peer relationships, where they work independently

and communicate only when necessary. An example of both types of arrangement is

RealPlan (Srivastava et al., 2001), which is a planning system containing a planner that

reasons about action orderings and a scheduler that allocates resources. RealPlan-MS is a

master slave variant in which the planner periodically sends requests to the scheduler and

backtracks if no resource allocation can be found. RealPlan-PP, however, is a peer-to-

peer implementation in which the solvers search independently and use distributed search

algorithms to agree on a solution.

Distribution can be used to decompose problems into “horizontal” subsumption layers

(Brooks, 1991; Reynolds, 1999) as well as the “vertical” subproblems mentioned above.

For example, a high level strategic planning agent may form travel plans at one level

6

1.1. A taxonomy of multi agent planning problems

and delegate reasoning about servo adjustments and motor speeds to lower level agents.

Multi-layer architectures can be implemented using master-slave or peer-to-peer relation-

ships.

Finally, planning may be just one process in a larger agent architecture with a wide range

of capabilities. The space of possible architectures used to create “complete” agents is

as large as the space of problems they are trying to solve (Sloman, 2000). This thesis,

however, restricts itself to agents that just plan.

Agents as top level problem solvers Top level agents may be simple systems consisting of a

single problem solver or larger architectures with a number of components. The differ-

ence between agents and problem solvers is that agents represent entire reasoning systems

that are not contained within a larger system. This difference is one of a frame of refer-

ence: it is possible to think of agents as homunculi, lying inside each other, each existing

in a different kind of local architecture or society.

In this thesis, the three concepts above are referred to as executives, problem solvers and agents

respectively, although researchers in multi agent systems and multi agent planning have not

adopted standard definitions of these terms. This terminology is suitable for representing sim-

ple systems but is insufficient for describing complex hierarchies of sensors, problem solvers,

executives, motors and other components. The reader is referred to Franklin and Graesser

(1996), Wooldridge and Jennings (1994) and Doran et al. (1997) for a more detailed discussion

of what it is to be an agent.

Independence may or may not be important for problem solvers, depending on the architecture

in which they operate. Independence is important for agents, however, as they may have to be

able to deal with a range of different situations, including those in which they are isolated and

those in which other agents are present.

Joint and individual plans The term joint plan is commonly used in the literature to mean “a

plan for multiple agents”. Unfortunately, because of the ambiguity in the definition of “agent”,

this term can have several meanings. The definition used in this thesis follows from the defi-

nition of “agent” above: joint plans are created by or for multiple planning agents. This is in

7

1.1. A taxonomy of multi agent planning problems

contrast with the most commonly accepted definition of a joint plan in the literature, which is

a plan for multiple executives. In this thesis, plans involving multiple executives are simply

referred to as multi executive plans. This research is concerned only with the creation of joint

plans: the creation and execution of multi executive plans poses a very different set of prob-

lems and is beyond the scope of the thesis (examples include: Rosenschein, 1982; Biggers and

Ioerger, 2001; Browning et al., 2004).

1.1.2 Common properties of problems

Multi agent planning problems, however simple or complex, have some properties in common.

This section describes a set of properties upon which the definition of multi agent planning in

this thesis is based. Subsequent sections discuss extensions to the problem that may arise in

certain situations but not others.

Agents and the environment A multi agent system consists of a group of agents in a shared

environment. Each agent has an internal state consisting of goals, beliefs, knowledge, plans

and other such information. The environment also has state, referred to as external state, which

agents can change by performing actions through the execution of their plans. Agents only

have direct access to information in their own internal states. External state information must

be obtained by sensing the environment. Other agents’ internal state must either be obtained

through communication or deduced from information gained by sensing the effects of agents’

actions.

A multi agent planning problem consists of a multi agent system where each agent is capable

of planning and has its own goals. Goals are achieved by executing plans, and plans have to

be created before they are executed. There is always the risk that planned actions may become

impossible to execute in the time between planning and execution. This may happen because

of the actions of another agent or because of some unpredicted environmental event, such as a

sudden change in weather or the unexpected breakdown of machinery.

8

1.1. A taxonomy of multi agent planning problems

Goals Goals form the basis of agents’ pro-activeness, and are an essential part of agents’

state. In the simplest planning problems goals are fixed, although in extended problems goals

may be created or deleted by a number of factors (Section 1.1.3). At any time an agent has a

subset of its goals selected for planning2. Goals are specified as desired subsets of external state

using some planning formalism. Depending on the expressiveness of the formalism, extra goal

features such as temporal and resource requirements may also be specified (Section 1.1.3).

Plans and executives Plans are carried out by executing actions in the environment. Depend-

ing on the dynamics of goals and of the environment, execution may occur after planning, may

be interleaved or concurrent with planning, or may simply be ignored.

In complex environments where plan execution is non trivial, actions can be modelled as capa-

bilities of executives such as vehicles, manipulators, servos and motors. However, this model

is not strictly necessary: executives may be overlooked in favour of more traditional represen-

tations of action (Section 2.1). The modelling of executives only becomes strictly necessary

when executives can communicate back to the planning agent, or when agents can explicitly

exchange control of executives3.

Sensing and communication Agents only have direct access to their own internal state.

Strictly, external state information must be obtained through sensing (see below), although this

can be ignored if sensors are assumed to have infinite range, responsiveness and reliability. Be-

cause agents cannot directly sense each others’ state, they must exchange information about

goals and plans by communicating with one another.

One situation where communication (and possibly sensing) may be ignored is where agents

have shared internal storage. In this scenario the agents may have access to all of each others’

internal information. Such a situation may occur, for example, when agents with different

planning abilities are working on alternative solutions to the same problem (Melis and Meier,

2000).

2Goals are referred to as desires in Belief Desire Intention (BDI) nomenclature (Wooldridge and Jennings,
1994; Wooldridge, 2000)

3While the phrase “executive” is not in common use, the notion of a plan executing agent is common in the
Distributed Continual Planning (DCP) literature (desJardins et al., 2000).

9

1.1. A taxonomy of multi agent planning problems

The basic problem described above may be complicated in a number of ways. Specific prop-

erties that may cause problems are categorised by type and discussed in Sections 1.1.3 to 1.1.5

below.

1.1.3 Problem specific properties of goals and plans

Agents form plans to achieve goals. However, “goal” and “plan” are very broad terms encom-

passing many concepts. The following properties of goals and plans may cause problems in

particular:

Generation of goals In the simplest planning problems goals are fixed for the duration of

planning. However, in more complex problems goals may be generated or become obsolete

in response to actions, changes in the environment, or changes in higher level goals of the

agent (Nilsson, 1994; Gordon and Logan, 2002). There may also be deadlines or time windows

dictating when goals apply (Hawes, 2003), and agents may have to switch between goals during

planning or plan execution.

Implicit and explicitly stated goals The term “goal” is usually used to refer to the explicitly

stated goals that an agent planning to achieve. Examples include “getting home from work”,

“filling up with petrol”. There are many types of explicit goals, some of which are described

below. However, agents also have implicit goals that are not stated as part of the planning

problem but affect the way they behave: the creation and successful execution of a plan are

themselves implicit goals. Other implicit goals may be encoded in the algorithms, heuristics

and implicit preferences given to the planner. For example, plans may be preferred if they are

shorter or involve fewer steps, if they use fewer resources or increase the agent’s knowledge of

the environment. Implicit goals are significant in multi agent problems because they can cause

agents’ interpretations of plans to differ.

Types of goals Explicit goals may be long- or short-term, and may be conflicting or contra-

dictory. Explicit goals may also exist in hierarchies or have complex structure that depends on

other factors. Consider, for example, the goal “Fill the car with enough petrol to go out at the

10

1.1. A taxonomy of multi agent planning problems

weekend.”. The goal depends on properties of the car, the time until the weekend, the intended

activity once the weekend arrives and so on.

Conflicts between goals Multi agent planning involves searching for plans that achieve the

goals of all agents in the multi agent system. If some of these goals are conflicting, such a task

may be impossible. Traditionally, AI planning is an all-or-nothing process: either the problem

is solved or it is not. In the real world, however, it may be better to settle for a partial solution

to a problem than to fail and produce no plans at all (Rosenschein and Zlotkin, 1994).

Different situations may demand different definitions of success or failure. For example, an

agent may still consider a plan to be acceptable if it only achieves a subset of the agent’s goals.

Agents may get different payoffs depending on how they go about achieving certain goals, and

may have to reason about which goals to select if not all can be achieved. In multi agent systems,

agents may have to negotiate over which goals to achieve and how to achieve them.

Conflicts can occur between explicit or implicit goals, and may be completely or partially re-

solvable with planning and/or negotiation. Consider the following examples:

1. people trying to book a tennis court for separate games at the same time;

2. players trying to maximise their winnings in a game of poker;

3. explorers managing their use of a limited shared water supply;

4. deliverymen trying to deliver the day’s packages and get off work early.

Example 1 represents a set of incompatible explicit goals for which there is no resolution: one

person can book the tennis court but the others must go without a game. Examples 2 and 3

involve semi-compatible explicit goals in competitive and cooperative situations: agents have

to reason about their personal gain versus the gains of other agents and the group as a whole.

In the poker scenario the players are unlikely to care about the success of their competitors.

In the explorers’ scenario, however, it does the team no good if one explorer grows too weak

from under-drinking. Example 4 would most likely represent a conflict between implicit goals:

plans that are less time consuming are usually implicitly considered better than lengthy plans.

If the deliverymen can choose who takes which packages and/or who is allocated a delivery

11

1.1. A taxonomy of multi agent planning problems

vehicle, then goal selection and planning will potentially involve conflicts of interest as one

man finishing earlier will mean another finishing later.

Partial solutions In single agent planning, if a problem cannot be solved in its entirety, it may

be possible to achieve a subset of its goals to produce a satisfactory solution. Similarly in multi

agent planning, if a joint problem is not solvable in its entirety, it may be possible to solve a

subset of the agents’ individual solutions as a best possible alternative. The usefulness of partial

solutions depends on agents’ implicit and explicit goals and whether goals and/or resources are

shared or can be reallocated.

Types of planning problem There are many different types of planning problem and system

described in the planning literature. Planning formalisms vary considerably in the kinds of

goals, actions and resources they can represent, their treatment of time and uncertainty, and

their treatment of plan execution. A discussion of all of the different possibilities is beyond the

scope of this chapter. The basic planning problem is described in Section 2.1.2 and relevant

extensions are discussed throughout Section 2.1. For a more complete treatment the reader is

referred to the excellent book by Ghallab et al. (2004).

Planning in the space of multi agent systems Rosenschein and Zlotkin (1994) define three

types of problem from the point of view of negotiation and cooperation in multi agent systems:

Task oriented problems involve sets of non-conflicting tasks, that can be successfully exe-

cuted in any order. Agents try to minimise costs (to themselves or the team as a whole)

by deciding on an allocation of tasks from a pool that need to be performed (as in exam-

ple 4 above). Tasks are accepted by an agent at a certain cost, determined by the time

or resources necessary to achieve them, but they cannot interfere with one another. In

planning, tasks are equivalent to non-conflicting explicit goals4. In task oriented prob-

lems, planning is almost of secondary importance to goal allocation because inter-agent

conflicts during planning are impossible.

4The terms goal and task are defined in a variety of ways in the literature. There is no universally accepted
definition of either term.

12

1.1. A taxonomy of multi agent planning problems

State oriented problems introduce side effects to actions, allowing conflicts to occur between

plans for achieving tasks. Planning becomes important during and after goal assignment

because agents’ plans can potentially interfere and conflict. The distribution of goals

between agents can have a significant effect on the number of conflicts that are possible

between agents’ plans.

Worth oriented problems introduce a notion of “worth” attached to each visitable state of

the environment. This greatly increase the complexity of the problems, as agents have to

consider the individual value of each action in their plans. Some complex metric planning

and scheduling domains touch on this kind of issue. If, for example, an agent has a limited

amount of fuel, the “worth” of any particular world state could be described as a function

involving the number of goals achieved, the remaining fuel level and the distance to the

nearest petrol station. Similar complexity can be attributed to problems in which the time

taken to create and execute plans is significant.

Most of the problems and systems discussed in the planning literature fit into the state oriented

domain category above, although task and worth oriented problems are also present. A uniform

measure of plan quality is usually adopted that is independent of world state except for the

achievement of goals. Such quality may be measured in terms of the time or number of steps

(“makespan”) required to execute a plan, the amount of resources (energy, fuel and so on)

it consumes, and in some cases the time taken during planning (Hawes, 2003). Measures of

quality are normally implemented as quantitative or qualitative heuristics used during planning,

and form the basis of one type of implicit goal.

1.1.4 Problem specific properties of agents and the environment

The following are problem specific properties of the planning agents themselves and the envi-

ronment they inhabit.

Altruistic, self-interested and untrustworthy agents Altruistic agents are concerned not

only with their own planning success, but with the success of other agents in the environment.

13

1.1. A taxonomy of multi agent planning problems

The assumption of altruism gives agents common definitions of success, failure, cost and re-

ward, and avoids many issues of differences of opinion and potential mistrust.

If agents are not completely altruistic then they must be partially self interested. Completely

self interested agents are only concerned with the creation of their own plans, although self

interested agents in general may have partial interest in group success. Because self interested

agents do not have a consensus of opinion on the “best” courses of action, they may disagree

on the worth of a potential plan or come into competition for shared resources. Some kind of

negotiation according to an agreed protocol may be used to help overcome these problems.

Self interested agents may be trustworthy or untrustworthy. Untrustworthy agents may use

misinformation or miscommunication to cheat other agents or otherwise gain a competitive

advantage. This kind of competitive situation is the subject of a lot game theory research. Many

algorithms and protocols have been contributed in the literature to limit or prevent cheating

during agent interactions. The reader is referred to the excellent book by Rosenschein and

Zlotkin (1994) for a grounding in this area.

Issues of self interestedness and mistrust become important when agents have conflicting or

differing implicit or explicit goals (see above). Some sort of negotiation will be needed to agree

on a suitable subset of goals if some goals are conflicting. Even if the set of explicit goals

(Section 1.1.3) are compatible, agents may not agree on the best way of achieving them. In

these situations some sort of consensus will be required, whether it is achieved through explicit

negotiation or adherence to a common planning algorithm.

Heterogeneous and homogeneous agent abilities Agents may have heterogeneous planning

or reasoning abilities. Some agents may be able to solve particular types of problem or have

access to resources that other agents do not. If agents are capable of planning, they may have

access to different algorithms, resources, executives, knowledge and/or libraries of pre-built

plans or methods (Section 2.1.5).

If an agent cannot or does not want to solve its own planning problem completely, it may

try to “contract” parts of the problem out to other agents. Contracting involves publishing a

problem that needs solving, accepting offers from other agents, and choosing an appropriate

contractor. This is usually done by voting, bidding, or some other sort of negotiation. For

14

1.1. A taxonomy of multi agent planning problems

example, the Contract Net Protocol (CNP) (Smith, 1980) is a popular algorithm in multi agent

systems (Durfee and Lesser, 1991; Decker and Lesser, 1992; Wilkins and Myers, 1998) based

on a proposal and a set of quotes from interested contractors.

Contracting does not necessarily sacrifice independence if an agent chooses to participate in it,

rather than being forced to participate by some rigidly defined planning algorithm.

Static and dynamic environments Single and multi agent planning problems can broadly be

classified into two types: those where the environment is dynamic and those where it is static.

Dynamic environments involve unplanned spontaneous changes: in a multi agent sense this

means events that occur without any agent initiating them. Static environments can only change

as a result of agents’ actions, although in multi agent problems the actions of other agents must

still be considered.

Agent organisations In some scenarios agents may take part in organisations. These may

be imposed by a human designer or may be self-organising depending on the task at hand.

Pairs of agents may be in master-slave or peer-to-peer relationships. Slave agents in master-

slave relationships are “invoked” by their masters to perform specific tasks, and return results

directly. Master-slave and peer-to-peer relationships between agents are similar to those men-

tioned between problem solvers in Section 1.1.1: the difference is down to a choice of frame of

reference.

Open and closed multi agent systems An open multi agent system involves agents that have

no previous knowledge of the system architecture (Alberti et al., 2004). For example, navigation

and exploration agents may be free to wander around an environment that is much larger than

their maximum sensing and communication range. These agents are forced to form ad hoc

teams as others enter and leave the local vicinity: they cannot rely on a predefined team structure

to organise searching and mapping activities. Agents may also break down or suffer mechanical

failure. The presence or absence of one agent may have an effect on other agents if commitments

have been made to particular courses of action, or if agents are forced to rely on one another for

certain abilities. Depending on the mechanism used to assign goals to agents, when an agent

15

1.1. A taxonomy of multi agent planning problems

leaves the system others may have to take over its goals or plans.

1.1.5 Problem specific properties of sensing and execution

Sensing and acting form the interface with agents and their environment. Sensing, while po-

tentially complex in “real world” problems, is often greatly simplified or taken for granted in

the planning literature. Similarly, plan execution in the real world is a complex problem that is

further complicated by the presence of multiple agents and executives.

Partially effective sensors Strictly, agents receive information about the environment through

the use of sensors. Sensors may have limited scope such as maximum range, restrictions on

line-of-sight, and so on, and may have limited reliability, resulting in the retrieval of distorted

or probabilistic information.

In some cases sensors may be directly modelled as being part of the environment. In these

cases, sensors will have associated external state information, and their scope or reliability may

be changed by performing actions such as moving or focusing attention (Sloman, 2001). For

example, an agent monitoring a security system may be able to pan and zoom cameras and

activate night vision modes to gain information on potential intruders.

While partially effective sensing is not a property of multi agent planning per se, it may be

greatly complicated if agents have to share information to get a complete picture of the envi-

ronment, or if sensors with associated actions are shared between agents.

Partially effective actions Like sensors, some actions may have limited scope or reliability.

For example, a mobile platform with a manipulator arm may have to be located correctly before

the arm can be used to grip objects. This kind of action dependency is common in planning

problems.

In some cases actions may have uncertain or unpredictable outcomes. For example, once the

manipulator above has gripped an object, there may be a chance that it will drop it again. This

kind of problem may be further complicated if agents are dependent on one other to perform

actions in order to satisfy preconditions for their own executives.

16

1.1. A taxonomy of multi agent planning problems

Partially effective communications Strictly, communications must be sent and received us-

ing special communications actions and sensors. Because of this, communications may also

have limited scope or reliability. Reliability may be limited further by whether or not other

agents can be trusted to provide factual information.

Partial knowledge of external state In some problems agents may have incomplete knowl-

edge of the external environment. This is problematic for planning as missing knowledge may

lead to missed opportunities or solutions.

In single agent planning two basic approaches exist for dealing with incomplete knowledge:

either the agent goes about gathering the information necessary before it starts planning, or it

inserts sensing actions and conditional branches into its plan to defer sensing until execution

time (Golden and Weld, 1996; Weld et al., 1998). In multi agent problems agents may have dif-

ferent pieces knowledge that they can share or exchange for mutual benefit. If communication

is impossible or unreliable, it may be possible to pick up some information by analysing other

agents’ actions and using plan recognition techniques (Chapter 24 of Ghallab et al., 2004).

Probabilistic or uncertain knowledge Knowledge may be incorrect or conflicting5. In some

domains, knowledge about the environment is so poor that external state cannot be known for

certain.

Uncertainty can arise if actions or sensors are unreliable, or if some part of world state is not

observable with available sensors. In multi agent problems this can also come about if commu-

nication with other agents is unreliable, either because the communication channel is unreliable

or because the agents themselves have unreliable information or cannot be trusted. This is a

significant field of research in planning: readers are referred to Chapters 16 to 18 of Ghallab

et al. (2004) for an introduction.

5For this reason, the term belief is preferred in some models of agency such as BDI (Wooldridge and Jennings,
1994).

17

1.2. Planning problems addressed in this thesis

1.2 Planning problems addressed in this thesis

As stated in the introduction above, approaches are needed for multi agent planning that pre-

serve the independence of the agents involved. The taxonomy of problems and literature review

in Section 1.1 and Chapter 2 discuss a wide variety of problems and approaches concerned with

all areas of multi agent planning. However, this set of problems is too large to be tackled in its

entirety in this thesis.

The empirical work in Chapters 3 to 5 concentrates on a very specific subset of the problems

from Section 1.1 in which many of the extended problems above are ignored. A problem de-

scription is included below, with terms from Section 1.1 italicised for emphasis:

Problems consist of a closed team of agents occupying a closed, static environment.

Each agent has a static, non-conflicting set of goals to plan for, and is assumed to

be self interested but trustworthy. Algorithms are examined for finding a set of

consistent individual plans that achieve all of the agents goals while respecting,

wherever possible, agents’ independence, including their privacy and autonomy.

In some problems agents are able to sense the complete environment, while in

others they are restricted to specific information. Similarly, resources and actions

are either available to all agents or are assigned exclusively to specific agents. The

team as a whole is always aware of the complete external state, and always has

control over all relevant resources. Agents are initially unaware of each others’

goals and internal state, but may communicate information as is necessary to ensure

success.

The environment is static: sensing and execution are ignored. However, communi-

cation must be explicit. Actions and communications are reliable and determinis-

tic. Agents may not exchange goals, resources or executives, but may communicate

knowledge to be used in planning.

The planning problems considered are state oriented with propositional or first or-

der predicate state information. Goals are expressed as abstract tasks in a Hierar-

chical Task Network (HTN) formalism (Section 2.1.5). Agents may have different

libraries of methods (predefined subplans) with which to plan.

18

1.2. Planning problems addressed in this thesis

Goals are assigned to agents by a human user and the agents plan until a solution

is found or failure is signalled. The agent team succeeds by creating a valid set

of coordinated individual plans satisfying all agents’ goals. Partial solutions are

considered failures.

While these problems are an extremely simple subset of possibilities from Section 1.1, it is

hoped that insight gained from designing and comparing approaches for their solution will be

useful in more advanced problems in future research.

1.2.1 Reasons to cooperate

In problems such as those described above there are many reasons for agents to cooperate and

exchange information:

Coordination of shared resources It is often useful to control the access and consumption of

shared resources in the environment. Consider, for example, a workshop in which several

manufacturing agents are building machine parts. The agents may want to coordinate

their use of resources such as tools, workbenches and raw materials to prevent conflicts.

Coordination of shared actions In the workshop there may be parts of the manufacturing pro-

cess that require several agents to act simultaneously or in a choreographed sequence. If

one agent needs to lift a heavy part onto a workbench, for example, he can ask another

agent to help by lifting the other end of the part. Whereas some shared activities may be

arranged ad hoc during execution, lengthy or complex activities may require planning in

advance.

Removal of redundancy If two or more agents have the same action planned for a similar

time, it may be possible for them to delegate the action to a single agent, performing

other actions in parallel and saving time and resources overall.

Heterogeneous execution capabilities At some point during a plan, one agent may be in a

position to schedule an action that other agents cannot. If agents are mutually dependent

on each other to perform actions, the success of the team may depend on such actions.

An example of this is shown in Scenario 2 in the next section.

19

1.2. Planning problems addressed in this thesis

Heterogeneous planning capabilities One agent may have exclusive knowledge that can be

used to help another agent form its plan. For example, if one manufacturing agent has

a good knowledge of some specialised manufacturing process, it can help an unskilled

agent plan by showing him what equipment to use and in what order. An example of this

is shown in Scenario 3 in the next section.

There are also reasons why independence may be desirable:

Privacy and trust An agent may not trust other agents to plan on its behalf. Even if agents are

assumed to be trustworthy, implicit and explicit goals may be open to interpretation and

another agent may not always get things right. Agents may also want to keep information

private.

Efficiency Even if other agents can be trusted, the sharing of complete knowledge may be

inefficient. This thesis uses two measures of efficiency:

• speed: the time in which a solution can be found (or the problem is found to have

no solution);

• memory efficiency: the amount of memory used during solution.

Independence and efficiency interact in a problem dependent way. In some cases, pro-

viding agents with more indepedence will increase the efficiency of the team: in others is

will not.

Heterogeneous capabilities If agents have different specialisations, it may be difficult to ex-

change enough data to allow a centralised planner to reason about all possible actions and

plans. Consider, for example, the problem of a software engineer trying to design a piece

of software by analysing users’ requirements: neither party is likely to be able to do this

effectively without the assistance of the other.

In practice there are many more reasons where autonomy is useful. Agents may be unable to

communicate often or reliably or may have to make costly preparations or detours to do so.

Processing time may also be at a premium, requiring fast, “rough and ready” local planning

rather than all encompassing centralised planning. While this thesis does not deal with these

issues directly, it aims to provide a foundation on which such extensions can be considered.

20

1.2. Planning problems addressed in this thesis

1.2.2 Motivational examples

Most current approaches to multi agent planning rely on some sort of central process: they

either reduce to centralised planning for multiple executives or to some sort of plan merging

approach. The examples presented in this section are intended to demonstrate some situations

in which other modes of multi agent planning might be useful.

Each of these examples consists of several agents in a shared environment. While a central

planner could potentially solve any of the problems, the focus of this research is on possible

multi agent solutions: it is assumed that the agents involved are unwilling to give away control of

their own planning problems. The intention is to develop approaches on these simple problems

that might be applicable to more complex situations, such as those suggested in the introduction,

in which centralisation really is inappropriate or impossible.

Scenario 1 Two children are playing with building blocks in three colours. The

teacher has told them each to build a tower of three or more blocks. Each child is

certain of which colours it wants to use and in which order it wants them. Unfortu-

nately, there are not enough blocks to go around: the children must work out a way

to build a single tower containing both the desired patterns.

??

?

blue

orange

green

?

??

blue

orange

green

Figure 1.1: The Blocksworld problem from Scenario 1.

Each child has complete freedom to inspect and manipulate any block in the room. Assuming

it is possible to build a tower that satisfies both of their designs, it is reasonable to assume that

the children can come up with independent plans and coordinate them after planning. This kind

of plan merging approach to multi agent planning is popular in the literature (Section 2.2.2).

21

1.2. Planning problems addressed in this thesis

Scenario 2 Two robots wish to board a spaceship through an airlock. The airlock

has two doors, only one of which is open at a time. The doors are operated by use

of two buttons, one on the outside of the airlock and one on the inside. Each button

toggles both doors when pressed, such that the one-open-one-closed state is always

maintained.

door1 door2

(both buttons toggle door1 and door2)

robot1

robot2

button1 button2

Figure 1.2: The airlock problem from Scenario 2.

This problem, referred to later as the “airlock problem”, is a specific instance of a general class

of multi executive navigation domains in which the ability of one robot to move depends on the

positions of other robots and environmental features.

Because there is no button on the inside of the airlock6, it is impossible for either robot to com-

plete its own plan without the help of the other. Plan merging approaches are of no use, as with-

out a set of uncoordinated individual plans, no merging can take place. Some sort of distributed

planning paradigm is needed in which agents can exchange information during planning, if

centralised planning is to be avoided.

Scenario 3 Two robots are playing the children’s game in which pegs of different

colours and shapes have to be placed in matching holes in a game board. Both

robots are equipped with manipulator arms that are capable of grasping and mov-

ing the blocks. The robots have different sensors, however, which give them differ-

ent information about the blocks. One robot has a high resolution black and white

camera with which it can determine a block’s shape but not its colour. The other

robot has a very low resolution colour camera with which it can determine colour

but not shape.

22

1.3. Summary of contributions

Figure 1.3: A pegs and holes problem from Scenario 3.

In this scenario it is unlikely that either robot will be able to independently come up with a plan

that correctly places all of the blocks: they have to share information about which blocks are

compatible with which holes. This can be done in a number of ways, one of which is as sets of

resource constraints during planning. If one robot proposes a combination of peg and hole, the

other robot can inspect the choice and veto it if it senses an incompatibility.

Most current approaches to multi agent planning involve the independent creation of individual

plans for each agent and their subsequent merging to form a single joint plan. In Scenario 1 this

is perfectly possible: each child can see and move all of the blocks in the room, and is probably

quite capable of envisaging a plan that achieves all of its own goals without considering the

actions of the other child. In Scenarios 2 and 3, agents have limited ability to change and sense

the environment. This kind of problem often cannot be dealt with simply by planning and plan

merging: other techniques are needed to ensure the agents can create their own plans (Section

2.2.3). One such approach, based on the exchange of summary information about resource

usage, is presented in Section 4.4 of this thesis.

1.3 Summary of contributions

This thesis investigates various multi agent planning problems and approaches, providing a

number of contributions to the field:

6Experts in spaceship design may recognise this as a design flaw.

23

1.3. Summary of contributions

Taxonomy of multi agent planning problems The taxonomy of problems in Section 1.1

clarifies some of the ambiguities present in the multi agent planning literature. The features

mentioned should help identify the capabilities, strengths and weaknesses of existing and future

research, together with possibilities for further advancement. The literature itself is reviewed in

Chapter 2.

Multi agent planning approaches The literature review in Chapter 2 identifies a number of

basic approaches to multi agent planning. Two of these approaches, centralised planning and

plan merging, have been used extensively in the literature. A third approach, distributed local

planning, has been used mainly in distributed constraint satisfaction (Yokoo and Hirayama,

2000). The three approaches are representative of the range of current approaches that may be

suitable for solving the problems outlined in Section 1.2. Chapter 4 describes implementations

of all three approaches. Novel techniques are used in the implementation of two approaches:

plan-then-merge and distributed local planning.

Common planning mechanism for multi agent planning Unbiased comparison of the plan-

ning approaches requires them to be implemented in a standard way that eliminates as many

implementational differences as possible. One part of this standardisation involves the imple-

mentation of a common planning mechanism on which the approaches can be built.

Clement and Durfee (1999a,b,c) developed a planning mechanism, Concurrent Hierarchical

Plans (CHiPs), for the centralised coordination of multiple agents’ plans. The mechanism is

capable of representing a restricted set of Hierarchical Task Network (HTN) planning problems.

A number of novel extensions and alterations are made to CHiPs to produce the Multi agent

Planning Formalism (MPF), which is used as the basis of the empirical work in the thesis. Two

versions of MPF are presented in Chapter 3:

1. A minor variant of CHiPs, called the propositional Multi agent Planning Formalism

(pMPF), is discussed in Sections 3.3 and 3.4. pMPF has a number of small extensions

including annotations allowing it to be used with multiple agents. As the name suggests,

actions and state information in pMPF are represented by Boolean propositions.

24

1.3. Summary of contributions

2. A number of extensions are made to pMPF to produce the first order Multi agent Planning

Formalism (fMPF) in Sections 3.5 and 3.6. These extensions allow the representation of

first order actions and state literals and a restricted set of recursive HTN problems.

pMPF and fMPF are compared empirically in Section 5.3, and their applicability and

scalability to extended problems is discussed in Chapter 6.

Empirical comparison of approaches While none of the approaches identified is a clear

favourite in all problems considered, each has its advantages in certain situations. An empiri-

cal and analytical comparison of the approaches is provided in Chapter 5. Chapter 6 discusses

current shortcomings in the implementation of the algorithms and mechanisms presented, to-

gether with possibilities for future work, including the directions necessary for improving the

independence of agents in multi agent planning problems.

The work presented below investigates, implements, analyses and evaluates potential ap-

proaches to multi agent planning in terms of their efficiency, the types of problem they can be

applied to, and the independence they offer agents. Chapter 2 discusses relevant work on single

and multi agent planning from the literature, Chapter 3 discusses the MPF planning mecha-

nisms, and Chapter 4 discusses the implementation of centralised planning, plan merging, and

distributed planning algorithms. Chapter 5 provides an empirical analysis of the performance of

the algorithms applied to a number of “conventional” planning problems, and Chapter 6 reviews

the contributions above in the light of the knowledge gained and presents a plan for future work.

25

Chapter 2

Review of the literature

Planning is an old and well established field. It is impossible to do it justice in its entirety

here so this discussion will be restricted to material relevant to this thesis. Relevant research

falls into two parts: single agent planning and multi agent planning. These parts are dealt with

separately below.

Section 2.1 reviews current approaches to single agent planning. This is done for two reasons: to

give the reader a basic understanding of the range of approaches, and to identify the approaches

that are may be suitable for extension to multiple agents. Section 2.2 goes on to discuss rele-

vant approaches to multi agent planning. Section 2.3 draws concluding remarks, and sets the

scene for the development of a common mechanism (Chapter 3) and implementations of several

algorithms for multi agent planning (Chapter 4).

2.1 Single agent planning

Planning is a process of search. The planning agent is given a set of input information such

as the current state of the environment, a set of actions that may be performed and a set of

goals to achieve, and searches through possible sequences of actions until it finds a suitable

solution plan. This is a hard problem as the space of possible sequences can be very large

and sometimes infinite. Successful planning approaches involve an informed systematic search

through the possibilities until a solution plan is found, or until the agent is reasonably sure that

26

2.1. Single agent planning

no solution exists (either the search space has been exhausted or a timeout interval has passed

without a solution being found).

This section reviews current approaches to single agent planning in an attempt to identify ap-

proaches suitable for adaptation to multiple agents. Section 2.1.1 describes the refinement plan-

ning paradigm, which is not a specific approach but a framework in which many planning algo-

rithms can be expressed and compared using common concepts and terminology. Refinement

planning is used throughout the rest of this thesis in the discussion of single and multi agent

planning mechanisms and algorithms alike. Sections 2.1.2 to 2.1.5 describe various refinement

planning mechanisms that might be used as a basis for multi agent planning, and Section 2.1.6

describes alternative local search planning approaches that do not fit into the refinement frame-

work.

A semi-formal notation is used to describe data structures and algorithms in several places in

this chapter. A guide to the notation can be found in Appendix A.

2.1.1 Refinement planning

Given a specification for a problem, planning can be formulated as a search through possible

candidate action sequences to find a solution that achieves the desired result. The refinement

planning paradigm (Kambhampati, 1997) involves starting with a state representing the set of all

possible action sequences and gradually shrinking it to a single solution sequence. Refinement

planning maintains an open list of sets of candidates that have yet to be considered (see below),

allowing the agent to perform a sound, complete, systematic search of “candidate space”, but

limiting its applicability to environments that are static during planning. By contrast, local

search planning (Section 2.1.6) does not provide soundness and completeness guarantees, but

is more suited to dynamic environments.

Partial plans Sets of candidate action sequences are specified using sets of constraints called

partial plans1. A partial plan simultaneously represents all the action sequences that are con-

sistent with its constraints. As constraints are added to the partial plan the set of candidate

1Constraints are implicitly present in all plan representations: they do not need to be explicitly stated as part of
a plan.

27

2.1. Single agent planning

sequences decreases in size. The planner is finished when it has a partial plan in which all

candidates are solutions.

Consider, for example, a planning formalism in which actions may be inserted at

any point into a totally ordered list. The empty list represents all possible candidate

sequences as no commitment has been made to any actions or orderings. The list

(go to shops , go to work) represents all candidate sequences in which the shops

and work are visited, in that order but not necessarily immediately after one another.

If the planning algorithm only allowed the addition of actions to the beginning or

end of the list, the same list would represent all candidate sequences in which the

shops and work are visited consecutively. Thus, the set of sequences represented by

a partial plan is dependent on the plan representation used and the set of planning

operators available to the agent.

In practice, depending on the partial plan representation chosen, it may not always be possible to

represent the desired set of candidates at a particular stage of refinement using a single partial

plan. For example, the list based representation from the example above is only capable of

representing totally ordered action sequences, so it cannot be used to represent the plan “visit the

shops before or after work”. Strictly speaking, refinement planning operates on sets of partial

plans that represent all necessary candidates. For simplicity, however, this thesis assumes that a

single partial plan is always sufficiently expressive to represent all candidates.

Refinement planning algorithm A generalised deterministic refinement planning algorithm

is shown in Figure 2.1 and graphically in Figure 2.2. The algorithm takes an initial partial

plan, representing a large set of candidate sequences, as input, and progressively refines it to

produce a solution plan in which only solution sequences remain. The solution plan in Figure

2.2 contains a single solution sequence, but in practice several solutions can be represented in

a single plan. At each iteration, the planning agent chooses a feature of the plan to improve,

called a refinement (line 10). A refinement can be many things including the removal of a flaw,

the extension of the plan by an action, or the making of a specific decision.

There may be more than one way of performing a given refinement. For example, there may

28

2.1. Single agent planning

1 function bfs(initial)→ solution:
2 create empty open list
3 (open list ← push(initial , open list)
4 while ¬ empty(open list):
5 (plan, open list)← pop(open list)
6 if is solution(plan):
7 solution ← plan
8 return
9 else:
10 ref ← pick refinement(plan) (not a backtracking point)
11 open list ← push(plans(ref), open list)
12 solution ← failure

Figure 2.1: Generalised algorithm for refinement planning.

Initial partial plan

Intermediate partial plan

(after several refinements)

Solution plan

(all solutions)

Candidate sequence

(solution)

Candidate sequence

(invalid)

Figure 2.2: Refinement search in a space of candidate plans (adapted from Narayek, 2002).

be more than one way of resolving a particular flaw or performing a particular task. Each of

these ways is embodied in a planning operator (or sequence of operators) leading to a valid

partial plan. The agent chooses an appropriate operator and applies it to the plan (line 11). Each

successive operator fills in more constraints, and the process continues until a solution plan is

found (line 6) or no more valid plans can be generated.

Consider, for example, an agent trying to produce a list of up to five letters, chosen

from the set {A, B, C,D, E}, representing any dictionary word2. The complete set

of candidate sequences can be generated by appending different combinations of

letters to the end of an empty list.

2While lists of letters are not strictly the same thing as sequences of actions, they are analogous to the list based
plans described above.

29

2.1. Single agent planning

The agent starts with an empty letter sequence and adds it to its open list (line 3). At

each iteration the agent removes a partial sequence from the list and checks if it is a

dictionary word (line 6). If so, the agent returns the word as a solution. Otherwise,

the agent applies the append letter refinement (line 10), generating all possible

sequences resulting from appending a single letter and adding all sequences of five

letters or less back to the open list (line 11).

In most planning algorithms an agent will be able to perform more than one type of refinement.

In the example above the agent could have been given a prepend letter refinement as well as an

append letter one. A single refinement r0 is picked per partial plan p0 visited during search3.

When r0 is applied to p0, it should output a set of plans P1 that, between them, represent the

complete set of candidate sequences of p0. If each of the members of P1 contains some kind

of definite flaw, the agent can signal failure immediately: it does not have to backtrack and try

an alternative refinement of p0. For example, there are no words in the English language that

contain three or more identical consecutive vowels: if the agent in the example above were to

come across the partial sequence “AAA”, it could discard it immediately without considering

the derivatives “AAAA”, “AAAB”, “AAAC” and so on.

Planning approaches The refinement planning algorithm can be altered to resemble almost

any modern planning algorithm by changing one or more of the following features, referred to

collectively in this thesis as a planning approach:

Plan representation This is the type of data structure used to represent the plan, including

features such as temporal and resource models. The choice of representation affects the

sets of candidates that can be stored in a single partial plan. This affects how many

plans the agent has to produce to cover all possible ways of performing a refinement, and

consequently the number of plans that need to be visited per refinement in the worst case.

Refinements and operators The refinements available to the planner affect the efficiency,

completeness and branching properties4 of the algorithm. They affect the ability of the
3Hence the word “picked” and not “chosen”, which has extra connotations in search.
4Branching properties include the branching factor, the redundancy of search states, the order in which candi-

dates can be considered and so on.

30

2.1. Single agent planning

planner to directly tackle specific flaws in a plan, minimise the production of redundant

plans, and so on.

Choice of refinement The choice of refinement (pick refinement function, line 10) has a large

effect on the performance of the algorithm. Strategies such as least commitment (Weld,

1994) and the identification of separable subproblems (Korf, 1987) require the agent to

identify refinements early on in planning that shape search later on. In particular, refine-

ment choice affects:

• how quickly sets of invalid action sequences can be pruned from the search space;

• the ability of an agent to commit to plan features in a multi agent environment, for

the benefit of fellow agents;

• the redundancy in plans visited during planning;

• whether second or third parties need to be contracted to help resolve conflicts in

multi agent problems.

Heuristics Heuristics may be used to help pick the refinements that will produce the maximum

benefit later on, and to choose the order in which to investigate partial plans once they

have been generated.

Solution and failure test functions The is solution function (line 6) is used to identify com-

plete or partial solutions when they arise. In some cases this can be a complex problem,

as it will not always be obvious whether some or all of the candidate action sequences

in a partial plan are solutions. Other functions may also be made available to identify

unresolvable flaws in some partial plans and prune the corresponding branches of search

(as with the three vowel example above).

Search algorithm The push and pop functions can be implemented in various ways to pro-

duce different search algorithms. Stack like functions produce depth first search, queue

like functions produce breadth first search and so on. The most common forms of search

in planning are A* and best first (heuristic only A*) search, which treat the open list

as a priority queue sorted by a heuristic measure of plan quality. Depending on the na-

ture of the planning problem, however, other algorithms may prove more useful. Search

algorithms are discussed in more detail by Russell and Norvig (1995, Chapter 3).

31

2.1. Single agent planning

The aspects of planning listed above are collectively referred to in this thesis as a planning

approach. The same aspects minus the planning algorithm are collectively referred to as a

planning mechanism. Thus:

approach = mechanism + algorithm

While this thesis is concerned with multi agent planning rather than single agent planning, a lim-

ited discussion of the basic approaches to single agent planning is required. Refinement based

planning approaches can be divided into two categories: those that search in the space of states

of the environment that may be visited by performing actions, and those that search in the space

of possible plans. These paradigms, called state space and plan space planning respectively,

are briefly introduced in the following sections. Section 2.1.2 introduces the STRIPS action

representation that is common to many planning algorithms. Section 2.1.3 discusses state space

approaches. Sections 2.1.4 and 2.1.5 discuss the two basic types of plan space planners: least

commitment and hierarchical planners. Finally, Section 2.1.6 discusses a class of local search

planners that do not fit into the refinement planning framework.

2.1.2 STRIPS representation

The first planner was the General Problem Solver (GPS) of Newell and Simon (1969). GPS

could solve various problems, including planning and theorem proving, through the iterative

application of logical rules. Work on planners has since focused on more specific formalisms

better suited to the production of efficient planning algorithms5.

GPS was succeeded by STRIPS (Fikes and Nilsson, 1971), the most commonly known planning

system. The major contribution of STRIPS was a compact action representation that is still used

by many current planners. A STRIPS action consists of three parts: a description, a precondition

formula and a set of effects6. For example the action of travelling between neighbouring towns

5In terms of the time and memory required to solve problems.
6Because of the close mapping between the actions and search operators in state space search, STRIPS actions

are sometimes referred to as STRIPS operators. The former term is used here as search operators are different in
different forms of planning.

32

2.1. Single agent planning

might be represented as follows:

action: travel(?a, ?b)

preconditions: at(?a) ∧ road(?a, ?b)

effects: {at(?b),¬at(?a)}

where travel is the name of the action, ?a and ?b are variable arguments representing towns7

and at(?x) and road(?x , ?y) are Boolean valued state literals. In English this translates as:

Preconditions: To travel from ?a to ?b there must be a road from ?a to ?b and the

traveller must be at ?a.

Effects: Once the traveller has moved, he is no longer at ?a: he is at ?b instead.

Planning variables Variables are used to specify actions that can be applied to more than one

object. They allow a partial specification of the arguments of an action. Actions and literals

are referred to as grounded if all their arguments refer to objects in the world and lifted if they

contain one or more variables. Variables are bound to world objects when an agent decides to

commit to a specific action during planning.

Consider, for example, the list (travel(Birmingham, ?x), travel(?x ,London)),

representing a plan to travel from Birmingham to London via a third as yet un-

chosen city ?x . Suppose there are three possible values of ?x : Farnham, Reading

and Bristol . ?x is existentially quantified: it represents exactly one of the three

possible values. Until ?x is bound to one of the three values, the plan represents a

disjunction of three sets of candidate plans: those involving travelling via Farnham,

travelling via Reading, and travelling via Bristol. Once ?x has been bound to a

value, the plan takes on a more specific meaning and no longer represents the sets

of candidates involving the other two locations.

Variables in preconditions are existentially quantified, referring to a single object in the world.

Variables in effects must appear in the action description or preconditions. This allows the

7The convention in this thesis is to prefix all variable names with question marks.

33

2.1. Single agent planning

planning agent to analyse the predicted state of the world at the time when the action is due to

start and bind variables accordingly to produce the desired effects.

Plans A complete STRIPS plan is a totally ordered sequence of grounded actions. The fol-

lowing conditions hold for a plan:

• The plan is valid if the preconditions of each action match subsets of the world state

immediately before the action is executed (taking into account the effects of previous

actions).

• The plan is a solution to a problem if goals of the problem match a subset of the world

state immediately after the last action in the plan is executed.

Extensions to STRIPS representation The STRIPS action and plan representation are ex-

tremely simple. They lack many features that are considered convenient or necessary to repre-

sent “real world” applications. Examples include:

1. universal quantification of variables in preconditions or effects;

2. “conditional action effects” that depend on world state at the time of execution;

3. decomposition of actions into smaller parts, or aggregation of actions into “macro ac-

tions” (for example for learning);

4. negative or disjunctive preconditions;

5. typed planning variables and world objects8;

6. actions with duration and/or delayed effects;

7. a quantitative temporal model;

8. metric or non-Boolean world state;

9. actions with uncertain or unpredictable effects;

10. sensing actions that reveal world state;

11. conditional branching depending on world state or action effects;

12. looping.

8While typing can emulated with state literals such as location(?x), the explicit use of types can be a more
efficient approach (Section 3.5).

34

2.1. Single agent planning

Some of these features are a convenience, reducing the work needed to encode planning prob-

lems but not actually adding any representational power. Other features represent types of

problem and plan that simply cannot be represented using the STRIPS formalism.

Universal quantification and conditional action effects were first addressed by the Action De-

scription Language (ADL) (Pednault, 1987) and later by the well known Planning Domain

Definition Language (PDDL) (McDermott, 1998; Fox and Long, 2003). PDDL, in its various

incarnations, has also provided support for many of the other features above, although notice-

ably not looping.

While many of the features above are useful for solving real world problems, only a few are

strictly necessary for dealing with multiple agents. The most important features in this regard

are a sufficiently expressive model of interactions and relationships between concurrent actions

(Brenner, 2003). Early work by Georgeff (1983) on process models helped lay the groundwork

for understanding in this area. Support for sensing actions or uncertainty are also potentially

useful if agents have severely limited knowledge of the world, although less so if agents are able

to exchange information before plan execution to get a complete picture of world state. Other

features such as universal quantification and conditional effects reduce potential maintenance

on plans in dynamic worlds where external changes may cause action effects to change.

2.1.3 State space planning

The first category of refinement planners, state space planners, include STRIPS itself. State

space planning involves searching in the space of possible world states. Reachable states are

determined by simulating the effects of actions. State space planners are given three initial

inputs:

1. A set of symbols O representing objects in the world and a complete description of the

initial world state I . World state is specified as a set of literals defined on tuples of

elements from O.

2. The goal state G, also specified as a set of literals. G does not have to be a complete

description of world state; unspecified literals are assumed to be unimportant and are

35

2.1. Single agent planning

ignored when checking for goal states.

3. A set of actions A, in STRIPS or some equivalent representation.

They proceed in one of two ways:

Forward chaining planners start at the initial world state and search forward in time. Actions

are added to the end of the plan, which is assumed to be totally ordered, until a state is

reached that matches the goal state.

Regression planners do a similar search starting at the goal state and working backward to-

wards the initial conditions.

Despite the intuitiveness of state space planning, the space of reachable world states is vast and

for many years no good techniques were known for guiding algorithms to solutions (Chapter 4

of Ghallab et al., 2004). This meant that for a long time state space planners were only able to

handle small problems and plan space planning (Sections 2.1.4 and 2.1.5) dominated. Recent

work on planning graphs (Blum and Furst, 1997) has revived state space planning by providing

a compact way of simultaneously representing alternative orderings of actions.

Planning graphs Planning graphs are a compact plan representation that form the basis of

some of the fastest current planning techniques. A planning graph is a relaxed representation

of possible action sequences and reachable world states. It consists of interleaving layers of

propositions representing possible future states and possible choices of actions. Layers 1 and 2

represent possible state and action choices at time 1, layers 3 and 4 represent possible state and

action choices at time 2 and so on (Figure 2.3).

The graph is constructed with a forward chaining search, each iteration extending it by one unit

of time (or two layers). Because layers represent possible future states, individual layers can

contain nodes that would be mutually exclusive in a single possible world. Mutex arcs are used

to denote pairs of mutually exclusive state and action nodes in each layer. At each iteration

the graph is searched for possible plan sequences if the goal state is a non-mutex subset of the

final state layer. Plan retrieval is done with a backward search that makes heavy use of mutex

information in the planning graph.

36

2.1. Single agent planning

at(A)

road(A, B)

road(B, C)

at(A)

at(B)

road(A, B)

road(B, C)

at(A)

at(B)

road(A, B)

road(B, C)

at(C)move(A, B)
move(B, C)

move(B, A)

state, t=0 state, t=1 state, t=2actions, t=0 actions, t=1

add effectspreconditions noopsdelete effectsLEGEND

Figure 2.3: Planning graph for a simple route planning problem.

More recent extensions to planning graphs handle many extra features, including universal

quantification and conditional effects, exploitation of symmetry, automatic type identification

and exploitation, uncertainty and sensing actions (Weld, 1999), metric resources, quantitative

time and durative actions with delayed effects (Do and Kambhampati, 2001). Many of the

fastest modern planners (Bacchus and Kabanza, 2000; Hoffmann and Nebel, 2001; Smith and

Weld, 1999) plan in state space and use planning graphs either directly or as the basis of heuris-

tics.

2.1.4 Least commitment planning

Least commitment planning is one of two types of plan space refinement planning9 discussed in

this thesis. It involves deferring decisions about the temporal orderings and variable bindings

until they are required to resolve conflicts in the partial plan. Least commitment allows the

planner to be flexible about parts of its plan until it has enough information to work out the

best possible course of action. While many of the fastest current planning algorithms are based

on state space planning, it is this flexibility that makes plan space planning, including least

commitment planning, interesting from a multi agent perspective. Least commitment planners

are often also referred to as “partial order planners” or “Partial Order Causal Link (POCL)

planners”10. The following is a simplified version of the description of UCPOP provided by

9The principle of least commitment, introduced by Marr (1982), has been used in many fields of AI, including
computer vision, planning and theorem proving.

10Technically HTN planners (Section 2.1.5) are also least commitment planners. Unfortunately there is no clear
terminology that categorises all techniques with no overlap between categories.

37

2.1. Single agent planning

Penberthy and Weld (1992):

A partial plan p is a tuple 〈A, T, B, L〉 where A is a set of actions, T is a set of temporal

constraints, B is a set of variable bindings and L is a set of causal links. The preconditions

and effects of an action a ∈ A are referred to as pre(a) and eff(a) respectively. Actions are

unordered and lifted by default; constraints are added to T and B where necessary to impose

temporal orderings, ground variables and remove conflicts. By changing the language of imple-

mentation of T , a number of qualitative and quantitave temporal models can be implemented

with varying complexity and expressiveness (Schwalb and Vila, 1998; Dechter et al., 1991).

A causal link is a structure ai
l−→ aj where ai and aj are actions in A, ai is ordered before aj

and l is an effect of ai and a precondition of aj . ai and aj are referred to as the provider and

consumer of the literal respectively. Causal links are added to the plan to protect preconditions,

making sure they do not come under threat from actions with conflicting effects.

Least commitment planners are given two initial inputs:

1. An initial plan p where:

• Ap contains two dummy actions: a0 and a∞,

• eff(a0) represents the initial state of the world,

• pre(a∞) represents the goal state,

• a0 is ordered before a∞,

• Bp is empty

• Lp is empty

2. A set of actions in STRIPS representation or some equivalent

They proceed by iteratively selecting an action aj and unachieved precondition l ∈ pre(aj) and

trying to achieve it by making the following refinements to the plan:

• adding a causal link ai
l−→ aj from an appropriate existing action ai;

• adding a new action ai that may be used as a provider and a causal link ai
l−→ aj;

• removing a threat to an existing causal link ai
l−→ aj from an action ak with ¬l ∈ eff(ak)

by adding appropriate constraints to T and/or B.

38

2.1. Single agent planning

A valid solution is a plan with no unachieved preconditions and no threats to causal links.

Penberthy and Weld (1992) built on early least commitment planners such as SNLP (McAllester

and Rosenblitt, 1991) and TWEAK (Chapman, 1987) to produce UCPOP, the first least com-

mitment planner to handle ADL (conditional action effects and universal quantification). Since

then they have gone on to produce Zeno (Penberthy and Weld, 1994), one of the most expres-

sive current plan space planners, which is capable of handling domain features such as metric

resources and durative actions with delayed and continuous effects.

2.1.5 Hierarchical Task Network planning

The earliest plan space planners (Sacerdoti, 1975; Tate, 1977) did not search in the space of

task orderings and causal links, but rather in the space of decompositions of actions. These

early planners gave rise to another form of of plan space refinement planning: Hierarchical

Task Network (HTN) planning. Like least commitment planning, hierarchical planning allows

a certain amount of flexibility during planning. It also allows agents to reason at varying levels

of abstraction, which could be useful for reducing communications overheads and limiting the

complexity of inter-agent coordination in multi agent planning.

HTN planners are similar to least commitment planners in that they search in the space of

partial plans and explicitly model temporal and variable binding constraints. However, they

are different in the way they search the space: by considering the possible decompositions of

abstract tasks. Just as the “flat” planners above are based on the notions of actions, goals and

plans, HTN planners are based on notions of tasks, task networks and methods:

Tasks subsume actions and goals. Rather than planning to achieve a set of goals, an agent plans

to perform a set of tasks. There are two types of task: primitive tasks that can be executed

directly and abstract tasks that must be decomposed into smaller tasks during planning.

Task networks are used to represent plans and subplans. A task network n is a tuple

< A, T, B > where A is a set of tasks, T is a set of temporal constraints on the members

of A and B is a set of variable binding constraints.

Methods represent ways of decomposing abstract tasks. A method m is a tuple < h, b >

39

2.1. Single agent planning

where h is an abstract task and b is a task network representing a subplan that achieves

the desired effects of h.

HTN planners are given two initial inputs:

1. A non-empty initial plan p containing abstract and primitive tasks that need to be per-

formed.

2. A set of methods M providing ways of decomposing abstract tasks.

They proceed by iteratively selecting a task t ∈ Ap and and decomposing it using an applicable

method m ∈M by substituting for t with bm.

Primitive tasks have preconditions and effects in the same way STRIPS actions do. Abstract

tasks have no preconditions and effects per se, although new preconditions and effects may be

introduced when an abstract task is decomposed. A single abstract task may have more than one

applicable method, so relevant preconditions and effects are not always known in advance. Con-

flicts introduced during decomposition are resolved as they are in least commitment planning

by adding temporal or variable binding constraints11.

Most HTN planners search only in the space of task decompositions12. This is limiting because

every combination of actions has to have been thought out in advance by the human designer

of the method library. This is the major objection raised against HTN planning by supporters

of “flat” planning techniques, but it does not prevent HTN planners being the most widely used

planners in industry for two reasons:

1. HTN is an intuitive way of thinking about planning, and many planning systems in indus-

try are mixed initiative systems that interact with human operators as well as performing

automated search.

2. Human designers can encode problem specific knowledge into methods such that the

planner produces predictable plans in a timely fashion.

11HTN planners may or may not also explicitly represent causal links between tasks.
12A notable exception to this is HyHTN (McCluskey et al., 2002), which is a hybrid planning system capable of

a combination of decomposition and state advancing search.

40

2.1. Single agent planning

Consider, for example, a manufacturing scenario in which it is necessary for a par-

ticular machine to produce a diagnostic report every time it is used. The specifica-

tion of this constraint in a “flat” planning formalism would require the addition of

state information and action preconditions and effects to ensure that every time a

use machine action is added to a plan, a produce report action is also added. This

is a non-trivial adjustment to the planning domain, and would add an extra layer of

complexity to the problems given to the planner. In HTN planning, however, the

produce report task would simply need to be added to the relevant method, and the

planner would not need to do any extra processing to ensure its use at the relevant

points in the plan.

Recursive versus non-recursive domains HTN planning problems can broadly be classified

into ones that contain recursive methods and ones that are not. A method m is recursive if Bm

contains a subtask, some part of which may be decomposed with m. Blocksworld is a classic

example of a recursive HTN domain:

In order to pick up block A I have to make sure there is nothing on top of it.

If there is a block B on top of A I must pick it up and place it on the table.

In order to pick up block B I have to make sure there is nothing on top of it.

If there is a block C on top of B I must pick it up and place it on the table...

The issue of recursive and non-recursive problems is revisited in more detail in Chapter 3.

Conflict detection HTN planners are prone to backtracking because preconditions and effects

are only added to the plan after tasks have been decomposed.

Consider, for example, an agent planning the preparation of an exotic meal as

shown in Figure 2.4. This is done in three decompositions: first, the agent chooses

whether to prepare a Chinese or an Indian meal, then it shops for the ingredients,

and finally it cooks and eats the meal. Chinese meals involve eating with chop-

sticks: if the agent doesn’t have any chopsticks, it will be unable to find a suitable

41

2.1. Single agent planning

plan if it uses the prepare chinese method13. A human would immediately recog-

nise this and choose to make an Indian meal. An uninformed HTN agent, however,

may choose prepare chinese and make all sorts of decisions about which shops to

visit, which ingredients to buy, and how long to cook the noodles, before realising

that the chopstick requirement cannot be satisfied.

prepare_meal

prepare_chinese prepare_indian

buy_noodles eat_chinese

precondition:
have(chopsticks)

buy_rice eat_indian

...can be decomposed using...

OR

Figure 2.4: Example of HTN planning: preparing an exotic meal.

A number of planning systems use control strategies to guide search and stop the planner mak-

ing “poor” choices of decomposition:

The Task Formalism (TF) of the early HTN planner Nonlin (Tate, 1977) allows the domain de-

signer to specify several types of information about methods. For example, a high level effect

of a method m specifies an effect that the body of m is designed to achieve. An unsupervised

condition of m specifies a precondition of a descendant of m in the decomposition hierarchy

that no other descendant is able to achieve. These pieces of information can help the planner

prune inappropriate choices of method, but can affect soundness and completeness. For exam-

ple, a high level effect of a method m may affect the soundness of a planner if one or more

decompositions and linearisations of m do not have an appropriate concrete effect.

Similarly, SHOP and SHOP-2 (Nau et al., 1999, 2003) allow human domain designers to an-

notate methods with the preconditions for situations in which they should be applied: a human

designer could add a requires chopsticks precondition to the the prepare chinese method to

prevent it being used when chopsticks are not available. This requires the planner to totally

13It is assumed that the agent cannot buy chopsticks when it is at the shops.

42

2.1. Single agent planning

order tasks and decompose them in the order they will be executed, so that the complete world

state is known at the beginning of each abstract task. SHOP requires method bodies to be to-

tally ordered. SHOP-2 relaxes this requirement, creating a totally ordered plan from partially

ordered methods.

Tsuneto et al. (1998) present a technique for automatically computing external conditions of

methods from the decomposition hierarchy, by looking at the possible interactions between

the descendant tasks of a method. External conditions serve the same purpose as Tate’s un-

supervised conditions, but because they are automatically calculated rather than designed by a

human, they can be shown to never affect soundness or completeness.

Similar work by Clement and Durfee (1999a,b,c) is particularly relevant to this thesis as it forms

the basis of the the research presented in Chapters 3 to 5. Clement and Durfee use summary

information derived from methods and subtasks to detect possible conflicts directly between

abstract tasks in non-recursive propositional HTN domains. They use this information both

as a heuristic guide and to prune search states from which conflicts cannot be moved. Their

planning mechanism, called Concurrent Hierarchical Plans (CHiPs), is discussed in greater

detail in Sections 2.2.3 and 3.2.

2.1.6 Local search planning

All of the planning algorithms described so far are refinement planning algorithms. They work

by iteratively adding to a partial plan until a solution plan is found. At every iteration, the

agent picks a refinement to apply to the current plan and uses various combinations of planning

operators to create a set of new plans. The agent uses heuristics to estimate which new plan is

most appropriate, and saves the others on an open list as backtracking points.

Backtracking guarantees completeness if the planner can always spot solution and failure

states14. Additionally the search algorithm is able to signal failure if the entire search space

has been covered and no solution has been found. The price of this is the storing of the back-

tracking points, which take up memory and can require maintenance in the event of external

14Failure states are states from which a solution cannot be reached. It is in these cases that the planner initiates
backtracking.

43

2.1. Single agent planning

changes to the environment.

Local search is an alternative technique in which few if any backtracking points are used. Search

algorithms use a combination of the refinement operators from global search and iterative repair

operators that correct individual flaws in the plan. Planners never backtrack: they simply keep

changing aspects of their plans in an ad hoc manner until they find a solution.

Candidate sequence

(solution)

Candidate sequence

(invalid)

Initial candidate

Solution plan

Figure 2.5: Local search in a space of candidate plans (adapted from Narayek, 2002).

Local search algorithms are “hill descending” algorithms15, constantly iterating towards “bet-

ter” plans of smaller heuristic value, according to the local slope of a heuristic landscape. They

do not guarantee completeness and normally only signal failure after being unable to find a solu-

tion for a predetermined length of time. Like all hill climbing algorithms, local search planners

are prone to getting stuck in heuristic plateaux and local minima that do not contain solution

plans. Local search can be effective, however, if good heuristics are used that create a relatively

smooth landscape that minimises at solutions, and stochastic search techniques are used to help

the planner escape local anomalies. Example techniques include:

Simulated annealing is a technique where the current location of search is loosely modelled as

the position of a particle in a hot material that is slowly cooling. At first, when the material

is at a high temperature, the particle will have lots of energy and will be able to move large

distances. As the material cools, the particle’s energy will drop and it will eventually

come to rest at the location of a local energy minimum. In search terms, this means that

the agent starts with a candidate plan and randomly changes it to try and minimise the
15The term “hill descending” is used analogously to the common term “hill climbing”: hill descending algo-

rithms search for conflict minima as hill climbing algorithms search for fitness maxima.

44

2.1. Single agent planning

number of conflicts it contains. At first it will try large (“high temperature”) changes,

but over time it will decrease the magnitude of its changes until a conflict minimum is

reached. Hopefully this minimum will be low enough to constitute a solution to the

problem.

Nogood constraints keep records of parts of plans that have failed to work together. They are

similar to tabu lists, preventing agents from revisiting previous states, but only record

information specific to conflicts and are kept around for the remainder of planning, rather

than for a short period of time.

More information on stochastic search techniques can be found in Section 7.3.2 of Ghallab et al.

(2004).

The ASPEN (Automated Scheduling and Planning ENvironment) framework for continual plan-

ning of spacecraft operations (Rabideau et al., 1999; Chien et al., 1999) uses local search to

plan and replan in dynamic environments. The local search algorithms continuously “repair”

the current plan in response to changes in goals and the environment. ASPEN is of particular

interest because Clement has applied summary information techniques to it to create heuristics

for scheduling abstract activities (Chapter 8 of Clement, 2002).

SAT planning (Chapter 7 of Ghallab et al., 2004) is a popular technique where planning is en-

coded as a propositional satisfiability problem, allowing the use of fast stochastic local search

algorithms. SAT planning is the technique at the heart of the BlackBox planning system (Kautz

and Selman, 1992), which was competitive with the fastest state space planners, including

Graphplan, at the first AIPS Planning Competition in 1998. There are, however, arguments

for avoiding SAT encoding and maintaining a planning based representation, both from an ef-

ficiency point of view and to facilitate development of new planning techniques (Brafman and

Hoos, 1999).

Yokoo and Hirayama (2000) present several asynchronous algorithms for solving constraint

satisfaction problems, which are discussed further in Sections 2.2.3 and 4.4.

45

2.2. Multi agent planning

2.2 Multi agent planning

This section describes various approaches to multi agent planning, building on refinement based

and local search based approaches to single agent planning. The literature cited in this section is

relevant to various subsets of the taxonomy of problems discussed in Section 1.1. Later chapters

of this thesis concentrate more specifically on the subset of problems described in Section 1.2.

The multi agent systems described in this section follow the definition of “agent” introduced

in Section 1.1.1. Multi solver and multi executive systems are not considered unless they also

have a multi agent component. Similarly, multi agent systems are not considered that decom-

pose problems “horizontally” into abstraction layers rather than “vertically” into subproblems

(Section 1.1.1).

2.2.1 Centralised planning

Any of the techniques from Section 2.1 can be applied to multi agent planning if agents are

willing to share complete information about their goals and plans. The process of centralised

planning, shown in Figure 2.6, involves three steps:

Joint
plan

Delegate agent
Agent 1 goals

Agent n goals

Agent 2 goals

Coordinated plan 1

Coordinated plan 3

Coordinated plan 2
Joint
goals

Plan
separationPlanning

Goal
aggregation

Figure 2.6: Flow of information in a simple centralised planning system.

Goal aggregation Agents’ goals are merged into a single set of joint goals, and passed to a

planning delegate agent that takes on the job of planning on behalf of the team.

If goals are non-conflicting, aggregation can be as simple as unioning goals from each

46

2.2. Multi agent planning

agent16. If goals are conflicting or contradictory, agents may have to select a subset of

goals that are achievable. Rosenschein and Zlotkin (1994) describe many bidding and ne-

gotiation protocols that can be applied to such problems. Their emphasis is on efficiency,

simplicity, fairness and the prevention of deception and cheating (Zlotkin and Rosen-

schein, 1996). Domain dependent aspects of negotiation, such as agents’ preferences for

plans that achieve a maximum number of goals or that are robust to environmental events,

are typically encoded as measures of “cost” or “worth” of goals and plans, which are fed

into the protocols in a domain independent way.

Agents may not be able to determine whether or not goals are conflicting until some plan-

ning has been performed, meaning goal selection may have to be revisited after planning

has started. Goal selection applies to single agent scenarios as well as multi agent ones:

Beaudoin (1994) investigates this problem, which he calls “meta-management”, for a

single agent in his PhD thesis. Without good algorithms to find compatible sets of goals

this is a big problem: there are
∑n

i=1
nCi selections from a set of n conflicting goals.

Planning The planning delegate creates a joint plan to achieve all the joint goals. Any of

the single agent planning techniques in Section 2.1 can be used that have a sufficiently

expressive plan representation.

Plan separation The joint plan must be split into a set of coordinated individual plans that can

be passed to the relevant executives.

If “real world” plan execution is being considered, this step may involve reasoning about

executives and their roles in the joint plan. Executives may have to be assigned to certain

actions if the decision has not already been made during planning (Browning et al., 2004).

Synchronisation and coordination information may also have to be inserted into the plan

to ensure successful multi executive execution (Rosenschein, 1982; Biggers and Ioerger,

2001).

Centralised planning is an attractive approach because the planning delegate may draw on well

established algorithms from single agent planning. However, centralised planning does have

one major drawback in that individual agents have no privacy or independence. This may be

16Goal aggregation in HTN planning is essentially the merging of abstract plans (Section 2.2.2).

47

2.2. Multi agent planning

inappropriate if agents are acting on behalf of companies or have access to sensitive information

(de Weerdt and van der Krogt, 2002). In such cases it may be more appropriate for agents to

keep their goals and knowledge private and only share information about their plans (Sections

2.2.2 and 2.2.3).

Centralised planning may also be inefficient if agents’ goals do not conflict significantly. Korf

(1987) categorises goals as independent, serialisable and non-serialisable depending on the na-

ture of their relationships. Independent goals do not interfere during planning and are obviously

solved faster by separate planners. However, serialisable and non-serialisable goals may inter-

fere or conflict, making the best choice of approach less clear. This is discussed in more detail

in the next section.

2.2.2 Plan merging

Plan merging is a popular approach to multi agent planning that addresses part of the problem of

sensitive information and fares better than centralised planning when agents’ goals are largely

independent. Figure 2.7 shows a typical plan merging procedure:

Agent 1 goals

Agent 3 goals

Agent 2 goals Planning

Planning

Planning

Joint
plan

Merger agent
Coordinated plan 1

Coordinated plan 3

Coordinated plan 2
Plan

separation
Merging

Figure 2.7: Flow of information in a simple plan merging system.

Planning is handled separately by each agent, in isolation, disregarding other agents and con-

centrating only on individual goals. The result is a set of uncoordinated individual plans

that are not guaranteed to work when executed together, as actions can be rendered im-

possible and goals undone by other agents.

Plan merging All agents pass their uncoordinated plans to a merger agent for coordination

48

2.2. Multi agent planning

by plan merging. Plan information can safely be shared without exchanging information

about the agent’s original goals and knowledge, although agents must be willing to share

the plans themselves before execution. The merger agent combines the uncoordinated

individual plans to form a single coordinated joint plan, resolving conflicts by adding

ordering constraints and variable bindings and by eliminating redundant actions (difficul-

ties can arise if there are unresolvable conflicts in or between the individual plans: this is

discussed in more detail below).

Plan separation is the same as in centralised planning, and is required to assign individual

plans to executives.

Plan merging is also used in some planning systems when new goals are added after some

planning has been completed. There are many examples of this in the field of continual planning

where planning and execution are continual interleaved processes (desJardins et al., 2000).

Alami et al. (1998) present an “efficient forward chaining plan merging algorithm that supports

multiple agents and continual planning”. At any point there are several agents with plans that

have already been coordinated and are being executed. Agents periodically receive new goals

from a central server and create uncoordinated plans to achieve them. Once an agent has a

complete uncoordinated plan it requests and performs a plan merging operation (PMO), in

which it examines the coordinated plans from all the other agents and merges its new plan in

with them. Agents can create new uncoordinated plans and execute existing coordinated plans

concurrently and continuously, apart from during the short period of time in which a PMO

is taking place. Only one agent is allowed to perform a PMO at a time, causing a potential

bottleneck when goals are numerous and the plans to achieve them are short. Unresolvable

conflicts between new and existing plans may occasionally make plan merging impossible, in

which case a centralised planner is used as a fallback, pausing execution and recreating all plans

from scratch.

Tsamardinos et al. (2000) present a plan merging algorithm for partial order plans that can han-

dle simple conditional branching, quantitative time and actions with temporal duration. They

use it to merge new goals into existing single agent plans. Plans are merged using constraint

49

2.2. Multi agent planning

satisfaction techniques on two constraint graphs: a conditional simple temporal network17, con-

taining the start and end points of actions, and a conflict-resolution graph (Yang, 1997, cited by

Tsamardinos et al.) of the threats on causal links in the plan.

de Weerdt (2003) has developed a resource oriented representation of actions and state called

the Action Resource Formalism (ARF). He uses this as the basis of an anytime plan merging

algorithm with polynomial complexity based on the exchange of resources between agents. The

system requires agents to have an existing set of concurrently executable plans. Plan merging is

not strictly required for the plans to be executable, but it may help reduce the cost of execution

to the agents involved. Valk et al. (2005) present a related plan merging paradigm that adds

an extra pre-planning coordination phase, in which agents exchange goals to suit their own

planning knowledge. This helps create the set of independently executable plans required by

de Weerdt. The problem of allocating a set of planning tasks to a set of agents is shown to

be NP-hard in general, but Valk et al. develop an approximate algorithm that suffices in most

cases.

Disadvantages of plan merging Plan merging is a popular approach to plan coordination.

However, it has two major drawbacks:

1. The success of the whole process is dependent on the ability of the merger agent to merge

the individual plans into a coordinated joint plan. This may be impossible because of

inter-plan conflicts that the merger cannot resolve, or because of a lack of time, informa-

tion or memory capacity. If the merging phase fails, time spent planning will be wasted.

2. Individual agents cannot give each other assistance during planning because they plan in

isolation. This means that, for example, an agent with exclusive control over a resource

cannot assist other agents in their planning of related tasks. This can already been seen in

the Airlock example in Figure 1.2.

The first disadvantage may partially be dealt with by providing the merger agent with an ex-

pressive planning formalism and flexible plan merging algorithms enabling it to resolve a wide

17A Conditional Simple Temporal Network is a variant of the well known Simple Temporal Network (Schwalb
and Vila, 1998) that uses labels on nodes to represent the branches of a plan in which the relevant timepoints exist.

50

2.2. Multi agent planning

range of possible conflicts. The resolution of some conflicts may require alteration of existing

single agent plans, which highlights potential issues of trust and misinterpretation. The second

disadvantage, however, is more fundamental. To achieve this kind of cooperation agents must

exchange information during planning and plan socially.

Serial solution of subgoals Korf (1987) did some influential work on the serial solution of

subgoals in single agent planning, briefly mentioned in the last section, which has some rele-

vance to plan merging and multi agent planning in general. Serial solution involves concen-

trating on one subgoal at a time: once a subgoal has been achieved, the relevant bits of state

information are fixed so the planner cannot undo them, and the next subgoal is tackled. Se-

rial solution is not possible for all sets of goals, but if it is possible it can significantly reduce

problem complexity. Korf categorises subgoals in the following way:

Independent subgoals do not interfere with each other, and can be solved serially in any order.

For example, an agent could solve any number of “eight puzzles” independently: once

each puzzle has been solved, it can be left untouched while the planner solves the others.

Serialisable subgoals can be solved serially in some orders but not in others. For example, an

agent can put away its toys and then close the toy box, but cannot close the toy box and

then put away its toys18.

Non-serialisable subgoals have to be solved at the same time. For example, the robots in the

“airlock” problem in Figure 1.2 rely on each others’ movement to reach their destinations.

It is impossible to move one robot and then the other.

Korf shows that the serial solution of n independent subgoals reduces planning time by a fac-

tor of n. However, with serialisable goals the results are not always clear cut, and with non-

serialisable subgoals no speed increase is possible. In the majority of “interesting” planning

domains, goals often have serialisable and non-serialisable relationships that make serial so-

lution much more difficult. The relationships between goals may also be difficult to solve in

general.

18If the agent were to close the toy box first, it would have to reopen it when it is putting away the toys. Undoing
a previous goal is not permitted in serial solution.

51

2.2. Multi agent planning

Korf assumes that a single agent is doing all the planning, but his observations about goal

types have some relevance for sets of concurrently planning agents. The problems being solved

do not have to be strictly independent for plan merging to be subsequently possible, as some

conflicts between plans (such as redundant actions) can be removed by the plan merging agent.

However, individual problems do have to be independently solvable, so some distributions of

goals between agents will be impossible to solve using plan merging.

Restrictions on subgoals Some attempts to solve this problem of independence have been

made by limiting the interactions between the goals that may be given to different agents. For

example, Yang et al. (1992) propose two domain independent restrictions that can be imposed

on goals to ensure fast plan merging:

1. Given a set of plans S, the actions therein can be partitioned into a set of mergeability

classes {E1, E2 . . . En} such that actions can only be merged if they belong to the same

class. The merging of a set of actions involves replacing them with a single action that

has precisely the same effects.

2. In the joint plan formed by merging the members of S, if there is a precedence relationship

such that an action a must be ordered before an action b from a different mergeability

class, then the reverse precedence relationship of b before a cannot also be required.

These are limiting restrictions, but they still allow the representation of a significant number

of planning problems (see the paper for examples). Yang et al. define two polynomial time

algorithms for merging plans where each planning agent is given a single individual goal:

• One algorithm produces an optimal joint plan from a set of individual plans in O(n3)

time.

• Another algorithm produces a near-optimal joint plan in situations where each planning

agent produces a set of alternative individual plans. Again, the algorithm has O(n3)

complexity.

Algorithms are also defined for situations in which planning agents produce plans for multiple

goals. The algorithms ensure that plans can be merged if they can be found, but the assumption

is still made that individual plans can be found without interaction during planning.

52

2.2. Multi agent planning

Implicit coordination and social laws Shoham and Tennenholtz (1995) show how social

laws can be used to reduce conflicts in planning. Social laws are predefined rules that agents

must follow. A simple example is the rule “Always drive on the left.”19. If all driving agents

follow this rule they rarely need to worry about collisions. Social laws are an effective means of

reducing time spent on planning, but poorly defined rules can prevent planning being sound. For

example, if the left hand lane is blocked then it is a reasonable course of action to temporarily

cross to the other side of the road: the rule defined above forbids this, so agents would be unable

to create a valid plan in this case.

Briggs and Cook (1996) extend the social law paradigm by allowing agents to relax social laws

when necessary to find a solution. Laws are given a ranking, from the most strict to the most

flexible. If agents cannot find valid plans with the strictest set of laws, they relax the highest

ranking laws and try again. Soundness is preserved because agents end up trying to find plans

subject to no laws, which equates to “normal” planning and plan merging. Optimality of plans is

not guaranteed if they are created following laws, but in complex domains the quick production

of a sub-optimal plan is often preferred to the time consuming production of an optimal one.

Briggs and Cook also devise a system whereby agents can acquire suitable social laws using

machine learning, although this is beyond the scope of this thesis.

2.2.3 Distributed planning

In complex “real world” environments, agents with different goals and abilities may need to cre-

ate plans quickly and individually without relying on other agents for help20. In some situations,

demands for independence or privacy may limit the applicability of plan merging techniques.

In these situations agents may require a higher degree of independence than that provided by

plan merging.

An alternative to plan merging is to completely distribute planning. In this approach, agents

are allowed to communicate and exchange information during planning as shown in Figure 2.8.

While this approach is flexible, it is also complicated as each agent has to keep other agents

informed of salient changes to its plan while staying on top of similar reciprocal messages.

19Driving on the right is also a valid option.
20It is useful to be able to seek assistance from other agents but restrictive to require it.

53

2.2. Multi agent planning

There are two types of distributed search only one of which provides independence but both of

which are mentioned in the literature21:

Distributed global search is essentially a form of centralised planning that takes advantage of

concurrency. A single agent controls the search process and assigns refinements to other

agents as planning tasks. The results of refinements are passed back to the delegate and

stored ready for the next iteration. This is the paradigm adopted by, for example, the

Multiagent Planning Architecture (MPA) of Wilkins and Myers (1998).

Agents in this paradigm are equivalent to subordinate problem solvers (Section 1.1.1)

because they are directly under the control of a master agent. This is potentially a way

of increasing the speed of centralised planning, but it does not deal with the issue of

independence any more than centralised planning does.

Distributed local search is an approach in which agents plan independently but periodically

update each other with salient information about resource usage, requests for planning as-

sistance and so on (Figure 2.8). This approach focuses on the independence of the agents,

but means that centralised control like that in centralised planning and plan merging is

impossible. Refinement planning algorithms are of limited use to agents in this paradigm

because changes in other agents’ plans, which are essentially changes in the external envi-

ronment, can invalidate established parts of the plan. Agents are forced to use alternative

algorithms, such as local search algorithms (Section 2.1.6), that do not rely on a static

external environment.

Distributed local search is a topic that has been dealt with very little in the planning literature,

although relevant approaches have been used in the field of distributed constraint satisfaction.

Yokoo and Hirayama (2000) present several asynchronous algorithms for solving constraint sat-

isfaction problems with single and multiple agents. These algorithms do not store backtracking

states, relying instead on nogood constraints to store invalid combinations of values so that they

are not visited again. These algorithms and their application to planning are discussed in more

detail in Section 4.4. Brenner (2003) has also suggested basing a forward chaining algorithm

21The names quoted here are not in common use: they are merely for reference within this thesis.

54

2.2. Multi agent planning

Planning

Planning

Planning

Sharing of partial information

Sharing of partial information

Coordinated plan 1

Coordinated plan 3

Coordinated plan 2

Agent 1 goals

Agent 3 goals

Agent 2 goals

Figure 2.8: Flow of information in a simple distributed local planning system.

for multi agent planning on asynchronous backtracking, although at the time of writing his

algorithm is unpublished.

Commitments and conventions Jennings (1993) creates a general theory of multi agent prob-

lem solving using a distributed goal search formalism. He argues that multi agent cooperation

and coordination are based on two central premises:

Commitments are “pledges to undertake a specified course of action”. Commitments about

future actions are fundamental because without them consensus cannot be achieved. For

example, if an agent commits that it is going to a specific bar in the evening, other agents

can decide whether to join in and when and where to meet up: if no commitment is made,

no plan will be made either22. Commitments need to be, within reason, binding. If they

are rarely held for long, agents cannot reliably use them as the basis of further decisions.

Refinements in planning are essentially commitments to particular plan features. For

example, an agent may commit to a certain order of execution or to the use of a particular

resource. When agents backtrack or try different branches of search they retract or switch

between commitments, which can be bad for other agents. This is discussed further in

Section 4.4.

Conventions “provide a means of monitoring commitments in changing circumstances”.

Changing circumstances sometimes require commitments to be broken. Agents need to

agree on when this is necessary, and on the courses of action to choose in such an event.
22It is expected that many readers will be familiar with this situation.

55

2.2. Multi agent planning

Random changes to commitments are equivalent to unpredictable events in a dynamic

environment (Section 1.1.4): they are more of a hindrance than a help.

In planning, conventions can be enforced in a number of ways, including distributed

search algorithms, negotiation protocols and social laws. The important feature of all of

these techniques is predictability: this is what distinguishes a change in an agent’s plan in

a well thought out multi agent planning approach from a random change in the external

environment.

Jennings performs an in-depth analysis of commitments and conventions in various hypothet-

ical scenarios, and shows how they can be used to model existing distributed problem solving

systems. His analysis is based on a distributed goal search formalism. An example is shown in

Figure 2.9. Agents’ plans are modelled as classic and/or goal trees (Chapter 7 of Russell and

Norvig, 1995). It is possible for agents to share goals and goals to share subgoals. Further in-

terdependencies can exist between goals belonging to the same agent or different agents. These

interdependencies can be strong (“the results of goala are required to achieve goal b”) or weak

(“the results of goala might help to achieve goal b”), unidirectional or bidirectional. Interdepen-

dencies can also exist between goals and resources: resources are either required to achieve a

goal or are provided by achieving a goal.

Given a distributed goal tree and a set of interdependencies, agents make commitments by

choosing or branches to pursue and imposing constraints on the order in which they will be

pursued. The structure of the interdependencies helps agents determine which commitments

are likely to be the most appropriate and/or stable. Jennings’s goal trees are rich and expressive

formalism that has inspired a number of projects in distributed artificial intelligence:

Partial Global Planning Generalised Partial Global Planning (GPGP) (Decker and Lesser,

1992) is concerned with the “distributed coordination problem”, which is described as “[how]

the local scheduling of activities at each agent [should be] affected by non-local concerns and

constraints”. GPGP uses a goal formalism called TÆMS (Horling et al., 1999) that is very

similar to Jennings’s goal trees: quantitative interdependencies can be specified between goals

and resources at varying levels of abstraction, allowing agents to schedule problem solving

activities to maximise the quality of their results. GPGP is a family of coordination algorithms

56

2.2. Multi agent planning

goal1 goal2

goal3 goal6goal5goal4 goal7 goal8

goal9 goal10 goal11 goal12 goal13 goal14

goal15 goal16 goal17 goal18 goal19

AND

AND AND

AND

OR

OR OR

OR

resource1 resource2 resource3 resource4 resource5

agent1 agent2

Figure 2.9: A distributed goal search tree adapted from (Jennings, 1993) involving two agents:
agent1 and agent2. Black lines represent and/or decomposition of goals, blue arrows represent
interdependencies between goals of a single agent, orange arrows represent interdependencies
between goals of different agents, and green arrows indicate interdependencies between re-
sources and goals.

for goal allocation and subdivision, information sharing, and result merging.

GPGP does not deal explicitly with planning problems in the conventional sense: agents are

provided with a problem structure in terms of a goal tree, whereas in planning the tree would

have to be inferred from the description of the problem domain. The quantitative nature of

GPGP gears it towards optimisation problems, in which there are few hard constraints but many

weak constraints that affect the quality of the solutions output.

Task trees and summary information The work of Clement and Durfee (1999a,b,c), which

was briefly mentioned in Section 2.1.5, is also based on a goal tree like formalism. Their task

trees are a blend of goal trees and HTN planning formalisms, and their summary information

allows weak and strong interdependency information to be automatically generated from the

planning domain. In performing the crossover with HTN planning Clement and Durfee drop

some of the flexibility of Jennings’s representation. For example, there is no multiple parent-

hood as there is with goal6 and goal18 in Figure 2.9, and this means that a single task cannot

be controlled by more than one agent. This simplification is presumably in the interests of sim-

plicity when developing the formal semantics of task trees, although this is not made clear in

the literature.

57

2.3. Summary of multi agent planning approaches

Task trees and summary information form the basis of the MPF planning mechanism used in

this thesis, and are described in detail in Section 3.2.

Jennings’s hypothesis about the centrality of commitments and conventions makes many state

space planning approaches less attractive from the point of view of distributed local planning:

• Agents need to be able to make commitments progressively during planning. If agents do

not make commitments regularly or retract them too quickly, other agents cannot make

decisions based on them. Agents using planning graphs, in particular, do not commit to

any temporal orderings until the very end of planning, when a valid plan is extracted from

the graph (Section 2.1.3). This gives a single agent enormous amounts of flexibility, but

is bad from a multi agent point of view.

• Distributed local planning is about resolving conflicts between agents’ plans. An agent

may be required to resolve a specific conflict at a specific stage in planning, which is more

likely to be possible if agents only commit to plan features when necessary to remove

conflicts that have already been detected. State space planning algorithms commit heavily

to temporal orderings regardless of whether there are conflicts in the plan or not, meaning

they may have to backtrack several levels if there is a problem caused by an action in the

middle of a plan. Plan space approaches that use the principle of least commitment are

more likely to be able to make a quick change to fix a particular conflict.

2.3 Summary of multi agent planning approaches

This chapter has introduced many approaches to single and multi agent planning. In particular,

three general types of multi agent planning approaches have been outlined:

Centralised planning collects individual planning problems into one large joint planning

problem (as does distributed global planning), and passes that problem to a single agent

to solve. Independence of individual agents is sacrificed in exchange for the ability to use

fast refinement planning techniques.

58

2.3. Summary of multi agent planning approaches

Plan merging techniques allow agents to plan independently using single agent planning tech-

niques. The individual plans are collected by a single agent and merged into a coordinated

joint plan. Individual agents are more independent in this approach than in centralised

planning, but the division of search into two separate phases causes it to be inappropriate

for some problems. Refinement planning approaches are useful throughout, although the

plan merging agent may benefit from increased flexibility if it is given the ability to undo

commitments made in individual plans to create a valid joint plan (Section 6.1.4): such

ability may be better implemented using local search techniques.

Distributed local planning approaches give agents the maximum independence possible: they

only share the information necessary to coordinate their plans, and do not rely on the

outsourcing of planning or merging activities to others. The distributed nature of search

means that refinement search algorithms are inappropriate without modification. Local

search provides a possible alternative paradigm.

In terms of independence, distributed planning is clearly the most attractive of the three ap-

proaches. However, changes in other agents’ plans effectively cause a chain of external events

that violate the central assumption of a static world that is associated with refinement planning

approaches. Special search techniques are required to make distributed local planning viable.

The remainder of this thesis concentrates on the implementation and empirical comparison of

versions of these three approaches. This work clarifies and reinforces the issues and arguments

discussed this far, and provides a deeper understanding of the problems at hand. It is hoped that

this exercise will help to examine the advantages and limitations of each approach, and provide

pointers for the development of good approaches for multi agent planning.

A common planning mechanism is required on which the three approaches above can be imple-

mented: this will remove extraneous differences between the approaches and make an empirical

comparison between them as fair as possible. Chapter 3 develops the Multi agent Planning For-

malism (MPF), the planning mechanism used throughout the rest of this thesis. MPF is based

on the Concurrent Hierarchical Plans (CHiPs) of Clement and Durfee (1999a,b,c), which is

itself based on a fusion of Jennings’s distributed goal trees and HTN planning.

59

2.3. Summary of multi agent planning approaches

Chapter 4 develops algorithms, based on MPF, for centralised planning, plan merging, and

distributed local planning. The centralised planning and plan merging algorithms use a straight-

forward refinement based search. The distributed local planning algorithm is a blend of local

refinement planning and distributed constraint satisfaction techniques for the removal of inter

agent conflicts. Chapter 5 investigates the performance of the three approaches when applied

to a number of “traditional” planning problems. Chapter 6 concludes the thesis by revisiting

the contributions from Section 1.3 in the light of the rest of the thesis and outlining possible

directions for future research.

60

Chapter 3

A common planning mechanism

The performance of any computer system is partially dependent on the manner of its implemen-

tation. For a given problem, the performance of a multi agent planning approach will depend on

many factors including: the details of the approach itself, the single agent planning algorithm

it uses (if any), the programming language of implementation, the method used for evaluation,

and the representations, refinements and operators on which it is based. The details of the plan-

ning and coordination algorithms used will necessarily be different in different approaches, but

to perform an accurate comparison all other details should be as fixed as possible. This chapter

presents a common planning mechanism (Section 2.1.1), on which implementations of the three

approaches in Section 2.2 are built in Chapter 4.

The planning mechanism used in this thesis, called the Multi agent Planning Framework (MPF),

is based on the Concurrent Hierarchical Plans (CHiPs) of Clement (2002). CHiPs is an HTN

planning mechanism developed for the coordination of plans for multiple executives1. It uses

summary information to detect conflicts directly between abstract tasks instead of having to

decompose to the level of primitive tasks. This allows the early detection of solution and fail-

ure states, pruning branches of search early on and finding solutions more quickly than HTN

planners that rely on primitive preconditions and effects (Section 2.1.5).

Two varieties of MPF are described below: propositional MPF (pMPF) and first order MPF

(fMPF). pMPF is very similar to CHiPs, while fMPF introduces a number of novel extensions,

1Clement refers to this differently, as “multi agent planning”, as a result of the terminological ambiguities
described in Section 1.1.1.

61

3.1. Requirements

making it useful for the representation of larger, more complex problems. fMPF is used in most

of the experiments in Chapter 5.

Section 3.1 discusses some of the key requirements for a multi agent planning mechanism, and

Section 3.2 provides an overview of the key features and limitations of CHiPs. Sections 3.3 and

3.4 discuss pMPF in detail, and Sections 3.5 and 3.6 discuss the extensions present in fMPF.

A semi-formal notation is used to describe data structures and algorithms throughout this chap-

ter. A guide to the notation can be found in Appendix A.

3.1 Requirements

A number of features are desirable in a planning mechanism to aid both the representation of

multi agent problems and the use of the mechanism in multi agent planning approaches. This

section outlines the criteria that lead to the adoption of CHiPs as a main source of inspiration

and the development of MPF as a planning mechanism. Other requirements for multi agent

planning mechanisms have since been identified as a result of the development of algorithms in

Chapter 4 and the empirical work in Chapter 5. These additional requirements are discussed in

the conclusions in Section 6.1.3.

3.1.1 Joint and multi executive plans

As mentioned in Section 1.1.1, the terms individual plan and joint plan are used ambiguously

in the literature, either referring to plans made by single and multiple agents or plans for single

and multiple executives. As this thesis is concerned with planning rather than plan execution,

the following definitions are used:

• an individual plan involves tasks for achieving the goals of a single agent;

• a joint plan is the (explicit or notional) combination of the individual plans of several

agents.

Several individual plans can be merged into a single joint plan, and a joint plan can be split

up into a set of coordinated individual plans. Similarly, it is possible for both individual and

62

3.1. Requirements

joint plans to contain information about multiple executives: a multi executive plan can be split

up into a set of coordinated single executive plans, and several single executive plans can be

merged into a single joint executive plan.

Any multi agent planning system needs at least to be able to differentiate and convert between

individual plans and joint plans. If plan execution is significantly complex, conversion between

single and multi executive plans may also be important.

The empirical work in this thesis ignores plan execution to concentrate on planning (Section

1.2). It is sufficient and convenient in this case to model executives as part of the planning

problem (or to ignore them altogether). For example, in a multi gripper Blocksworld problem

the action to move a block may be represented as:

move(?block , ?src, ?des , ?gripper)

where ?gripper is a variable that can be bound to a particular gripper executive during plan-

ning. With this simple model, a multi executive plan is simply a plan containing concurrently

executing tasks.

Agents are more difficult to represent than executives as they have complex internal state, part

of which consists of plans themselves. Fortunately, explicit modelling of other agents’ mental

state is only necessary in certain types of advanced agent architecture. When only planning is

being considered, a simpler mechanism will suffice: plans must be annotated with a minimum

amount of information to represent ownership, identifying the agent or agents responsible for

individual constraints, goals or actions.

3.1.2 Expressive temporal model

While multi agent planning does not necessarily require temporal reasoning of the complexity

found in Zeno (Section 2.1.4; Penberthy and Weld, 1994), it does require a model capable of

representing concurrent actions, preconditions and effects. Agents need to be able to commit

to temporal orderings in response to aspects of other agents’ plans as well as their own. This

makes temporal flexibility very important.

63

3.1. Requirements

Some recent single agent planners have used temporal models based on temporal constraint net-

works of various kinds (Dechter et al., 1991). For example, Simple Temporal Networks (STNs)

are used by many planners to provide a simple quantitative temporal model. MPF is based on

interval temporal algebra (Allen, 1983). While interval algebra does not provide qualitative

information, it does allow qualitative reasoning about discontinuous disjunctions of temporal

orderings with relatively little computation. This provides a powerful plan representation in

which diverse sets of temporal orderings can be simultaneously represented (Section 3.3.4).

3.1.3 Flexible refinement

As discussed in Section 2.1.1, agents typically plan by iteratively making commitments in the

form of refinements. An agent chooses a feature to refine, enumerates planning operators that

may be used to do the refinement, and then chooses the operator that produces the “best” plan

for the next iteration of the algorithm according to some heuristic.

The flexibility of a strategy for refinement choice becomes important in situations where agents

impose changing constraints on each other. Consider two agents, Alice and Bob, deciding how

to get to work:

1. Bob has a big meeting in the morning requiring lots of heavy papers. He decides he will

take the car to work.

2. Alice has to go to the shops. If Bob has the car she cannot go, because she needs the

transport to carry the shopping home.

3. Bob changes his mind and postpones his meeting until the next day. He reconsiders his

use of the car and decides to walk to work.

4. Alice is left getting up early and walking to work for no reason. She has to revise previous

decisions if she wants to get a better plan.

Plan revision is unavoidable in some cases. For example, Bob’s decision not to use the car

may be based on new information which he did not have when he started planning: in fact,

planning itself may reveal derived constraints that require agents to rethink previous decisions.

64

3.2. Overview of task trees and summary information

However, agents should be able to identify the constraining parts of their plans so they can

commit to shared resource usage, avoiding unnecessary backtracking (Jennings, 1993). Re-

sources comprise any part of the planning problem that can be changed or manipulated by a

plan: shared resources are resources that can be altered by multiple agents. In this case, the

car is the constraining shared resource and the agents should be able to choose refinements ac-

cordingly, identifying a suitable policy on shared resources early on and preventing unnecessary

backtracking.

Refinement selection should be driven by resource usage rather than some other factor. While

new parts of a plan will be chosen so that they are compatible with existing parts, later back-

tracking may cause conflicts and the planning algorithm will need to be able to reason directly

about these flaws.

3.1.4 Accurate heuristics

As discussed in Section 2.1.6, when external constraints change unpredictably, global search

becomes increasingly difficult and agents have to rely on local search algorithms that do not

store information in the long term. Even in static environments, concurrently planning agents

may need local search mechanisms to cope with unexpected changes in each others’ plans.

Because local search algorithms can easily get stuck in local minima and plateaux (Section

2.1.6), accurate heuristics are needed that produce smooth heuristic landscapes with few local

minima.

3.2 Overview of task trees and summary information

This Section provides a brief overview of the approach taken in CHiPs and why it satisfies many

of the requirements from the previous section. It also outlines some limitations of CHiPs and

novel approaches for overcoming them. Many technical details are left until later sections.

CHiPs is an HTN mechanism which allows the detection and resolution of conflicts not only at

the level of primitive tasks, but also at arbitrary levels of abstraction. This is done by computing

and reasoning about summary information about the resource usage of abstract tasks. Summary

65

3.2. Overview of task trees and summary information

information can be used to predict conflicts that may occur later in planning, smoothing the

heuristic landscape and improving the accuracy of search.

The following example will be used in the next few sections to show how summary information

is calculated and used:

Consider a simple problem based on the dilemma of Alice and Bob (Section 3.1.3).

Bob needs to get to work and has the choice of walking or taking the shared car.

Alice needs to get to the shops later on and needs the car to get there.

Disregarding for the moment that Alice and Bob may be separate agents, and modelling them

simply as executives within a centralised planning system, a single joint plan can be constructed

involving tasks for both executives as shown in Figure 3.1. For the purposes of the example it

is assumed that all tasks in these method bodies are primitive2. Their preconditions and effects

are shown in Figure 3.2.

plan = 〈tasks: (bob to work, alice to shops)
〉

method1 =
〈
head: bob to work, body: 〈tasks: (bob get in car, bob drive work,

bob get out car)〉
〉

method2 =
〈
head: bob to work, body: 〈tasks: (bob walk work)〉

〉
method3 =

〈
head: alice to shops, body: 〈tasks: (alice get in car, alice drive shops,

alice get out car)〉
〉

Figure 3.1: Simple example of an HTN planning problem involving two executives. All actions
and state literals are propositional and all tasks are totally ordered as listed, making temporal
and binding constraints redundant.

3.2.1 Task trees

A traditional HTN planner such as UMCP (Erol, 1996) would attempt to solve this problem

by iteratively choosing an abstract task from plan and substituting for it using the body of

an appropriate method. The obvious solution is to decompose bob to work with method2

2Readers who are unfamiliar with HTN terminology may find it useful to refer back to Section 2.1.5.

66

3.2. Overview of task trees and summary information

preconditions(bob get in car) = {car at home}
effects(bob get in car) = {bob in car}

preconditions(bob drive work) = {bob at home, bob in car}
effects(bob drive work) = {¬bob at home, bob at work,

¬car at home, car at work}
preconditions(bob get out car) = {bob in car}

effects(bob get out car) = {¬bob in car}
preconditions(bob walk work) = {bob at home}

effects(bob walk work) = {¬bob at home, bob at work}
preconditions(alice get in car) = {car at home}

effects(alice get in car) = {alice in car}
preconditions(alice drive shops) = {alice at home, alice in car}

effects(alice drive shops) = {¬alice at home, alice at shops,

¬car at home, car at shops}
preconditions(alice get out car) = {alice in car}

effects(alice get out car) = {¬alice in car}

Figure 3.2: Preconditions and effects of primitive tasks from Figure 3.1.

and alice to shops with method3, as this resolves issues over the availability of the car. If

bob to work is decomposed with method1, a conflict would inevitably result as there would be

no way to achieve the precondition car at home of alice drive shops . This is an example of

the conflict detection problem discussed in Section 2.1.5: the planning agent may initially not

be able to decide which method to choose. While the amount of backtracking required here if

method1 were picked first would be small, it is possible to imagine situations where the cost of

backtracking may be very high.

CHiPs approaches the problem in a way that, in this case, avoids backtracking. First of all, a

task tree is built that explicitly represents the possible decompositions of abstract tasks in the

plan. Task trees are and/or trees similar to the goal trees suggested by Jennings (Section 2.2.3).

A tree for the example problem is shown in Figure 3.3.

The root of the task tree (level 0) is a task network representing the plan. Level 1 nodes are

tasks in the plan, level 2 nodes are task networks representing decompositions of level 1 nodes,

level 3 nodes are tasks in level 2 networks and so on. Decomposition becomes the process of

67

3.2. Overview of task trees and summary information

root

bob_to_work alice_to_shops

method3method1 method2

bob_drive_work bob_walk_work alice_drive_shops

bob_get_in_car bob_get_out_car alice_get_in_car alice_get_out_car

Root (level 0)

Level 1

Level 2

Level 3

Figure 3.3: Simplified task tree for the abstract task and methods in Figure 3.1. Task networks
are shown as capsules with rounded corners. Tasks are shown as rectangles. Arrows indicate
membership (task network→ task) and possible decomposition (task→ task network).

selecting a level 1 task t that has one or more children(t), selecting one of its children d, and

replacing t with children(d) while making appropriate updates to constraints on timings and

resource usage3.

3.2.2 Histories

A task tree is essentially a partial plan representing a disjunction of possible decompositions,

temporal orderings and variable bindings. A history is a complete decomposition, linearisation

and grounding of a task tree; each tree represents a set of possible histories, each of which may

or may not be a solution to the planning problem4. Every node if a task tree is associated with

its own set of histories that can be formed from its subtree.

Abstract solutions and failures A task tree is referred to as an abstract solution if every

history derivable from it is a conflict free solution to the planning problem. Similarly, a task

tree is referred to as an abstract failure if none of its histories are conflict free solutions. Be-

cause subtasks can be interleaved after decomposition, the number of possible histories grows

exponentially as the height of the tree increases. This makes the detection of abstract solutions

and failures difficult for non trivial task trees. CHiPs is nevertheless capable of detecting some

abstract solutions and failures through the use of summary information.
3A precise definition of the children function for MPF task trees is given in Section 3.3.6.
4Histories are a mechanism-specific interpretation of the candidate plans introduced in Section 2.1.1.

68

3.2. Overview of task trees and summary information

3.2.3 Summary information

The leaves of a task tree represent primitive tasks with preconditions and effects specified in

the initial problem description. The possible preconditions and effects of nodes higher up the

task tree can be calculated by propagating summary information from the leaves upward. Sum-

mary information is specified using three types of structure, referred to collectively as summary

conditions:

Summary preconditions are net preconditions that are present in one or more histories of a

node.

Summary postconditions are net effects that are present in one or more histories of a node.

Summary inconditions are states that are visited during one or more histories of a node, but

are not summary preconditions or postconditions (Section 3.3.7). For example, if Bob

travels to work in the car, but starts and finishes the journey on foot, bob in car is an

incondition of the journey as a whole.

Existence of summary conditions Summary conditions are classified as must or may condi-

tions, providing an estimate of whether they occur in all or a subset of the histories of a node.

Must conditions appear in all histories of a node, making them definite features of any plan

produced; may conditions appear in some histories but not others, meaning that they may or

may not appear in a final plan.

Figure 3.4 shows the task tree from Figure 3.3, annotated with example summary information.

Note the presence of inconditions in the summary information for method1 and method3, and

the presence of may conditions in the summary information for bob to work . Note also that

some summary conditions are merged as they are propagated up the tree, so some information

is lost during summarisation: summary information is a relaxed representation of the possible

resource usage of a task or task network.

Relationships between summary conditions Relationships such as achieving, clobbering

and undoing that can be found between preconditions and effects at the primitive level, can

69

3.2. Overview of task trees and summary information

root

bob_to_work alice_to_shops

bob_drive_work bob_walk_work alice_drive_shops

bob_get_in_car bob_get_out_car alice_get_in_car alice_get_out_car

Root (level 0)

Level 1

Level 2

Level 3

pre

post

must
must
must

bob_at_home
car_at_home
bob_in_car

pre
post

must
must ¬

bob_in_car
bob_in_car

pre

post

must
must
must

alice_at_home
car_at_home
alice_in_car

pre
post

must
must

alice_in_car
alice_in_car¬

pre

post

must
must
must
must
must
must

bob_at_home
bob_in_car
bob_at_home
bob_at_work
car_at_home
car_at_work

¬

¬

pre

post

must
must
must
must
must
must

alice_at_home
alice_in_car
alice_at_home
alice_at_shops
car_at_home
car_at_shops

¬

¬

pre
post

must
must
must

bob_at_home
bob_at_home
bob_at_work

¬

pre

in
post

must
must
must
must
must
must
must

bob_at_home
car_at_home
bob_in_car
bob_at_home
bob_at_work
car_at_home
car_at_work

¬

¬

pre
post

must
must
must

bob_at_home
bob_at_home
bob_at_work

¬
pre

in
post

must
must
must
must
must
must
must

alice_at_home
car_at_home
alice_in_car
alice_at_home
alice_at_shops
car_at_home
car_at_shops

¬

¬

pre

in
post

must
must
must
must
must
must
must

alice_at_home
car_at_home
alice_in_car
alice_at_home
alice_at_shops
car_at_home
car_at_shops

¬

¬

pre

in
post

must
must
may
must
must
may
may

bob_at_home
car_at_home
bob_in_car
bob_at_home
bob_at_work
car_at_home
car_at_work

¬

¬

method3method1 method2

Figure 3.4: Summary information for the task tree in Figure 3.3. The tasks bob get in car ,
bob drive work and bob get out car are occur in order in the plan, as do the tasks
alice get in car , alice drive shops and alice get out car .

also be found between summary conditions at arbitrary levels of abstraction. This information

can be used for the detection of some (but not all) abstract solutions and failures. Conflicts

between summary conditions of level 1 nodes are called threats, some of which can be resolved

by decomposition and temporal ordering and some of which cannot. A task tree with no threats

is an abstract solution to the problem; a task tree with one or more unresolvable threats is an

abstract failure.

In problems with propositional actions and world state, most of the summary information can

be calculated once prior to planning and cached for later reuse.

Complexity of summarisation Clement (2002) states that the complexity of calculating the

summary information of a node from the summary information of its children is O(d2s2), where

d is the number of child nodes and s is the number of summary conditions per child. From this

70

3.2. Overview of task trees and summary information

he shows that, in level i of a task tree of height h, with an average d children and c (non-

summary) preconditions and effects per node, the complexity of summary information is as

follows (Chapter 6 of Clement, 2002):

1. di nodes in the level

2. O(d(h−i)c) summary conditions per node (assuming the worst case where summary con-

ditions do not merge during propagation)

3. O(d(2h−i)c2) operations to derive the summary information for level i from the informa-

tion for level i + 1

4. O(d2hc2) operations to detect conflicts between summary conditions in level i

5. O(kdi
) possible orderings of the tasks in level i (where k is a constant)

6. O(kdh
) possible orderings of the leaf nodes in the tree (level h)

The two important results here are that the complexity of checking for conflicts between sum-

mary information is independent of level in the tree (item 4), and as long as the tree does not

have to be expanded to the primitive level, the complexity of finding a valid task ordering is

reduced by a factor of O(k(dh−di)) (items 5 and 6).

3.2.4 Heuristics and test functions

Rather than relying on primitive preconditions and effects to detect conflicts and assess plan

quality, agents using summary information can reason directly about threats in the task tree.

For example, an agent examining summary information for the task tree in Figure 3.3 would be

able to predict the conflict that might occur over cars and choose decompositions accordingly.

Several useful heuristics and test functions can be automatically derived from summary infor-

mation:

Abstract detection of solutions (Clement’s can any way function; Section 3.4.1) If there

are no threats on summary preconditions of level 1 children, then any history derived

71

3.2. Overview of task trees and summary information

from the task tree will be conflict free and will thus be an abstract solution. This function

is used as the solution test function described in Section 2.1.1.

Abstract detection of failures (Clement’s might some way function; Section 3.4.1) If an

unresolvable threat exists between two must summary conditions, then every history

derived from the task tree will contain an equivalent conflict. The tree will therefore

be an abstract failure. Abstract failures are pruned from search, preventing the agent

wasting time search through possible derivatives.

Quantitative comparison of possible refinements The “importance” of a refinement can be

measured in terms of the number of threats it has the potential to resolve. This allows the

adoption of an early resolution strategy for refinement choice based upon inter-agent and

intra-agent conflicts, as described in Section 3.1.3.

Quantitative comparison of candidate plans The “quality” of a plan can be measured in

terms of the number of resolvable threats it contains. Agents can choose the order in

which to visit plans output by refinements to minimise the number of threats encoun-

tered.

Joint and individual heuristics The information above may be generated jointly for the

whole team or individually for each agent. Joint functions count every threat between every

pair of summary conditions in the joint plan, whereas individual functions only count threats

where the clobbered or unachieved summary condition belongs to a specific agent. The choice

of joint or individual functions is important in approaches such as distributed local planning

(Section 4.4) where agents have access to information about their own plans and the plans of

others.

3.2.5 Advantages and limitations of the approach

CHiPs fulfils many of the requirements specified in Section 3.1, each of which is revisited

below:

Joint plans can be represented within a single task tree. With small modifications, individual

72

3.2. Overview of task trees and summary information

plans can be represented in separate task trees. Individual task trees can be coordinated

through the sharing and analysis of level 1 summary conditions, together with minimal

information on timings.

Temporal constraints are attached to task network nodes in the tree. Various models, includ-

ing interval temporal algebra, STNs and DTNs, can be represented with little effect on

the rest of the planning system.

Refinements are chosen on the basis of threats between summary conditions. Inter- and intra-

plan threats can be resolved early or late depending on the strategy for refinement choice

used by the planning agent.

Detailed heuristics are provided at all levels of abstraction, allowing agents to make informed

decisions about which plans and refinements to choose to minimise backtracking during

distributed search.

MPF adds novel features to CHiPs to address four limitations:

Task ownership While CHiPs is capable of representing single and multi agent plans in a sin-

gle task tree, it does not contain suitable information to support the coordination of sev-

eral individual task trees. Extra annotations are required to represent task and constraint

ownership.

Flexible temporal representation The temporal reasoning used in MPF is a combination of

interval temporal algebra (Section 3.3.4; Allen, 1983) and novel reasoning about “tempo-

ral envelopes” (Section 3.3.8), as opposed to the point temporal algebra of CHiPs. This

allows greater temporal flexibility in the plan representation, allowing decisions about

temporal orderings to be deferred until later in planning and reducing the branching fac-

tor of the search algorithm.

First order state representation Actions and state literals in CHiPs are propositional. First

order problems can, of course, be compiled into propositional format, but at the cost of

an exponential increase in the size of the task tree. This is discussed in detail in Section

3.5.

73

3.3. Propositional plans

Recursive problems The introduction of first order actions and literals to CHiPs is not without

its problems. In some domains with first order actions, some tasks can be decomposed

into abstract histories involving other actions of the same type. Consider, for example,

the Blocksworld problem in Figure 3.5. In the figure, the clear(?x) subtree can be of

arbitrary size depending on the number of blocks.

Tasks are recursive if they have an action and can be decomposed into abstract plans

containing instances of action. It is difficult to predict a bound on tree size in general

when recursive tasks are present, and accurate summary information cannot be generated

without generating a complete task tree prior to planning (although this is the subject of

ongoing research; Gurnell, 2004)5.

clear(?x)

do_clear do_noop
pre:
clear(?x)

clear(?y) move(?y, table)

pre:
on(?y, ?x)

do_clear do_noop
pre:
clear(?y)

pre:
on(?z, ?y)

Figure 3.5: Example of a recursive task: the clear task from Blocksworld. Capsules, rectangles
and arrows have the same meanings as in Figure 3.3.

Sections 3.3 and 3.4 discuss pMPF detail. This is based closely on CHiPs, except where noted

in the text. Sections 3.5 and 3.6 discuss novel approaches used to extend pMPF to produce

fMPF, which supports planning in recursive first order domains.

3.3 Propositional plans

The two variants of the new MPF planning mechanism are now described. pMPF is very similar

to CHiPs, implementing only the support for task and constraint ownership and new interval

5Available from http://www.cs.bham.ac.uk/∼djg.

74

3.3. Propositional plans

based temporal model discussed in the previous section. fMPF is an extension to pMPF that

can handle the remaining extensions discussed above, namely support for first order problems

and (some types of) recursive tasks and methods. While all of these features have been used in

previous planning systems, they have not been applied to task tree and summary information

techniques: they are necessary to use task trees and summary information on the “traditional”

problems described in Section 1.2.

pMPF is introduced in this section and Section 3.3. As stated above, pMPF is similar to CHiPs

apart from a few differences that are noted in the text: the entire mechanism is described here

both for completeness and as a grounding for the rest of the thesis. fMPF, meanwhile, is entirely

new work and is introduced in Sections 3.5 and 3.6.

3.3.1 Agents and ownership

MPF is only capable of representing problems involving closed teams of agents (Section 1.1.4),

where the set of agents does not change over time. Each agent has a unique identifier that is

used to indicate its responsibility for elements of joint plans.

Task trees are used to represent both joint plans and individual plans. Each node and constraint

in the tree is annotated with owner information specifying which agents are allowed to change

it. Environmental nodes and constraints, specified in the initial conditions of the planning prob-

lem, are given a virtual “owner” (the name of the problem itself): environmental nodes and

constraints are known to all agents and can be changed by none.

As is discussed below, ownership of nodes can be sufficiently represented with a single owner

per node; a list of zero or more owners is necessary to represent ownership of temporal and

variable binding constraints.

3.3.2 World state

World state refers to the external state of the environment. It is this state that agents can change

by executing actions from their plans, and it is also this state that dictates when an action can or

cannot be performed.

75

3.3. Propositional plans

In MPF, the state of the world at any instant is specified as a set of literals describing Boolean

states that can be manipulated by executives. Examples of state literals include car at home,

car at work , ¬bob at home and the other preconditions and effects of the primitive tasks from

Figure 3.2.

State constraints The preconditions and effects of tasks are represented as two types of node

in the task tree6:

Preconditions represent continuous finite time intervals during which a particular state literal

must not be changed, for example in the preconditions of a task. This is illustrated in

Figure 3.6.

literal protected
(cannot be changed)

<pre1, literal>

literal

time

literal may be
changed by other
state constraints

literal may be
changed by other
state constraints

start end

Figure 3.6: Time-line of a precondition state constraint.

Postconditions represent changes to a state literal caused by the planned execution of a task

or an initial condition in a problem. In many planning formalisms, postconditions are

represented as instantaneous events. However, due to the nature of interval temporal

algebra (Section 3.3.4), MPF treats postconditions as short intervals of finite duration.

The value of the relevant state literal is undefined during the interval of a postcondition,

but is guaranteed to be set correctly from the end of the interval onward. This is illustrated

in Figure 3.7.

A state constraint (pre- or postcondition) is a tuple:

〈id , literal1〉

where: id is a unique identifier used in temporal constraints and summary conditions to refer to

the state constraint and literal is the state literal to be constrained or modified.
6The complete structure of task trees is discussed in Section 3.3.6 below.

76

3.3. Propositional plans

literal undefined
(cannot be changed)

literal set at
end of interval

literal

time
<post1, literal>

start end

literal may be
changed by other
state constraints

literal may be
changed by other
state constraints

Figure 3.7: Time-line of a postcondition state constraint.

3.3.3 Actions and tasks

In HTN planning, actions refer to general types of endeavour, as exemplified by “the robot can

open doors”. Tasks are specific occurrences of actions within a plan, as exemplified by “the

robot opens the door before walking through”. The same action can appear several times in a

plan in the form of separate tasks.

Actions in pMPF are represented simply by appropriate propositional identifiers. Examples

include bob to work and alice drive work from Figure 3.1. Actions are either primitive or ab-

stract7. For a given problem domain, a function is primitive(action) is defined that determines

this status for any given action. Primitive actions can be directly executed; abstract actions must

be decomposed into smaller parts. For example, the actions bob to work and alice to shops in

Figure 3.1 are abstract, while all of the actions in Figure 3.2 are all primitive.

Tasks Tasks are particular instances of actions within a plan. In MPF, tasks are a type of node

that appears in task trees (Section 3.2.1). Each task occurs over a continuous finite interval

during plan execution. A task node is a tuple:

〈id, action, decomps〉

where: id is a unique identifier used in temporal constraints and summary conditions to refer

to the task, action is the identifier of the action to be performed and decomps is a list of task

networks that can be used to decompose the task (Section 3.3.4). The members of decomps are

used to describe the possible subplans of abstract tasks and the preconditions and postconditions

7These phrases are derived from the standard terms “abstract task” and “primitive task” from HTN planning,
which are described below

77

3.3. Propositional plans

of primitive tasks.

Task ownership A function owner(task) maps each task to the agent responsible for its de-

composition and ordering within the plan. This model was chosen for its simplicity, but it has

disadvantages. For example, it is impossible in MPF to represent a joint task that is owned by

two or more agents. Such a feature would require several features of the mechanism and any

planning algorithms implemented using it:

• a list would be required to represent the owners of each node in the task tree;

• a policy would be required for assigning ownership to nodes in the subtrees of multiply

owned tasks (Section 3.3.6);

• agents would be required to negotiate over who controls the decomposition of shared

nodes during planning and the execution of relevant tasks afterwards.

In fact, the single parent, single owner model also prevents agents directly requesting help

during planning, as represented by the question: “Can you help me plan a route through the

maze?” Such requests would require the exchange of subtrees of the task tree during planning

(Section 3.3.6), something which is beyond the scope of this work.

3.3.4 Task networks and temporal constraints

A task network describes the temporal relationships between a set of tasks, preconditions and

postconditions. Task networks are used in conventional HTN planning to represent plans and

methods for decomposing abstract tasks (Section 2.1.5). In MPF, task networks are also used

to store the structure of preconditions and postconditions of primitive tasks. Task networks

are another type of node in task trees (Section 3.2.1). This section describes the structure of a

task network and the semantics of temporal constraints. The next section describes how task

networks are used to represent plans and methods. Section 3.3.6 describes the structure of task

trees, including the roles of state constraints, tasks and task networks.

Task networks A task network is a set of tasks, a set of preconditions, and a set of postcondi-

tions, all partially ordered by a set of temporal constraints. Task networks are used to represent

78

3.3. Propositional plans

both top level plans and task decompositions. A task network is a tuple:

〈id, action, tasks, pre, post, temporal〉

where: id is a unique identifier for the task network; action is the action the network is able to

decompose (null for the root of a task tree); tasks is a list of the tasks in the network; pre is a

list of preconditions to enforce during execution; post is a list of postconditions that will occur

during execution; temporal is a set of temporal constraints on members of tasks ∪ pre ∪ post.

Temporal constraints Temporal constraints are based on the interval temporal algebra of

Allen (1983). This is a departure from CHiPs, which uses point temporal algebra (Dechter

et al., 1991). Interval algebra was chosen because it is more flexible than point algebra for

representing partial temporal orderings in plans (see below). Temporal constraints are tuples:

〈id1, id2, rel〉

where: id1 and id2 are the identifiers of elements of net∪ children(net) and rel is a disjunction

of possible temporal relationships between them.

Members of rel are taken from Allen’s list of thirteen basic temporal relationships,

{e, b, a, m,mi, o, oi, d, di, s, si, f, fi}, that may exist between two temporal intervals. These

relationships are shown graphically in Figure 3.8. rel itself represents the set of possible tem-

poral relationships between id1 and id2. For example, the temporal constraint:

〈pat head, rub stomach, {b, a, m, mi}〉

means that it is possible to pat one’s head before or after rubbing one’s stomach (but that the

two activities may not overlap).

Discontinuous temporal disjunctions The elements of the example rel above form a dis-

continuous set of temporal relationships. A discontinuous set of relationships R is defined as

a set in which at least one relationship r1 ∈ R cannot be continuously changed into one of the

79

3.3. Propositional plans

other relationships r2 ∈ R by moving the start- and end-points of the intervals involved, without

forming an intermediate relationship r3 /∈ R.

Consider, for example, the set R = {b, o}8. The relationship b (before) cannot

be changed into the relationship o (overlaps) by moving the timepoints involved

without temporarily forming the intermediate relationship m (meets). Both b and o

are in R but m is not, so R is a discontinuous set of relationships.

Such discontinuity is a key advantage of interval algebra over point algebra and other non-

disjunctive timepoint based models of similar complexity such as Simple Temporal Networks

(STNs). It is often desirable in planning to resolve a conflict between two parts of a plan by

ordering one part before or after the other. It may not matter which part comes first: just that

they do not overlap. It is impossible to represent disjunctions like this with a simple timepoint

based temporal model such as point algebra; the planning algorithm has to branch to investigate

both orderings to maintain completeness. With interval algebra, however, such branching is un-

necessary: the planner simply creates a single partial plan that represents both sets of orderings

and continues from there.

The key disadvantage of interval temporal algebra is that it is purely qualitative: intervals and

constraints do not contain metric information about duration and relationships. Discontinuous

quantitative disjunctions are possible with disjunctive timepoint based models such as Disjunc-

tive Temporal Networks (DTNs; Dechter et al., 1991), but this comes at the cost of increased

computational complexity of constraint propagation and satisfaction.

Updating temporal information The operator⇐ is used in later formulae to denote the ad-

dition of a set of temporal constraints to a temporal network and forward propagation using the

algorithm described by Allen (1983) to calculate inferred temporal relationships. For example,

the line:

temporal(net)⇐ {〈id1, id2, {b, m}〉, 〈id2, id3, {d, s, f}〉, . . .}

8See Figure 3.8 for descriptions of these symbols.

80

3.3. Propositional plans

equals (e)

before (b)

after (a)

meets (m)

met by (mi)

overlaps (o)

overlapped by (oi)

(f) finishes

(fi) finished by

(s) starts

(si) started by

(d) during

(di) contains

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

A

B

Figure 3.8: Allen’s thirteen possible qualitative basic temporal relationships between two finite
intervals.

represents the addition of a set of constraints to the temporal network in net . After the con-

straints have been added, the temporal information in the task network is updated to calculate

the new inferred relationships between all the relevant temporal intervals. The update algorithm

is a simple arc consistency algorithm with O(n3) complexity, where n is the number of intervals

in the temporal network: see Allen (1983) for further details.

The function tlookup(id i, id j, net) is used in later formulae to denote the inferred temporal

relationship between id i and id j according to temporal(net):

answer ← tlookup(id1, id2, net)

In both cases, id1 and id2 may be the identifiers of any of children(net) or of net itself.

Frame constraints To preserve the temporal semantics of abstract tasks in HTN planning9, a

task network net occupies a temporal interval that exactly contains the intervals of its children.

Temporal constraints called frame constraints are added to temporal(net) such that for any

node ∈ children(net):

9Formalised by Erol (1996).

81

3.3. Propositional plans

tlookup(id(node), id(net), net) ⊆ {e, s, f, d}

meaning that the temporal interval of each node ∈ children(net) is equal to, starts, finishes, or

is contained by the temporal interval of net , according to the definitions in Figure 3.8.

For convenience, a function net timing is used in later formulae to give the effective timing of

a task or state constraint relative to its parent task network:

net timing(node, net) = tlookup(id(net), id(node), net)

Commutative and transitive temporal operators Two operators are required for reasoning

about the relationships between intervals in Allen’s algebra. These are the commutative tem-

poral operator, inv, which returns the inverse of established relationships, and the transitive

temporal operator, trans, which calculates the relationship between two intervals based upon

their relationships with a third interval.

Given a temporal relationship rel of an interval b relative to another interval a, the function

inv(rel) returns the inverse relationship of a relative to b. For example:

given rel = tlookup(a, b, net) = {b, m}
then inv(rel) = tlookup(b, a, net) = {a, mi}

Each member of the BTR has an inverse: the inverse of b (“before”) is a (“after”) and so on.

The inv operator calculates the inverse of a general relationship rel by unioning the inverses of

the members of rel . The algorithm for inv is shown in Figure 3.9 and uses data from Table 3.1.

1 function inv(rel)→ ans:
2 ans ← ∅
3 for each r ∈ rel :
4 ans ← ans ∪ commutation table(r)

Figure 3.9: Algorithm for the commutative temporal operator inv. The commutation table is
shown in Table 3.1.

Given a temporal relationship rel1 between two intervals a and b, and a relationship rel2 between

82

3.3. Propositional plans

r0 ∈ rel e b a d di o oi m mi s si f fi

r1 ∈ inv(rel) e a b di d oi o mi m si s fi f

Table 3.1: Inverses of members of the BTR, used in the implementation of the inv operator
shown in Figure 3.9.

b and a third interval c, the operator trans(rel1, rel2) returns the relationship between a and c.

For example:

given rel1 = tlookup(a, b, net) = {b, m}
and rel2 = tlookup(b, c, net) = {b, m}

then trans(rel1, rel2) = tlookup(a, c, net) = {b}

Table 3.2 shows the result of applying trans to two atomic temporal relationships, each con-

sisting of a single member of the BTR. The general algorithm for trans, shown in Figure 3.10,

calculates its result by unioning the tabulated values for each combination of r1 ∈ rel1 and

r2 ∈ rel2.

1 function trans(rel1, rel2)→ ans:
2 ans ← ∅
3 for each r1 ∈ rel1:
4 for each r2 ∈ rel2:
5 ans ← ans ∪ transition table(r1, r2)

Figure 3.10: Algorithm for the transitive temporal operator trans. The transition table is
shown in Table 3.2.

Ownership of temporal constraints Whereas tasks have exactly one owner, temporal con-

straints can be enforced by one or more agents. A function owners(con) maps every constraint

con to a (possibly empty) set of agents that wish the constraint to be enforced. Constraints im-

posed as initial conditions in the definition of the planning problem have an additional “owner”

(the name of the problem) to prevent them being retracted by agents during planning.

Constraints with non-empty owners lists are assumptions enforced by one or more agents or the

environment. Constraints that are inferred from assumptions have no owners.

83

3.3. Propositional plans

tr
an

s
r 1
∈

re
l 1

(r
1
,r

2
)

b
a

d
di

o
oi

m
m

i
s

si
f

fi

r2 ∈ rel2

b
b

an
y

b
b,

di
,
o,

m
,
fi

b
b,

di
,
o,

m
,
fi

b
b,

di
,
o,

m
,
fi

b
b,

di
,
o,

m
,
fi

b
b

a
an

y
a

a
a
,

di
,

oi
,

m
i,

si

a
,

di
,

oi
,

m
i,

si

a
a
,

di
,

oi
,

m
i,

si

a
a

a
a

a
,

di
,

oi
,

m
i,

si
d

b,
d
,

o,
m

,
s

a
,

d
,

oi
,

m
i,

f

d
e,

d
,d

i,
o,

oi
,s

,
si

,
f
,
fi

d
,
o,

s
d
,
oi

,
f

d
,
o,

s
d
,
oi

,
f

d
d
,
oi

,
f

d
d
,
o,

s

di
b

a
an

y
di

b,
di

,
o,

m
,
fi

a
,

di
,

oi
,

m
i,

si

b
a

b,
di

,
o,

m
,
fi

di
a
,

di
,

oi
,

m
i,

si

di

o
b

a
,

d
,

oi
,

m
i,

f

b,
d
,

o,
m

,
s

di
,
o,

fi
b,

o,
m

e,
d
,d

i,
o,

oi
,s

,
si

,
f
,
fi

b
d
,
oi

,
f

b,
o,

m
di

,
o,

fi
d
,
o,

s
o

oi
b,

d
,

o,
m

,
s

a
a
,

d
,

oi
,

m
i,

f

di
,

oi
,

si
e,

d
,d

i,
o,

oi
,s

,
si

,
f
,
fi

a
,

oi
,

m
i

d
,
o,

s
a

d
,
oi

,
f

oi
a
,

oi
,

m
i

di
,

oi
,

si

m
b

a
,

d
,

oi
,

m
i,

f

b
di

,
o,

fi
b

di
,
o,

fi
b

e,
s,

si
b

di
,
o,

fi
m

m

m
i

b,
d
,

o,
m

,
s

a
a

di
,

oi
,

si
di

,
oi

,
si

a
e,

f
,
fi

a
m

i
m

i
a

di
,

oi
,

si
s

b
a
,

d
,

oi
,

m
i,

f

d
di

,
o,

fi
o

d
,
oi

,
f

m
d
,
oi

,
f

s
e,

s,
si

d
o

si
b

a
a
,

d
,

oi
,

m
i,

f

di
di

,
o,

fi
a
,

oi
,

m
i

m
a

e,
s,

si
si

a
,

oi
,

m
i

di

f
b,

d
,

o,
m

,
s

a
d

di
,

oi
,

si
d
,
o,

s
oi

d
,
o,

s
m

i
d

oi
f

e,
f
,
fi

fi
b

a
b,

d
,

o,
m

,
s

di
b,

o,
m

di
,

oi
,

si
b

m
i

b,
o,

m
di

e,
f
,
fi

fi

Table 3.2: Transitive relationships between members of the BTR, used in the implementation of
the trans operator shown in Figure 3.10. Trivial transitions involving the e (equal) relationship
are not shown.

84

3.3. Propositional plans

3.3.5 Problem definitions: initial plans and methods

As described in Section 2.1.5, a single agent HTN planning problem is defined as an initial plan

containing one or more abstract tasks, and a set of methods that map abstract tasks to subplans

that achieve them. The planning agent proceeds by iteratively choosing an abstract task in the

plan, decomposing it with an appropriate method, and resolving any resulting conflicts, until a

conflict free plan is created that contains nothing but primitive tasks.

In MPF, initial plans and methods are represented using task networks. Each method has an

action field that corresponds to the actions of the tasks it will be used to decompose. If the

action field is an abstract action, the tasks field of the method will describe the subtasks that

need to be performed and the pre and post fields will describe constraints on world state that

need to be satisfied before, after, during and between their execution. If the action of the

method is primitive, the tasks field will be empty and the pre and post fields will describe the

preconditions and effects of the action. In an initial plan, the action field is null , the tasks field

contains the set of abstract tasks to be performed (the “goals” of the problem), and the pre and

post fields describe initial, intermediate and final conditions. In all cases the temporal field is

used to describe the temporal relationships between the members of tasks ∪ pre ∪ post .

Multi agent problems are specified by adding ownership information to the tasks and constraints

in the initial plan and assigning a set of methods to each agent to act as a method library.

Rather than planning by substituting tasks for method bodies according to the conventional HTN

paradigm (Section 2.1.5), MPF agents start by building a task tree that represents the space of

possible decompositions of the tasks in the initial plan, and proceed by pruning branches and

rewriting parts of the tree until a final plan is produced. As discussed in Section 3.2, task trees

are used as a basis for the calculation of summary information about the possible preconditions

and effects of abstract tasks, from which useful search heuristics and test functions can be

derived.

The next section describes the structure of a task tree, and the generation and maintenance of

summary information are described in Sections 3.3.7 to 3.3.9. Section 3.4 goes on to describe

summary based heuristics and test functions, and planning operators and refinements used in

propositional planning.

85

3.3. Propositional plans

3.3.6 Task trees

In MPF, partial plans are represented using structures called task trees. A task tree describes a

plan and all the possible decompositions of the abstract tasks therein.

Structure of a task tree The nodes of a task tree are of three types: state constraints, tasks

and task networks. Each of these types has been described in a previous section. The root of

the tree (“level 0”) is a task network representing the overall plan. Level 1 nodes are made up

of the members of tasks(root) ∪ pre(root) ∪ post(root), and describe the tasks in the plan and

constraints on their execution. The function children is defined for convenience to denote the

children of a task network net:

children(net) = tasks(net) ∪ pre(net) ∪ post(net)

Level 2 nodes are made up of members of the decomps fields of level 1 tasks, and represent the

possible decompositions of those tasks. Level 3 nodes are the children of level 2 task networks,

and so on. Task networks are referred to using the following terms depending on their location

in the tree:

Plans form the roots of the trees, and have a null action field.

Abstract decompositions are children of abstract tasks and have an action field matching that

of their parent task.

Primitive decompositions are children of primitive tasks. Like abstract tasks they have an

action field matching that of their parent task. Because primitive tasks are atomic, these

networks also have an empty tasks field.

A complete task tree for the example in Figure 3.1 has been reproduced in Figure 3.1110. While

the figure is quite complex, it clearly shows the alternating levels of task networks and tasks,

and that all leaves of the task tree are state constraints. In each task network, the temporal field

represents the local temporal relationships between the children of the network.
10While this textual representation is rather verbose, the various graphical alternatives considered either omitted

parts of the tree or were too large to fit on the page.

86

3.3. Propositional plans

〈root, null, {
〈task 1, bob to work, {
〈decomp1, bob to work, {
〈task 2, bob get in car, {
〈decomp2, bob get in car, {},
{〈pre1, car at home〉}, {〈post1, bob in car〉},
{〈pre1, post1, {m}〉}〉}〉,

〈task 3, bob drive work, {
〈decomp3, bob drive work, {},
{〈pre2, bob at home〉, 〈pre3, bob in car〉}, {〈post2,¬bob at home〉,
〈post3, bob at work〉, 〈post4, car at home〉, 〈post5, car at work〉},
{〈pre2, pre3, {e}〉, 〈pre2, post2, {m}〉, 〈post2, post3, {e}〉,
〈post2, post4, {e}〉, 〈post2, post5, {e}〉}〉}〉,

〈task 4, bob get out car, {
〈decomp4, bob get out car, {},
{〈pre4, bob in car〉}, {〈post6,¬bob in car〉},
{〈pre4, post6, {m}〉}〉}〉},

{〈task 2, task 3, {m}〉, 〈task 3, task 4, {m}〉}〉,
〈decomp5, bob to work, {
〈task 5, bob walk work, {
〈decomp6, bob walk work, {},
{〈pre5, bob at home〉}, {〈post7,¬bob at home〉, 〈post8, bob at work〉},
{〈pre5, post7, {m}〉, 〈post7, post8, {m}〉}〉}〉},

{}〉}〉,
〈task 6, alice to shops, {
〈decomp7, alice to shops, {
〈task 7, alice get in car, {
〈decomp8, alice get in car, {},
{〈pre6, car at home〉}, {〈post9, alice in car〉},
{〈pre6, post9, {m}〉}〉}〉,

〈task 8, alice drive shops, {
〈decomp9, alice drive shops, {},
{〈pre7, alice at home〉, 〈pre8, alice in car〉}, {〈post10,¬alice at home〉,
〈post11, alice at shops〉, 〈post12,¬car at home〉, 〈post13, car at shops〉},
{〈pre7, pre8, {e}〉, 〈pre7, post10, {m}〉, 〈post10, post11, {e}〉,
〈post10, post12, {e}〉, 〈post10, post13, {e}〉}〉}〉,

〈task 9, alice get out car, {
〈decomp10, alice get out car, {},
{〈pre9, alice in car〉}, {〈post14,¬alice in car〉},
{〈pre9, post14, {m}〉}〉}〉},

{〈task 7, task 8, {m}〉, 〈task 8, task 9, {m}〉}〉}〉},
{〈task 1, task 6, {m}〉}〉

Figure 3.11: Propositional task tree for the problem in Figure 3.1. Task networks and temporal
constraints are written in black, tasks in orange, and state constraints in blue.

87

3.3. Propositional plans

Generation of an initial task tree Given an initial description of a planning problem con-

sisting of an initial plan root , a set of agents agents and a set of methods for each agent

methods(agent ∈ agents), it is possible to build a task tree using the algorithm in Figure

3.12.

1 function build propositional task tree(net):
2 for each t ∈ tasks(net):
3 for each m ∈ methods(owner(t)):
4 if action(m) = action(t):
5 add copy of m to decomps(t)
6 build propositional task tree(m)

Figure 3.12: Algorithm for propositional task tee generation, starting with an initial task net-
work root and a set of agent specific method libraries methods(agents).

The initial plan is used as the root of the tree. The set of methods that apply to each task in

the initial plan is copied and set as the decomps field of the task. The algorithm proceeds by

recursively adding decomposition task networks to each task in the tree, until a complete tree

has been built up. As mentioned above, the leaves of the complete tree are all state constraints.

The single owner, single parent structure of task trees is limiting in situations where agents

have heterogeneous planning abilities11. Because agents with different sets of methods may

produce different subtrees for a particular task, the reassignment of abstract tasks may involve

the recreation of large parts of the task tree and the recalculation of lots of summary information

(see below). For this reason, the exchange and reassignment of planning tasks is not considered

in this thesis, although it is possible for agents with different sets of methods to plan together

in the same multi agent system without exchanging tasks. The “Holes” domain, described in

Section 5.2.3, is an example of such a domain.

Recursive tasks The propositional task tree generation algorithm requires that there are no

recursive tasks (Section 2.1.5) in the initial plan or any of the methods used. A task is recursive

if it can be decomposed into a history containing a task with the same action, because the same

methods can be applied to the descendant as the ancestor: this would create an infinite recursion

at line 6 of the algorithm. More formally, a task task is recursive if is recursive(task), where:
11For example, when agents have different method libraries.

88

3.3. Propositional plans

is recursive(task) =⇒ can decompose(task , action(task))

can decompose(task , action) =⇒ ∃ t ∈ tasks(m ∈ methods(task))

action(t) = action(task) ∨ can decompose(t, action)

Task trees form the basic partial plan representation in MPF. Every time a task tree is refined,

a set of new trees is generated, and the agent chooses one of them to use as the basis for

further refinement. As discussed in Section 3.2.4, agents rely on several heuristics to guide

search. These heuristics are based on summary information about the possible preconditions and

effects of abstract tasks, which is generated directly from the task tree data structure. The next

section describes the basic unit of summary information, the summary condition. Sections 3.3.8

and 3.3.9 describe the possible relationships between summary conditions and the mechanism

for their generation from the task tree. Section 3.4 goes on to describe the information and

heuristics that can be generated from summary information, and the planning operators and

refinements used in planning.

3.3.7 Summary conditions

Summary conditions (Section 3.2.3) represent the possible preconditions and postconditions of

abstract tasks. They represent possibilities because abstract tasks can often be decomposed in

several ways: the choices of decomposition and temporal ordering will affect the actual pre-

conditions and postconditions present in the final plan. Summary conditions allow the planner

to reason directly about potential conflicts at high levels of abstraction without actually decom-

posing tasks, helping to guide search and minimise backtracking.

Summary information is propagated from the leaves of the task tree upward. A set of func-

tions sumpre(node), sumin(node) and sumpost(node) maps each node in the tree to sets of

summary pre-, in- and postconditions.

A summary condition con is a tuple:

〈node, existence, timing , literal〉

89

3.3. Propositional plans

where node is the identifier of the relevant node in the task tree, existence ∈ {must,may}

indicates whether the summary condition exists in all or some of the histories of node, timing

represents the timing of con relative to node and literal is the state literal being referred to.

timing and existence are described in more detail below.

Existence of summary conditions The existence field is must if con applies to all of the

histories of node, and may if it only applies to some of them.

Consider, for example, a task with two decompositions decomp1 and decomp2 that

have the following summary preconditions:

sumpre(decomp1) ={〈must, {e}, literal1〉, 〈must, {e}, literal2〉}
sumpre(decomp2) ={〈must, {e}, literal1〉}

The precondition involving literal1 will be present in the plan in some form no

matter which decomposition of task is chosen. The precondition involving literal2,

on the other hand, will disappear decomp2 is chosen. To represent this, task will

inherit summary preconditions as follows:

sumpre(task) ={〈must, {e}, literal1〉, 〈may, {e}, literal2〉}

While this example ignores choices of temporal orderings, the existence of summary conditions

is dependent on these as much as it is dependent on choices of decomposition. The calculation

of the existence of summary conditions is described in detail in Sections 3.3.8 and 3.3.9.

Timing of summary conditions The timing field represents the temporal relationship be-

tween the interval of node(con) and the interval of con. It is equivalent to the rel field of the

hypothetical temporal relationship 〈node, con, rel〉. Because each node in a task tree tempo-

rally contains all of its children (Section 3.3.4), it also temporally contains all of its summary

conditions:

90

3.3. Propositional plans

timing(con) ⊆ {e, si, fi, di}

The temporal relationship between any two summary conditions a and b belonging to children

of a task network net is denoted in later formulae by the function:

slookup(a, b, net) = trans(inv(timing(a)),

trans(tlookup(node(a), node(b), net), timing(b)))

where trans, inv and tlookup are as defined in Section 3.3.4.

3.3.8 Achieving, clobbering and undoing

In conventional planning mechanisms, relationships such as achieving, clobbering and undoing

are calculated between primitive preconditions and effects. However, equivalent relationships

can also be calculated between summary conditions. The difference is that, just as summary

conditions have an existence of must or may , these summary relationships can represent rela-

tionships that possibly exist between pairs of conditions, as well as relationships that definitely

exist. Informally these summary relationships are:

• a postcondition a can achieve a precondition b by asserting literal(b) before b begins;

• a postcondition a can clobber a precondition b by asserting ¬literal(b) before b ends;

• a postcondition b can undo a postcondition a by asserting ¬literal(a) after a ends;

• an incondition a can clobber a incondition b by requiring ¬literal(b) during b.

Formally, the relationships are calculated for the children of a task network net as follows.

This procedure differs slightly from that in CHiPs because of the new interval temporal algebra

introduced in Section 3.3.4:

1. The summary conditions of the children of net are collected into three sets:

91

3.3. Propositional plans

pres = {pre ∈ sumpres(child ∈ children(net))}
ins = {in ∈ sumins(child ∈ children(net))}

posts = {post ∈ sumposts(child ∈ children(net))}

The algorithms used to obtain sumpres , sumins and sumposts are described in the next

section.

2. A relaxed interaction graph is built where nodes are summary conditions and edges rep-

resent possible interactions. This relaxed graph does not take into account blocking by

intermediate summary conditions. Disjunctions of temporal relationships can make it un-

certain whether a pair of summary conditions will interact or not. To cope with this the

relaxed graph incorporates two kinds of edges: must edges and may edges. May edges

are added wherever an interaction is possible; must edges are reserved for situations in

which interaction is inevitable12. Edges are inserted into the relaxed graph for every pair

of summary conditions for which the following conditions hold:

must relaxed(a ∈ posts, b ∈ pres) = literal(a) ∈ {literal(b),¬literal(b)}
∧ slookup(a, b, net) ∩ {m, a} = ∅ ∧must(a)

may relaxed(a ∈ posts, b ∈ pres) = literal(a) ∈ {literal(b),¬literal(b)}
∧ slookup(a, b, net) ∪ {m, a} ⊃ {m, a}

must relaxed(a ∈ posts, b ∈ posts) = literal(a) ∈ {literal(b),¬literal(b)}
∧ slookup(a, b, net) ∩ {m, a} = ∅ ∧must(b)

may relaxed(a ∈ posts, b ∈ posts) = literal(a) ∈ {literal(b),¬literal(b)}
∧ slookup(a, b, net) ∪ {m, a} ⊃ {m, a}

must relaxed(a ∈ ins, b ∈ ins) = literal(a) = ¬literal(b)

∧ slookup(a, b, net) ∩ {b, a, m, mi} = ∅ ∧must(a)

may relaxed(a ∈ ins, b ∈ ins) = literal(a) ∈ {literal(b),¬literal(b)}
∧ slookup(a, b, net) ∪ {b, a, m, mi} ⊃ {b, a, m, mi}

where the function must(con) is defined for brevity to indicate the value of

existence(con):

12Wherever a must edge links two nodes, a may edge also links them.

92

3.3. Propositional plans

must(con) =

{
true if existence(con) = must

false if existence(con) = may

Note that the existence value of each edge is independent of the existence of the summary

condition being achieved, clobbered or undone. Hence the value of must clobbered is

dependent on must(a) but not on must(b) and the value of must undone is dependent on

must(b) but not on must(a).

Ignoring optimisations gained by storing preconditions, inconditions and postconditions

in separate lists, the complexity of producing the relaxed graph is O(n2) where n =

|pres ∪ ins ∪ posts|.

3. A constrained interaction graph is built from the relaxed graph, taking into account block-

ing by intermediate summary conditions:

must constrained(a, b) = must relaxed(a, b) ∧ ¬may blocked(a, b)

may constrained(a, b) = may relaxed(a, b) ∧ ¬must blocked(a, b)

Informally, blocking occurs when a postcondition a does not affect a precondition b be-

cause of an intermediate summary condition c. In practice, because of the disjunctive

nature of interval temporal algebra, there are two situations in which this occurs:

Separation when a occurs before c and c occurs before b.

Exclusion when a occurs before or after (but not overlapping or during) an interval env

that envelopes c and b.

The exclusion relationship is unique to MPF and cannot be represented in CHiPs.

More formally, the must blocked and may blocked relationships are defined as follows:

93

3.3. Propositional plans

must blocked(a, b) = ∃c
(
must separated(a, c, b) ∨must excluded(a, c, b)

)
∧must(c)

may blocked(a, b) = ∃c
(
may separated(a, c, b) ∨may excluded(a, c, b)

)
must separated(x, y, z) = must relaxed(x, y) ∧must relaxed(y, z)

may separated(x, y, z) = may relaxed(x, y) ∨may relaxed(y, z)

must excluded(x, y, z) = ∃env enveloped(z, y, env) ∧must out(x, env)

may excluded(x, y, z) = ∃env enveloped(z, y, env) ∧may out(x, env)

enveloped(u, v, env) = must in(u, env) ∧must in(v, env) ∧must bef(u, v)

and the temporal functions must out and so on are defined as follows:

must out(x, y) = tlookup(x, y, net) ⊆ {b, a, m, mi}
may out(x, y) = tlookup(x, y, net) ∩ {b, a, m, mi} 6= ∅
must in(x, y) = tlookup(x, y, net) ⊆ {e, s, f, d}
may in(x, y) = tlookup(x, y, net) ∩ {e, s, f, d} 6= ∅

must bef(x, y) = tlookup(x, y, net) ⊆ {b, m}
may bef(x, y) = tlookup(x, y, net) ∩ {b, m} 6= ∅

where tlookup is the temporal lookup function defined in Section 3.3.4.

Any summary condition can block any of the O(n2) arcs in the relaxed graph, preventing

an arc being added to the constrained graph. Thus, given the same definition of n stated

above, the complexity of building the constrained graph is O(n3).

4. The actual achieves, clobbers and undoes relationships for summary conditions of appro-

priate types can be defined simply in terms of the constrained graph:

must achieve(a, b) = (literal(a) = literal(b)) ∧must constrained(a, b)

may achieve(a, b) = (literal(a) = literal(b)) ∧may constrained(a, b)

must clobber(a, b) = (literal(a) = ¬literal(b)) ∧must constrained(a, b)

may clobber(a, b) = (literal(a) = ¬literal(b)) ∧may constrained(a, b)

must undo(a, b) = (literal(a) = ¬literal(b)) ∧must constrained(b, a)

may undo(a, b) = (literal(a) = ¬literal(b)) ∧may constrained(b, a)

As the maximum connectivity of the constrained graph is O(n2), the complexity of this

step is O(n2).

94

3.3. Propositional plans

Effectors, achievers and clobberers If a summary condition of a node node1 achieves a

summary condition of a node node2, node1 is called an achiever of node2. Similarly, if a

summary condition of a node node3 clobbers a summary condition of a node node2, node3 is

called a clobberer of node2. Achievers and clobberers are collectively known as the effectors

of a node.

Overall complexity of summarisation The calculation of achieving, clobbering and undo-

ing relationships is central to the calculation of summary information for decomposition task

networks and abstract tasks (Section 3.3.9): it is also the complexity defining step in the whole

summarisation process. Clement quotes the complexity of calculating this information for a sin-

gle task network as O(d2c2), where d is the number of child nodes and c is the average number

of summary conditions per child. This result is equivalent to the complexity of calculating the

relaxed graph above because dc ≈ x. The added complication of taking blockers and exclusion

relationships into account raises the equivalent overall complexity of the algorithm above to

O(d3c3). However, as shall be seen in Section 3.4.3, the added complexity allows for a reduc-

tion in the branching factor of the main planning algorithm, which arguably makes it beneficial

overall.

Summary relationships have to be calculated once for each decomposition in the initial task tree

(Section 3.3.6), and only have to be recalculated during planning when the temporal orderings

are changed in the root node in the tree (Section 3.4.3). The overall complexity of initialising

the summary information in a task tree of height h is therefore O(d3c3dh) = O(d(h+3)c3), and

the worst case maintenance cost during propositional planning is O(d3c3) each refinement13.

The dh term in the initialisation complexity is an unfortunate and inevitable consequence of

working with tree structures. In non-recursive problems, h is a small fixed value determined by

the relationships between methods and is no cause for concern. In recursive problems (Section

3.6) the initial value of h must be estimated: the value counting estimation technique used in

this thesis (Section 3.6.1) relates h to the number of objects (blocks, tables, grippers and so on)

in the world, so initialisation can become time consuming for larger problems. In these cases, d

can be significantly reduced by moving to a first order representation of actions and world state

13The situation is much worse in first order planning, as shall be seen in Section 3.5.3.

95

3.3. Propositional plans

(Section 3.5). In the empirical comparison of pMPF and fMPF in Section 5.3, initialisation is

only prohibitively slow for propositional representations.

3.3.9 Summarising task tree nodes

Summary information is calculated recursively in the task tree, starting at the leaves (state con-

straints) and working upwards towards the root. The summary conditions of tasks and task

networks are calculated in terms of the summary conditions of their children in the tree. Each

type of node is summarised using a different algorithm. All three algorithms are described

below.

Summarising state constraints State constraints either represent preconditions or postcon-

ditions of their grandparent tasks, depending on whether they are in the pre or post field of the

relevant decomposition task network. A precondition pre generates a single summary precon-

dition:

1 function summarise pre(net)→ (sumpres , sumins , sumposts):
2 sumpres ← {〈id(pre), must, {e}, literal(pre)〉}

Similarly, a postcondition post generates a single summary postcondition:

1 function summarise post(net)→ (sumposts , sumins , sumposts):
2 sumposts ← {〈id(pre), must, {e}, literal(pre)〉}

Summarising task networks The summary conditions of a task network net represent the

effective pre-, in- and postconditions of all children(net). Some information is abstracted away

during summarisation: summary conditions with similar literals are merged and temporal infor-

mation is respecified relative to net rather than specific children. First, the achieves, clobbers

and undoes relationships are determined between the children of net using the procedure de-

scribed in the previous section. The summary constraints of net itself are then calculated from

these relationships using the algorithm in Figure 3.13, which is described informally below:

Child summary conditions are considered in groups that have the same literal. For each group:

96

3.3. Propositional plans

• A parent summary precondition is output if there is a child summary precondition that

is not must achieved or must clobbered by another child summary condition (lines 11,

13). The existence of the parent precondition is must if there is a must child precondition

that is definitely unaffected by other conditions: it is may otherwise.

• A parent summary incondition is output if there is a child summary precondition that is

may achieved or may clobbered by another child summary condition (lines 8, 10). The

existence of the parent incondition is must if all child preconditions are definitely affected

by other conditions: it is may otherwise.

• A parent summary postcondition is output if there is a child summary postcondition that

is not must undone by another child summary condition (lines 23, 25). The existence of

the parent postcondition is must if there is a must child postcondition that is definitely

unaffected by other conditions: it is may otherwise.

• A parent summary incondition is output if there is a child summary postcondition that

is may undone by another child summary condition (lines 20, 22). The existence of

the parent incondition is must if all child postconditions are definitely affected by other

conditions: it is may otherwise.

• A parent summary incondition is output if there are any child summary inconditions (line

16). The existence of the parent incondition is must if any child incondition has an

existence of must : it is may otherwise.

In each case, the timing of the parent summary conditions is the union of the timings of equiv-

alent child summary conditions (line 29).

The complexity of summarising a task network is determined by the complexity of calculating

achieves, clobbers and undoes relationships between its children (O(d3c3), where d is the num-

ber of child nodes and c is the average number of summary conditions per node; Section 3.3.8).

The resulting summary information can be calculated in directly from the final interaction graph

in O(n2) time.

97

3.3. Propositional plans

1 function summarise net(net)→ (sumpres , sumins , sumposts):
2 id← id(net)
3 collect (pres , ins , posts) from summarise task(task ∈ tasks(net)) ∪

summarise pre(pre ∈ pre(net)) ∪ summarise post(post ∈ post(net))
4 calc relaxed and constrained interaction graphs from (pres , ins , posts)
5 for each pre ∈ pres:
6 timing ′ ← trans(net timing(node), timing(pre))
7 if ∃x must achieve(x, pre):
8 sumins ← merge(〈id, existence(pre), timing ′, literal(pre)〉, sumins)
9 else if ∃x may achieve(x, pre):
10 sumins ← merge(〈id,may, timing ′, literal(pre)〉, sumins)
11 sumpres ← merge(〈may, timing ′, literal(pre)〉, sumpres)
12 else:
13 sumpres ← merge(〈id, existence(pre), timing ′, literal(pre)〉, sumpres)
14 for each in ∈ ins:
15 timing ′ ← trans(net timing(node), timing(in))
16 sumins ← merge(〈id, existence(in), timing ′, literal(in)〉, sumins)
17 for each post ∈ posts:
18 timing ′ ← trans(net timing(node), timing(post))
19 if ∃x must undo(x, post):
20 sumins ← merge(〈id, existence(post), timing ′, literal(post)〉, sumins)
21 else if ∃x may undo(x, post):
22 sumins ← merge(〈id,may, timing ′, literal(post)〉, sumins)
23 sumposts ← merge(〈id,may, timing ′, literal(post)〉, sumposts)
24 else:
25 sumposts ← merge(〈id, existence(post), timing ′, literal(post)〉, sumposts)

26 function merge(con, set)→ set ′:
27 if ∃con′ ∈ set literal(con) = literal(con′):
28 existence ′ ← existence(con) ∧ existence(con′)
29 timing ′ ← timing(con) ∪ timing(con′)
30 set ′ ← (set − con ′) ∪ {〈id, existence ′, timing ′, literal(con)〉}
31 else:
32 set ′ ← set ∪ {con}

Figure 3.13: Algorithm for summarising a task network. The ∧ symbol represents the conjunc-
tion of existence values: e1 ∧ e2 is must if e1 and e2 are both must : it is may otherwise.

98

3.3. Propositional plans

Summarising tasks The summary conditions of a task task represent the possible choices

of summary conditions from decomps(task). A task task is summarised using the algorithm

in Figure 3.14. The literals from all summary pre-, in- and postconditions of children of

decomps(task) are collected together into three sets: pre literals , in literals and post literals .

Then, for each literal in the three sets, a separate set cons is built containing all matching child

summary conditions from which a single final summary condition is output:

〈
id(task),

∨
existence(con ∈ cons),

⋃
timing(con ∈ cons), literal

〉
where

∨
represents a disjunction of existence values:

n∨
1

ei =

{
must if all ei are must

may if any ei is may

A must summary condition will only be output if there is an equivalent must condition for

every task network in decomps(tasks), meaning the summary condition will definitely hold no

matter which decomposition is chosen. As above, the timing of the parent summary condition

is the union of the timings of child conditions.

1 function summarise task(task)→ (sumpres , sumins , sumposts):
2 id← id(task)
3 collect (temppres , tempins , tempposts) from summarise net(net ∈ decomps(task))
4 pre literals ← literal(pre ∈ temppres)
5 in literals ← literal(in ∈ tempins)
6 post literals ← literal(post ∈ tempposts)
7 for each literal ∈ pre literals:
8 cons← {con ∈ temppres | literal(con) = literal}
9 add 〈id,

∨
existence(con ∈ cons),

⋃
timing(con ∈ cons), literal〉 to sumpres

10 for each literal ∈ in literals:
11 cons← {con ∈ tempins | literal(con) = literal}
12 add 〈id,

∨
existence(con ∈ cons),

⋃
timing(con ∈ cons), literal〉 to sumins

13 for each literal ∈ post literals:
14 cons← {con ∈ temppres | literal(con) = literal}
15 add 〈id,

∨
existence(con ∈ cons),

⋃
timing(con ∈ cons), literal〉 to sumposts

Figure 3.14: Algorithm for summarising a task.

Ignoring the optimising step of hashing summary conditions by literal, the complexity of this

99

3.4. Propositional planning

algorithm is O(n2) where n is the total number of summary conditions of child nodes.

3.4 Propositional planning

Given the task tree based plan representation and summary information described in the pre-

vious section, the remainder of the pMPF planning mechanism can now be defined, including:

planning operators, refinements, solution and failure test functions, heuristics and the strategy

for refinement selection.

Planning in MPF involves removing flaws from the initial task tree until a flawless solution tree

is found. Flaws are either abstract tasks that require decomposition or threats (may clobber

relationships) that require resolution between level 1 summary conditions. Each refinement

constitutes the removal of a single flaw. Section 3.4.1 defines the solution and failure test

functions in terms of summary information, Section 3.4.2 describes the planning operators used

to produce new task trees during planning, Section 3.4.3 describes the refinements used to

resolve flaws, and Sections 3.4.4 and 3.4.5 describe other routine maintenance tasks that are

required during planning.

3.4.1 Abstract detection of solutions and failures

Consistent versus inconsistent plans It is important to specify the difference between plans

that are failures and plans that are inconsistent. Consistency means freedom from contradic-

tions. Inconsistent plans are over-constrained, leaving no possible choices for some decom-

positions or orderings. A task network net is consistent if it has a consistent set of temporal

constraints and each member of tasks(net) has one or more consistent decompositions:

is consistent(net) =∀node, node ′ ∈ children(net) tlookup(node, node ′, net) 6= ∅
∧∀task ∈ tasks(net) |decomps(task)| ≥ 1

∧∀task ∈ tasks(net) ∃decomp ∈ decomps(task) is consistent(decomp)

Agents often produce inconsistencies during planning. If inconsistencies are introduced in de-

100

3.4. Propositional planning

composition task networks, their subtrees are pruned from the task tree (Section 3.4.4). If the

root network is made inconsistent the plan is immediately discarded, preventing it being used

for further refinement or communication to other agents.

Solutions and failures Solutions and failures are both types of consistent plan: failures repre-

sent consistent plans that do not achieve the goals set out in the planning problem or that contain

unresolvable conflicts between state constraints. It is difficult to detect in general whether a task

tree represents an abstract solution or failure without exhaustively searching through all of its

histories. However, summary information can be used as the basis of two qualitative heuristics

to identify some such trees without a complete search:

The can any way heuristic A task network net is an abstract solution if it has no threats

(may clobber or must clobber relationships) between the summary conditions of the members

of children(net):

can any way(net) = is consistent(net)∧
∀con1, con2 ∈ all sums(net) ¬may clobber(con1, con2)

all sums(net) = sumpre(node ∈ children(net)) ∪ sumin(node ∈ children(net))

∪ sumpost(node ∈ children(net))

In other words, it does not matter which decompositions or groundings are chosen during plan-

ning: the plan will always achieve the agent’s goals. can any way is used as the solution

detection function in the refinement planning algorithm.

The might some way heuristic A task network net is an abstract failure if it contains one

or more unresolvable threats. An unresolvable threat is a must clobber relationship where the

clobbered summary condition cannot be removed from the plan by decomposition:

might some way(net) = is consistent(net)∧
∀con2 ∈ all sums(net) (existence(con2) = 1) =⇒
@con1 ∈ all sums(net) must clobber(con1, con2)

101

3.4. Propositional planning

In other words, it does not matter which decompositions or groundings are chosen during plan-

ning: the plan will never achieve the agent’s goals. might some way is used to encourage early

backtracking and prune branches of search. Agents use individual or joint definitions of these

functions in different circumstances. Planning algorithms are discussed in detail in the next

chapter.

Even though can any way and might some way are heuristic functions, they can be used to

test for solutions and failures without loss of soundness or completeness because they are both

conservative about the solutions and failures they recognise. The functions only return true

in situations when the plan is definitely a solution or failure: some solution and failure plans

are not detected, and the functions always return false when plans are not solutions or failures.

The functions are proven to be correct for total orderings of tasks but not for partial orderings

(Appendix D of Clement, 2002). As the refinements and operators below always tend towards

total orderings, one of the two functions will always return true eventually, allowing the agent

to return a solution plan or backtrack accordingly.

Once the achieves, clobbers and undoes relationships are known between the children of a task

network net, can any way(net) and might some way(net) can be calulculated in O(n2) time.

Again, n is the number of summary conditions of the children of net (Section 3.3.8).

3.4.2 Planning operators

The planning algorithms presented in Chapter 4 use a common set of refinements to remove

flaws from task trees. These refinements, which are discussed in the next section, are imple-

mented using the planning operators described below.

Many of the planning operators in this section change the task tree such that some summary

information needs to be recalculated: any change to the children or temporal constraints of a

node invalidates its summary conditions the conditions of its ancestor nodes. A dirty flag is set

in appropriate nodes after a planning operator has been applied to indicate that its summary in-

formation must be recalculated. Recalculation is performed lazily to minimise the computation

necessary to maintain the trees.

102

3.4. Propositional planning

Selecting and blocking decompositions A task task must have a single decomposition in

decomps(task) before it can be decomposed. If the task has more than one decomposition, a

single decomp ∈ decomps(task) must be selected as shown in Figure 3.15. Conversely, if the

subtree of a single decomp is inconsistent it must be deleted from the task tree. This process,

shown in Figure 3.16, is called blocking.

1 function select op(task, decomp):
2 delete all decomps(task) except decomp
3 set dirty flag for task and all its ancestors

Abstract task (blue) with three
decompositions (green, orange, purple).

Green decomposition is retained:
orange and purple are deleted.

Resulting tree contains a singleton
decomposition and two dirty nodes.

(a) (b) (c)

(dirty)

(dirty)

Figure 3.15: Algorithm for, and example of, the propositional select op planning operator.

1 function block op(task, decomp):
2 delete decomp from decomps(task)
3 set dirty flag for task and all its ancestors

Abstract task (blue) with three
decompositions (green, orange, purple).

Green decomposition is deleted,
leaving orange and purple in the tree.

Resulting tree contains two
decompositions and two dirty nodes.

(a) (b) (c)

(dirty)

(dirty)

Figure 3.16: Algorithm for, and example of, the propositional block op planning operator.

Decomposing tasks An abstract task task in a plan plan can be decomposed directly into

its component parts if there is only one decomposition in decomps(task). The procedure is

shown in Figure 3.17. Note that the temporal interval for task is left in temporal(net) after

decomposition. Line 7 of the algorithm adds temporal constraints from the selected decompo-

sition decomp to temporal(net). Existing temporal relationships between task and its siblings

103

3.4. Propositional planning

are maintained through the frame constraints from temporal(decomp) and the extra constraint

added in line 5.

1 function decompose op(net, task):
2 delete task from tasks(net)
3 for each node ∈ children(decomp ∈ decomps(task)):
4 add child to children(net)
5 temporal(net)⇐ {〈id(task), id(decomp), {e}〉}
6 for each con ∈ temporal(decomp ∈ decomps(task)):
7 temporal(net)⇐ {con}
8 set dirty flag in net and all its ancestors

Example:

Abstract task (blue) with a singleton
decomposition (green).

Task and decomposition are deleted:
subtasks are promoted in their place.

Resulting tree contains
three level 1 tasks.

(a) (b) (c)
(dirty)

Figure 3.17: Algorithm for, and example of, the propositional decompose op planning operator.

Ordering and adding envelopes A pair of nodes node1 and node2 in a plan plan can be

ordered by simply adding a temporal constraint to temporal(plan). It is sometimes also useful

to add extra temporal intervals to a temporal network to act as temporal envelopes containing

pairs of tasks (Section 3.4.3). Envelopes allow the agent to take advantage of the novel sepa-

ration and exclusion relationships described in Section 3.3.8 to remove clobberers by temporal

ordering without branching search. This is described in detail with the order ref refinement in

the next section.

Pseudocode for the order op and add env op operators is shown in Figure 3.18. Note that while

the add env op operator does not require the setting of any dirty flags, it is only ever used in

conjunction with order op. These operators are discussed in more detail in Section 3.4.3.

104

3.4. Propositional planning

1 function order op(net, task 1, task 2, rel):
2 temporal(net)⇐ {〈id(task1), id(task2), rel〉}
3 set dirty flag for net and all its ancestors
4 function add env op(net, env):
5 add identifier env to temporal(net)

Figure 3.18: Algorithm for the order op and add env op planning operators.

3.4.3 Plan refinements

Each refinement in pMPF focuses on a single “flaw” and generates a new plan for each way of

resolving that flaw. A flaw may be an abstract task that needs decomposing or a threat between

summary conditions that needs resolution.

These refinements are original aspects of MPF: Clement (2002) uses refinements that concen-

trate on single choices of decomposition or temporal ordering. While the decompose ref re-

finement described below is very similar to the decomposition refinement used in CHiPs, the

order ref refinement is different as it deals with specific sets of threats, and may add many

temporal constraints in a single refinement. order ref takes advantage of temporal envelopes

(Section 3.4.2) and the exclusion relationship (Section 3.3.8) made possible by interval tempo-

ral algebra (Section 3.3.4; Allen, 1983). Flaw oriented refinements are chosen because, when

needed, they allow the direct removal of specific threats in or between agents’ plans.

Strategy for refinement choice Agents try to identify the most constraining part of their plan

for refinement. This is done on a per node basis within level 1 of the task tree. The number of

threats on each node is counted and the node with the most threats is refined next. One of the

following refinements is chosen, depending on whether the node is a state constraint, abstract

or primitive task.

Decompose refinement Abstract tasks can be decomposed14 by replacing them with the chil-

dren of one of their decompositions. Primitive tasks with multiple decompositions can be re-

duced to a single decomposition to provide a definite set of preconditions and effects. When

14Clement uses the term “expand” to refer to the decomposition of an abstract task using a method. Erol (1996)
uses the term “reduce” to refer to the same thing. As these terms are somewhat conflicting, this thesis opts for
neither and uses the term “decompose”, which is also popular in the HTN planning literature.

105

3.4. Propositional planning

applied to a task task in a plan plan, the decompose ref refinement outputs a new plan for each

decomposition in decomps(task), as shown in Figure 3.19. Although the refinement itself does

not decompose task , the singleton child created will trigger decomposition in the simplification

post-processing step (Section 3.4.4).

1 function decompose ref(plan, task)→ newplans:
2 for each decomp ∈ decomps(task):
3 create a copy newplan of plan
4 locate equivalent newtask and newdecomp for task and decomp
5 select op(newtask, newdecomp)
6 add newplan to newplans

Figure 3.19: Algorithm for the propositional decompose ref refinement.

decompose ref is applied to abstract and primitive tasks that have more than one decomposition

when they are selected for refinement.

Order refinement Once a task has been fully decomposed, further threats may have to be

removed by adding ordering constraints to the plan. For a task task in a plan plan this is done

with the algorithm shown in Figure 3.22, described informally as follows:

1. A set clobberers is made containing nodes that may clobber one or more of the summary

preconditions of task .

2. A set achievers is made containing nodes that must achieve one or more of the summary

preconditions of task , and are not in clobberers .

3. For each achiever ach a separate plan is output in which an envelope interval env is added

to temporal(plan) such that env contains task (Figure 3.20):

temporal(plan)⇐ {〈env , task , {di}〉}

ach is ordered inside env and before task :

temporal(plan)⇐ {〈env , ach, {di}〉, 〈ach, task , {b, m}〉}

106

3.4. Propositional planning

and all clobberers are ordered before or after env :

temporal(plan)⇐ {〈env , clo, {b, a, m, mi}〉 | clo ∈ clobberers}

envelope

taskselected achiever
clobberers clobberers

time

Figure 3.20: Temporal relationships created by order ref when an achiever is selected.

Notice that the ordering in Figure 3.20 implements the exclusion arrangement described in

Section 3.3.8. It is here that interval temporal algebra provides its flexibility: the ability

to producing a single plan in which clobberers are ordered before or after a temporal

envelope is significant as it drastically reduces the number of plans output by order ref.

Point algebra would require one plan to be output for each combination of before and

after orderings for each potential clobberer.

4. An extra plan is output in which no achiever is used. Instead, all clobberers are simply

ordered after env (Figure 3.21):

temporal(plan)⇐ {〈env , clo, {a, mi}〉 | clo ∈ clobberers}

envelope

task
clobberers

time

Figure 3.21: Temporal relationships created by order ref when no achiever is selected.

5. Sometimes it is impossible to resolve all threats on a task without first decomposing

some of its effectors. To ensure completeness, extra plans are generated by applying

decompose ref to the most constraining task from achievers ∪ clobberers that has more

than one decomposition.

107

3.4. Propositional planning

1 function order ref(plan, task)→ newplans:
2 for each con in sumpre(task) ∪ sumin(task):
3 achievers ← achievers ∪ {ach | must achieve(ach, con)}
4 clobberers ← clobberers ∪ {clo | may clobber(clo, con)}
5 achievers ← achievers − clobberers
6 for each ach ∈ achievers:
7 newplan ← copy(plan)
8 generate a unique temporal interval identifier env
9 add env op(plan, env)
10 order op(plan, env , id(task), {e, si, fi, di})
11 order op(plan, env , id(ach), {e, si, fi, di})
12 order op(plan, id(task), id(ach), {b, m})
13 for each clo ∈ clobberers:
14 order op(plan, env , id(clo), {b, a, m, mi}
15 if is consistent(newplan):
16 newplans ← newplans ∪ newplan
17 newplan ← copy(plan)
18 for each clo ∈ clobberers:
19 order op(plan, id(task), id(clo), {b, m}
20 if is consistent(newplan):
21 newplans ← newplans ∪ newplan
22 choose eff that appears most often in

(
node(con ∈ achievers ∪ clobberers)

)
23 newplans ← newplans ∪ decompose ref(plan, eff)

Figure 3.22: Algorithm for the propositional order ref refinement.

While this technique is not guaranteed to remove all threats to task , it will always remove or

decompose at least one threat or task. Subsequent uses of order ref will remove further threats

until the task is threat free.

order ref is applied to state constraints and “singleton” primitive tasks that have one decompo-

sition when they are selected for refinement.

3.4.4 Simplifying task trees

The refinements described above can generate task trees with inconsistent decomposition task

networks and singleton abstract tasks that require pruning. These operations are performed as

a post-processing step called simplification, the result of which is either an inconsistent plan

that can be discarded or a consistent plan that can be used as a basis for further refinement.

Simplification comprises a number of operations:

108

3.4. Propositional planning

Pruning Decompositions with inconsistent subtrees must be blocked from the task tree (Sec-

tion 3.4.2). As described in Section 3.4.1, inconsistencies can arise from over-constrained

temporal or binding constraints, or descendant tasks with no remaining child decomposi-

tions.

Decomposition Tasks with singleton decompositions after pruning must be decomposed as

described in Section 3.4.2.

Simplification is illustrated in Figure 3.23. Frame (a) shows a task tree with two blue level 1

tasks. The left hand task has two decompositions: the green decomposition represents a valid

task network, and the orange decomposition represents a task network with invalid temporal

constraints. The invalid task network is pruned from the tree using block op (b). After pruning,

the green decomposition is a singleton: its parent task is decomposed (c) and replaced with its

children (d).

(a) (b) (c) (d)

Task tree with an (orange)
invalid decomposition.

Invalid decomposition
is pruned from the tree.

Singleton decomposition
is decomposed.

Only tasks from the valid
decomposition remain.

Figure 3.23: Example of simplification.

Pruning can trigger decomposition when it leaves singleton task networks in the task tree. Sim-

ilarly, decomposition can trigger pruning when it introduces temporal inconsistencies in the

parent task network (the blue task network in Figure 3.23). Because of this mutual recursion,

simplification always results in either a valid task tree, or in a tree with an inconsistent root task

network. According to the definitions in Section 3.4.1, trees with inconsistent roots represent

inconsistent plans and are dropped from consideration.

Simplification is done in a depth first traversal of the task tree, starting at the leaves and working

towards the root. The algorithm is shown in Figure 3.24.

109

3.4. Propositional planning

1 function simplify(node):
2 if node is a task network:
3 for each child ∈ tasks(node):
4 simplify(child)
5 if |decomps(child)| = 1:
6 decompose op(node, child)
7 else:
8 for each child ∈ decomps(node):
9 if is consistent(child):
10 simplify(child)
11 else:
12 block op(node, child)

Figure 3.24: Algorithm for simplifying a propositional task tree.

3.4.5 Splitting and merging plans

As discussed in Section 3.1, task trees can be used to represent individual plans comprising

tasks and state constraints belonging to a single agent, or joint plans comprising tasks and state

constraints from multiple agents.

A joint plan pjoint in a problem problem can be split into individual plans by creating a plan

pagent for each agent and copying into it the subtree for every level 1 node for which:

owner(node) ∈ {agent , problem}

and every temporal constraint con for which:

owners(con) ∩ {agent , problem} 6= ∅

Temporal constraints are copied across even if they refer to one or more nodes that are not in

pagent: these form inter-plan constraints that act as coordination information for the individual

plans. Because every task and assumption in the joint plan is owned by at least one agent (or the

problem), and all assumptions are copied into one or more individual plans, the set of individual

plans can be subsequently merged back into a joint plan with no loss of information.

110

3.5. First order plans and planning

3.5 First order plans and planning

Sections 3.3 and 3.4 described the pMPF planning mechanism, which dealt exclusively with

non-recursive propositional planning problems. However, many “traditional” HTN planning

problems have first order actions and world state. This section describes the extensions re-

quired to pMPF to allow it to handle such problems. A new planning formalism, fMPF, is

created, which uses first order task trees as its plan representation. Section 3.6 discusses meth-

ods for applying fMPF to recursive planning problems, which completes the development of the

planning mechanisms used in this thesis. The extensions described in this section and Section

3.6 are novel contributions to task tree and summary based information techniques.

While propositional plan representations are suitable for solving small problems, they quickly

scale up and become unwieldy when modelling problems with multiple instances of objects in

them such as Blocksworld, general route navigation and many scheduling problems. This is

because an extra branching factor is incurred in the task tree whenever an action can be applied

to more than one object in the problem. This limitation can be partly overcome by adding

first order state literals and actions to pMPF to produce a new mechanism, fMPF. This section

discusses the additional features of this new mechanism.

3.5.1 First order plans

In first order problems the world is made up of a collection of objects. State literals and actions

become first order predicates defined on tuples of objects. The semantics are the same as those

for objects in STRIPS (Section 2.1.2). Objects have an infinite lifetime; they cannot be created

or destroyed. Plans can only affect them by altering the values of the literals describing their

properties and relationships. Examples of objects may include blocks, surfaces and grippers

in Blocksworld, locations and vehicles in logistics domains, and discs and pins in Towers of

Hanoi. However, the domain designer has some freedom when it comes to modelling aspects

of the problem using objects or state literals.

111

3.5. First order plans and planning

Planning variables and binding constraints Planning variables represent disjunctions

of possible objects in an action or state literal in a plan. For example, the action

move(Birmingham, ?des) describes movement from Birmingham to an undecided location

?des . A list of possible values of ?des is stored as part of the plan. Variables are related to

one another and to individual world objects by binding constraints. There are two types of

constraints, equal constraints and not equal constraints, written as follows:

〈id1, id2, eq〉
〈id1, id2, ne〉

where id1 and id2 are identifiers of planning variables or world objects. The binding constraints

on a variable affect the set of world objects that form its domain of possible values.

Types of objects Objects, planning variables and arguments in literals and actions may be

given types. This prevents the agent considering, for example, a gripper as a possible value of a

variable representing a block in Blocksworld. The implementation of a flexible type hierarchy

is straightforward as objects and types cannot be created or destroyed during planning.

fMPF uses a type hierarchy in which each type has a set of possible values and a set of parent

types. When the initial task tree is generated for the planning problem, each planning variable is

assigned an initial domain based on the domain of its type and its descendant types. An example

type hierarchy is shown in Figure 3.25, together with initial values of variables of various types.

supertypes(!staff)={} values(!staff)={alice, bob}
supertypes(!student)={} values(!student)={charlie, dennis}

supertypes(!phd)={!staff , !student} values(!student)={ellie}
type(?x)=!staff initial values(?x)={alice, bob, ellie}
type(?y)=!student initial values(?y)={charlie, dennis , ellie}
type(?z)=!phd initial values(?z)={ellie}

Figure 3.25: Example type hierarchy and planning variables. Type names are prefixed with
exclamation marks; variable names are prefixed with question marks.

State literals and actions are defined with applicable type signatures to make sure variables of

the correct types are used in the correct places. However, this information is unnecessary once

112

3.5. First order plans and planning

a valid task tree has been set up with appropriate sets of initial values for each variable.

Type information is ignored in the remainder of this chapter and Chapter 4 as it does not af-

fect the discussion of planning mechanisms or algorithms. Type information is available in

Appendix B for each of the planning domains used in the empirical analysis in Chapter 5.

Task networks Binding constraints and value lists for planning variables are stored in new

structures inside task networks:

〈id , action, tasks , pre, post , temporal , vars , bindings〉

where vars is a map of variable identifiers declared in this network to sets of their possible

values, and bindings is a set of constraints on pairs of variables.

The operator⇐ is used to represent the addition of a set of binding constraints to a task network

and the calculation of inferred constraints and possible values of variables:

bindings(net)⇐{〈id1, id2, eq〉, 〈id2, id3, ne〉, . . .}

The update algorithm used is a variant of the temporal update algorithm (Section 3.3.4), also

with O(n3) complexity where n is the number of variables in the task network. In later formulae,

the function vlookup(id1, id2, net) returns one of the symbols eq , ne or any representing the in-

ferred relationship between the variables or values id1 and id2. The function values(?var , net)

determines the possible values for a variable according to vars(net).

Free and bound variables In decomposition task networks, variables are classified as bound

or free depending on whether they appear in action(net). Bound variables appear in action and

are constrained by the values of the variables of the corresponding action in the parent task. By

contrast, free variables can be assigned values arbitrarily within the confines of constraints in

bindings(net).

113

3.5. First order plans and planning

Unification It is possible for partially lifted actions and state literals to share possible ground-

ings even if they contain different planning variables. The unify function shown in Figure 3.26

is used to check whether pairs of actions or state literals share common groundings. In actual

fact, this is a slight misnomer as the function does more than conventional unification. In ad-

dition to checking whether there is a set of substitutions that can rewrite one action or literal

as another, it also checks the values of and binding constraints on relevant planning variables.

The function returns false regardless of normal unification if actions or literals do not share any

common groundings.

1 function unify(a, b, net)→ ans:
2 if a and b have different function names or numbers of arguments:
3 ans ← false
4 else:
5 for each ai, bi in the arguments of a and b:
6 if ai is a planning variable:
7 if bi is a planning variable:
8 if values(ai, net) ∩ values(bi, net) 6= ∅ ∨

vlookup(ai, bi, net) = ne:
9 ans ← ans ∪ ai/bi

10 else:
11 return ans ← false
12 else:
13 if bi ∈ values(ai, net):
14 ans ← ans ∪ ai/bi

15 else:
16 return ans ← false
17 else:
18 if bi is a planning variable:
19 if ai ∈ values(ai, net):
20 ans ← ans ∪ ai/bi

21 else:
22 return ans ← false
23 else:
24 if ai 6= bi:
25 return ans ← false

Figure 3.26: Algorithm for “unification” in first order problems. x/y denotes a pair representing
the substitution of x for y in formula a or y for x in formula b. The return keyword stops
execution and returns from the function: otherwise, execution ends naturally with the current
value of ans as the result.

114

3.5. First order plans and planning

3.5.2 Approaches to handling first order problems

There are two basic approaches to handling first order planning problems: compilation to a

propositional form and the generation of a first order task tree. These are described below, with

the help of the example first order problem shown in Figure 3.27. The initial plan and a single

method are shown; methods for the drive, pickup and dropoff tasks are ignored.

〈plan, null, {〈task 1, deliver(a, loc2), {}〉, 〈task 2, deliver(b, loc3), {}〉},
{}, {〈post1, at(a, loc1)〉, 〈post2, at(b, loc2)〉},
{〈post1, post2, {e}〉, 〈post1, task 1, {b, m}〉, 〈post1, task 2, {b, m}〉}, {}, {}〉

〈method1, deliver(?package, ?des), {
〈task 3, drive(?src, ?vehicle), {}〉, 〈task 4, pickup(?package), {}〉,
〈task 5, drive(?des , ?vehicle), {}〉, 〈task 6, dropoff (?package), {}〉}, {}, {},
{〈task 3, task 4, {m}〉, 〈task 4, task 5, {m}〉, 〈task 5, task 6, {m}〉}〉,
{?package : {a, b, c}, ?des : {loc1, loc2, loc3},

?vehicle : {car, van, train}, ?src : {loc1, loc2, loc3}},
{〈?src, ?des , ne〉}〉

Figure 3.27: Initial plan and example method from a first order package delivery domain. Tasks
are shown in orange; state constraints are shown in blue; planning variables are shown in green;
temporal and binding constraints are shown in black.

In the example problem, the agent must create a plan to deliver two packages. The initial

positions of the packages are shown as blue postconditions, while their goal destinations are

encoded as orange deliver tasks. Package a starts at loc1 and needs to be delivered to loc2,

and package b starts at loc2 and needs to be delivered to loc3. The implementation of deliver

involves a sequence of four subtasks and, importantly, four planning variables. Two variables,

?package and ?des , are bound to objects in the action of the method during task tree generation,

while two free variables, ?vehicle and ?src, can be bound by the agent during planning.

Compilation to propositional form In this approach, the problem is compiled into propo-

sitional form during task tree generation and pMPF is used as a planning mechanism. The

generation algorithm is similar to that in Figure 3.12. When a method is added to the tree, the

variables in its action field are bound to match the arguments of the relevant task, and a propo-

sitional decomposition is produced for every remaining combination of groundings of its free

variables.

115

3.5. First order plans and planning

Consider, for example, method1 applied to task 1 above. A decomposition would

be produced for each of the following combinations of groundings:

?package = a ?des = loc2 ?vehicle = car ?src = loc1

?package = a ?des = loc2 ?vehicle = car ?src = loc3

?package = a ?des = loc2 ?vehicle = van ?src = loc1

?package = a ?des = loc2 ?vehicle = van ?src = loc3

?package = a ?des = loc2 ?vehicle = train ?src = loc1

?package = a ?des = loc2 ?vehicle = train ?src = loc3

The initial conditions of the problem (blue postconditions in the initial plan) state

that package a starts at loc2, intuitively making half of these decompositions point-

less. However, these decompositions are not inconsistent and may be necessary if a

package needs to be moved more than once, so they form a valid part of the initial

task tree. Similarly, the following decompositions are added for task 2:

?package = b ?des = loc3 ?vehicle = car ?src = loc1

?package = b ?des = loc3 ?vehicle = car ?src = loc2

?package = b ?des = loc3 ?vehicle = van ?src = loc1

?package = b ?des = loc3 ?vehicle = van ?src = loc2

?package = b ?des = loc3 ?vehicle = train ?src = loc1

?package = b ?des = loc3 ?vehicle = train ?src = loc2

The number of nodes in a compiled tree is O((dfv)h) where d is the average number of decom-

positions per task, f is the average number of free variables per method, v is the average number

of values per free variable and h is the height of the tree. First order planning domains with

nested method calls, particularly recursive domains (Section 3.6), can give rise to extremely

large compiled task trees.

Expansion in first order form An alternative approach is to create a first order task tree

in which planning variables are preserved. Decompositions are produced by cloning methods

and uniquely renaming the variables therein. This approach produces significantly smaller task

trees than compilation to propositional form, as only one decomposition is added to each task

for each applicable method.

Consider, again, method1 in the example problem above. When it is used to expand

task1 , a decomposition decomp ′ might be produced with variables as follows:

116

3.5. First order plans and planning

?package→?package ′ ?des→?des ′

?vehicle→?vehicle ′ ?src→?src′

When the decomposition is added to decomps(task 1), frame binding constraints

are added to bindings(decomp ′) to make sure action(task 1) has the same set of

groundings as action(decomp ′):

bindings(decomp ′)⇐ {〈a, ?package ′, eq〉, 〈loc3, ?des
′, eq〉}

When method1 is used to expand task 2, a decomposition decomp ′′ might be pro-

duced. This decomposition would have a different set of variables:

?package→?package ′′ ?des→?des ′′

?vehicle→?vehicle ′′ ?src→?src′′

with equivalent frame binding constraints in bindings(decomp ′′):

bindings(decomp ′′)⇐ {〈b, ?package ′′, eq〉, 〈loc3, ?des
′′, eq〉}

The number of nodes in a first order task tree is O(dh) where d is the average number of

decompositions per task and h is the height of the tree. Assuming compilation and expansion

produce task trees of the same height, a compiled propositional tree will always be a factor of

O((fv)h) larger than its first order equivalent. This assumption is valid for all non-recursive

and recursive problems (Section 3.6) as they are handled in this thesis.

Summary conditions First order task trees still produce propositional summary information.

Propositional summary conditions can be merged as they are propagated up the task tree (Sec-

tion 3.3.9). This is useful as it removes unnecessary detail, preserving only the information

necessary for the analysis of summary relationships at high levels of abstraction. Planning vari-

ables are defined in task networks throughout the task tree: if first order summary conditions

were produced, the variables in them would lose meaning as they were propagated towards the

root of the tree, preventing merging and resulting in a large amount of meaningless information.

117

3.5. First order plans and planning

The first order task tree approach is not without its disadvantages. Changes to the relationships

between widely used planning variables can require large amounts of summary information to

be recalculated. This slows down planning and increases the computational cost of summary

based heuristics. However, despite this disadvantage, there are many “traditional planning prob-

lems” that cannot be represented in propositional form using task trees in a feasible amount of

memory. An empirical comparison of performance using the compilation and first order ap-

proaches is presented in Section 5.3. While first order task trees alleviate the problem, memory

overheads are still a major disadvantage of task trees compared to “traditional” HTN mecha-

nisms.

3.5.3 Planning with first order task trees

Despite the increased complexity of first order task trees, many of the features of the proposi-

tional planning mechanism can be reused with minor modification.

Modified consistency test The is consistent function from Section 3.4.1 needs to be

amended to detect planning variables that have no possible values due to over-constrained bind-

ing constraints. The first order definition is shown below, with new terms highlighted in blue:

is consistent(net) =∀node, node ′ ∈ children(net) tlookup(node, node ′, net) 6= ∅
∧∀var ∈ vars(net) values(var , net) 6= ∅
∧∀task ∈ tasks(net) |decomps(task)| ≥ 1

∧∀decomp ∈ decomps(task ∈ tasks(net)) is consistent(decomp)

Planning operator for binding variables When a task is decomposed, extra binding con-

straints are added to the root of the task tree to constrain bound variables from the decompo-

sition appropriately. A new planning operator, bind op, is introduced to make two actions or

literals equal or not equal. The operator is shown in Figure 3.28. Note that if the variables

being bound are used widely in the task tree, the dirty bit may be set in a large number of task

networks and a significant amount of summary information may need to be recomputed (see

below).

118

3.5. First order plans and planning

1 function bind op(action1, action2, rel , net):
2 for each arg1 ∈ args(action1), arg2 ∈ args(action2):
3 bindings(net)⇐ {〈arg1, arg2, rel〉}
4 for each changed var ∈ vars(net):
5 propagate changes of values to equivalent variables in descendants of net
6 set dirty bit in each member of descendants and all their ancestors

Figure 3.28: Algorithm for the first order bind op planning operator. Despite their names,
action1 and action2 can be actions or literals. rel is one of {eq , ne}.

Modified decompose operator The decompose op planning operator needs to be modified

so that when a task is decomposed, the planning variables and binding constraints from the

decomposition are merged with those in the task’s parent task network. The first order version

of the operator is shown in Figure 3.29.

1 function decompose op(net , task):
2 delete task from tasks(net)
3 for each node ∈ children(decomp ∈ decomps(task)):
4 add child to children(net)
5 temporal(net)⇐ {〈id(task), id(child), {e, si, fi, di}〉}
6 for each arg ∈ vars(decomp ∈ decomps(task)):
7 add var to vars(net)
8 for each con ∈ bindings(decomp ∈ decomps(task)):
9 bindings(net)⇐ {con}
10 bind op(action(task), action(decomp))
11 for each con ∈ temporal(decomp ∈ decomps(task)):
12 temporal(net)⇐ {con}

Figure 3.29: Algorithm for the first order decompose op planning operator. “Extra” lines not
present in the propositional version are shown in blue.

Modified decompose refinement The decompose ref refinement needs to be modified so that

it grounds the action of a task in addition to selecting a particular decomposition. This makes the

decompose ref refinement very similar to the propositional decompose ref refinement applied

to a compiled propositional task tree. The first order version of this refinement is shown in

Figure 3.30.

With these features of fMPF, agents are able to solve first order non-recursive HTN planning

problems using task trees and summary information. The next section introduces techniques for

119

3.5. First order plans and planning

1 function decompose ref(plan, task)→ newplans:
2 for each decomp ∈ decomps(task):
3 for each grounding g shared between action(task) and action(decomp):
4 create a copy newplan of plan
5 locate equivalent newtask and newdecomp for task and decomp
6 select op(newtask, newdecomp)
7 bind op(action(newtask), g, eq , newplan)
8 add newplan to newplans

Figure 3.30: Algorithm for the first order decompose ref refinement. “Extra” lines not present
in the propositional version are shown in blue.

handling a restricted set of recursive first order problems, either with fMPF or after compilation

to pMPF.

Overheads of planning with first order trees Every time bind op is used, the domains of

one or more planing variables change in the root node of the tree. Summary information has to

be recomputed for any node that references one of the changed variables. This in turn makes

further recomputation necessary as the new summary information is propagated up the tree.

The amount of summary information is limited by two factors in practice. Firstly, bind op is

only used as part of decompose ref (ordering refinements are left unaffected). Secondly, sum-

mary information only has to be recomputed when the domains of variables change: typically,

only a small fraction of the variables in the tree are affected each decomposition, and these will

be referred to in a fraction of the branches of the tree. However, summary recalculation still

imposes an overhead that is not present in propositional planning.

In the worst case, assuming that all of the summary information in the tree has to be recalculated

every refinement, the planner suffers from an O(d(h+3)c3) operation overhead per iteration.

Much of the efficiency of first order planning depends on the extent to which this overhead can

be minimised through careful implementation and optimisation.

120

3.6. Recursive problems

3.6 Recursive problems

Many HTN planning problems involve recursive actions. For example, in Blocksworld the

clearing of a block is recursive:

In order to pick up block A I have to make sure there is nothing on top of it.

If there is a block B on top of A I must pick it up and place it on the table.

In order to pick up block B I have to make sure there is nothing on top of it.

If there is a block C on top of B I must pick it up and place it on the table...

as is travelling from location to location in navigation and logistics domains:

To get from A to Z I first go to B and then get from B to Z.

To get from B to Z I first go to C and then get from C to Z...

and moving a stack of disks15 in Towers of Hanoi:

move(5, A, C)⇒ (move(4, A,B),move(1, A, C),move(4, B, C))

move(4, A,B)⇒ (move(3, A, C),move(1, A,B),move(3, C,B))...

Recursive tasks complicate task tree generation because it is difficult to put a bound on the size

of the tree before planning starts. However, while recursion may suggest an infinite task tree,

for first order problems with a fixed finite number of world objects this is never the case. For

example:

• in a simple n block Blocksworld problem, a maximum n− 1 blocks need to be moved to

the table to clear a particular block;

• in an n location navigation problem, a maximum n − 2 locations need to be visited en

route from A to B;

• in an n disk Towers of Hanoi problem, only n levels of recursion are necessary to move

all the disks from one pillar to another.

15move(x, y, z) denotes the abstract task of moving x disks from pillar y to pillar z.

121

3.6. Recursive problems

For any problem there is an optimal task tree size that suits the problem. If too small a tree is

generated it may not contain any solution plans. If the tree is too large, agents waste time during

planning maintaining information that is unnecessary.

As well as being necessary for summarisation, a fixed maximum tree size can be useful for

implementing some search algorithms, including search algorithms based on constraint satis-

faction techniques (Section 4.4.1). This section discusses a task tree generation technique called

value counting that allows the estimation of a suitable initial size for first order and compiled

propositional task trees in certain recursive problems.

3.6.1 Estimating optimal tree size

It is difficult to calculate the optimal initial size of a task tree without reverse engineering a

valid solution to the problem. However, it is sometimes possible to make a good guess without

problem specific knowledge, using a novel technique called value counting.

〈travel1, travel(?src, ?des), {}, {},
{〈task 1,move(?src, ?aux) . . .〉, 〈task 2, travel(?aux , ?des) . . .〉}, . . .〉

〈travel2, travel(?src, ?des), {〈pre1, edge(?src, ?des)〉}, {}, 〈move(?src, ?des) . . .〉}, . . .〉
〈move1,move(?src, ?des), {〈pre1, edge(?src, ?des)〉, 〈pre2, at(?src)〉},
{〈post1,¬at(?src)〉, 〈post2, at(?des)〉}, {}, . . .〉

Figure 3.31: Abbreviated methods for single robot navigation. Task networks and temporal
constraints are written in black, tasks in orange, and state constraints in blue.

Consider, for example, the methods for single robot navigation problem shown in Figure 3.31.

The abstract action travel represents movement between distant locations, possibly via a num-

ber of intermediate locations, while the primitive action move represents movement between

adjacent locations along a connecting edge.

travel tasks can be decomposed using the recursive method travel1 or the non-recursive method

travel2. Binding constraints make sure that in travel1, ?src 6= ?aux , and in travel2, ?aux 6=

?des16. Figure 3.32 intuitively shows that for any configuration of connections on an n location

graph, the maximum number of primitive moves required to perform a single travel task is n−1.

16The case of null movement where ?src = ?des is ignored.

122

3.6. Recursive problems

robot

intended
journey

??
?

Figure 3.32: Single robot navigation problem. Each journey on a graph containing n locations
requires a maximum n− 1 moves.

This information can be retrieved by counting the number of possible values of free variables

in level 1 tasks in the task tree. travel1 is the only recursive method in the domain, and ?aux

is the only free variable in travel1. The binding constraints in travel1 dictate that, if ?src and

?des are fixed, there are n− 2 possible values for aux .

The value counting approach builds a task tree containing n − 2 levels of recursion of travel1.

The resulting tree is shown in Figure 3.33. The tree represents a disjunction of routes of length

1 to n− 1, through any set of locations in any order.

travel(?src,?des)

move(?src,?des)

travel1

plan

move(?aux1,?des)

travel3

travel2

move(?src,?aux1) travel(?aux1,?des)

travel4

move(?aux1,?aux2) travel(?aux2,?des)

move(?aux2,?des)

travel5

Figure 3.33: Initial task tree for the problem in Figure 3.32. Primitive tasks used in the worst
case of n− 1 moves are highlighted in orange.

Action independence Value counting only works in problems with a certain structure. To

ensure value counting will work in all cases, the (human) domain programmer needs to structure

123

3.6. Recursive problems

recursive tasks and methods such that the subtree of any level 1 task contains solution histories

for any set of initial conditions. This will hereafter be referred to as the action independence

assumption. Examples are given below.

Action independence is specified for each abstract action in the problem domain. In Figure 3.31

the travel action is independent because the travel1 and travel2 methods guarantee that, for

every solvable problem, a level 1 travel subtree will contain a history that constitutes a valid

solution plan. The problem may be unsolvable with value counting if any level 1 tasks do not

satisfy the action independence assumption.

Action independence does not guarantee that a plan for a given abstract action can be found:

it simply guarantees the maximum recursion depth whenever a plan does exist. For example,

in Figure 3.32 there may be no edges connecting the locations on the graph, making journeys

between different locations impossible. If a plan can be found, however, it is guaranteed to be

contained within the generated task tree.

〈travel1, travel(?robo, ?src, ?des), {}, {},
{〈task 1,move(?robo, ?src, ?aux) . . .〉, 〈task 2, travel(?robo, ?aux , ?des) . . .〉}, . . .〉

〈travel2, travel(?robo, ?src, ?des), {〈pre1, edge(?src, ?des)〉}, {},
{〈move(?robo, ?src, ?des) . . .〉}, . . .〉

〈move1,move(?robo, ?src, ?des),
{〈pre1, edge(?src, ?des)〉, 〈pre2, at(?robo, ?src)〉, 〈pre3, clear(?des)〉},
{〈post1,¬at(?robo, ?src)〉, 〈post2, at(?des)〉, 〈post3, clear(?src)〉, 〈post4,¬clear(?des)〉},
{}, . . .〉

Figure 3.34: Abbreviated methods for multi robot navigation. Differences from the single agent
methods in Figure 3.31 are shown in green. The clear pre-/postconditions of move1 prevent
two robots being co-located or passing on the same edge.

Action independence is a restrictive assumption and building compliant domains is not always

possible. Consider the set of methods for multi robot navigation shown in Figure 3.34. The

clear pre-/postconditions of the move1 method make it impossible for two robots to be co-

located or pass on the same edge. travel is no longer an independent action with these state

constraints, as the clear precondition is not explicitly achieved as part of any of the methods

in travel subtrees. It is no longer certain whether or not a given level 1 travel action will be

achievable within the estimated number of moves .

124

3.6. Recursive problems

robot1 robot2

a b c

d

e

Figure 3.35: Multi robot navigation problem demonstrating shortcomings of value counting.

Consider the example in Figure 3.35. In this example, robot1 and robot2 must

exchange places. They cannot pass each other directly because of the clear pre-

/postconditions of the move1 method. To solve the problem, the robots must use

locations d and e as passing places. Ignoring inter-robot temporal orderings, there

are two solutions to the problem, shown in Figure 3.36.

Solution 1: robot1 a→ b→ c→ d→ c→ b
robot2 b→ c→ e→ c→ b→ a

Solution 2: robot1 a→ b→ c→ e→ c→ b
robot2 b→ c→ d→ c→ b→ a

Figure 3.36: Solutions to the problem in Figure 3.35.

In both of these solutions, the required number of moves for each robot is 5, which

is one more than the 4 predicted by value counting. The situation can be made

worse by adding locations between b and c on the graph; the number of moves

required per robot increases by 2 for every location added, whereas the prediction

from value counting only increases by 1.

This problem can be avoided by changing the method structure from Figure 3.34 so that it

obeys action independence. This can be done, for example, by adding the abstract action

travel avoid(?robo, ?src, ?des) shown in Figure 3.37. This action, which simply doubles the

maximum number of move tasks required in general to move from a to b, allows either robot in

a two robot problem to travel while avoiding its team mate. travel avoid is the only action that

can be safely used in level 1 tasks in two robot navigation problems.

The methods in Figure 3.37 have two major drawbacks:

125

3.6. Recursive problems

〈avoid1, travel avoid(?robo, ?src, ?des), {}, {},
{〈task 1, travel(?robo, ?src, ?aux)〉, 〈task 2, travel(?robo, ?aux , ?des)〉}, . . .〉

〈avoid2, travel avoid(?robo, ?src, ?des), {}, {}, {〈task 1, travel(?robo, ?src, ?des)〉}, . . .〉

Figure 3.37: Methods for the independent two robot navigation action, travel avoid .

1. The methods only work in two robot problems. Versions for three or more robots could

be created by adding tasks and ?aux destinations to the avoid1 method, but in general

the specification of such methods requires a planning formalism that supports universal

quantification. The shortcomings of value counting in this example stem from the fact

that the clear precondition of move1 implies that the absence of a robot is required for

movement to be possible, but does not provide a variable of type robot with which to

enumerate the robots that must be avoided.

2. The methods require one agent to have control over both robots in the domain. If agents

have control over different robots, subtasks of travel avoid will have to be contracted out

to the relevant team mates.

Units of recursion Recursion interval and recursion factor are two important properties of a

method, both defined in terms of a subset of a task tree called a unit of recursion. Informally,

this is the part of a task tree that repeats for any given recursive method.

instance i0 of method m

instance i1 of m

instance i3 of minstance i2 of m

Figure 3.38: The unit of recursion of a method m, taken from an instance i0 down to the next
instances i1, i2 and i3. The recursion factor and recursion interval of m in this example are 3
and 4 respectively.

The unit of recursion of a method m, shown in Figure 3.38, is the top part of the first order

126

3.7. Task tree generation algorithm

subtree of an instance i0 of m, taken down to the next instances of m in the tree17. The recursion

interval of m is the maximum distance from i0 to one of the other instances of m in the unit;

the recursion factor of m is the number of instances of m in the unit other than i0. These

measures are important because they affect respectively the height and branching factor of task

trees generated containing m (Section 3.7).

3.6.2 Adaptive task tree resizing

As mentioned above, a significant class of problems that do not satisfy action independence

includes problems where agents are mutually dependent on each other to achieve some task

preconditions. An example of this is the “airlock” problem described in Section 4.4.2, in which

robots are required to open doors for one another: it is impossible for this problem to satisfy

action independence as a single task subtree cannot be created involving the movements of

both robots. This is a severe limitation on the applicability of value counting to interesting

multi agent problems, as many actions that allow limited control of resources cannot obey

action independence: value counting is not guaranteed to produce initial task trees that are large

enough in these situations.

A more flexible alternative to value counting, described in (Gurnell, 2004)18, involves creating

an initially small task tree and expanding it as necessary during planning to resolve conflicts.

This means a maximum bound cannot be placed on task tree size, and has difficult conse-

quences for heuristic values (including can any way and might some way) as some summary

information may initially be missing from the task tree. This approach is the subject of ongoing

research.

3.7 Task tree generation algorithm

The value counting algorithm for task tree generation is shown in Figure 3.39. The expand func-

tion takes three parameters: a task to expand, the set of methods in the library of owner(task),

and a Boolean specifying whether or not to make a propositional tree. If propositional is true,
17This tree fragment will be identical for any instance of m in the tree.
18Available from http://www.cs.bham.ac.uk/∼djg.

127

3.7. Task tree generation algorithm

the function produces a compiled propositional tree (Section 3.5.2). Otherwise, a first order tree

is produced. The function groundings takes a task network as a single parameter and returns

a copy for each consistent grounding of its free planning variables. The depth(task ,method)

function returns the recursion depth of the relevant task, which is defined as 1 plus the number

of ancestor task networks of task that were derived from method.

1 function expand(task,methods, propositional):
2 for each method ∈ methods:
3 if unify(action(task), action(method)) 6= null:
4 if num groundings(method) > depth(task,method):
5 decomp← copy(method)
6 for each (arg1, arg2) ∈ (action(task), action(decomp))
7 if arg1 is a variable:
8 add arg1 to vars(decomp)
9 vars(decomp)⇐ {〈arg1, arg2, eq〉}
10 if propositional :
11 decomps(task)← decomps(task) ∪ groundings(decomp)
12 else:
13 decomps(task)← decomps(task) ∪ decomp
14 for each grandchild ∈ tasks(decomp ∈ decomps(task)):
15 expand(grandchild, methods, propositional)

Figure 3.39: Algorithm for first order and compiled propositional task tree generation.

The expand function is called for each level 1 task of an initial joint plan to create a joint task

tree. Once the task tree has been built it must be simplified to remove inconsistent task networks

and decompose single decomposition abstract tasks (Section 3.4.4).

As shown in Section 3.6.1, the number of nodes in compiled and expanded task trees is

O((dfv)h) and O(dh) respectively, where d is the average number of decompositions per task,

f is the average number of free variables per decomposition, v is the average number of values

per free variable, and h is the height of the tree. The height of trees generated by value count-

ing is O(ifv) where i is the maximum recursion interval of any method in the problem. First

order task trees produced by value counting are thus smaller than equivalent compiled trees by

a factor of O((fv)(ifv)).

128

3.8. Summary of planning mechanisms

3.8 Summary of planning mechanisms

The discussion of planning mechanisms is now complete. To summarise, a common mech-

anism called MPF was described on which various multi agent planning algorithms can be

implemented and compared. Requirements for the mechanism were outlined in Section 3.1,

and the Concurrent Hierarchical Plans (CHiPs) mechanism of Clement (2002) was suggested

as a starting point in Section 3.2. The advantages and limitations of CHiPs were outlined in

Section 3.2.5. CHiPs has many advantages, but also some disadvantages that were addressed in

MPF:

• it has no mechanism for representing ownership of tasks and constraints by different

agents;

• it is only capable of representing non-recursive propositional planning problems.

Sections 3.3 and 3.4 discussed a propositional planning formalism called pMPF that is based

closely on CHiPs. pMPF has two novel features of note:

• a simple mechanism is implemented for representing ownership of tasks and constraints,

allowing joint plans to be split into sets of coordinated individual plans and vice versa;

• interval temporal algebra is used, allowing a more flexible representation of partial action

orderings that reduces the branching factor during planning.

Section 3.5 extended pMPF to produce a new planning mechanism, fMPF, that is capable of

representing first order planning problems. Section 3.6 introduced a way of handling a restricted

set of recursive planning problems in fMPF, using a task tree generation technique called value

counting.

fMPF is used as the planning mechanism for the rest of this thesis. A brief empirical comparison

of tree generation and planning with pMPF and fMPF is made in Section 5.3.

129

Chapter 4

Planning algorithms

This chapter presents algorithms for implementations of the centralised planning, plan merging

and distributed local planning approaches from Chapter 2, based on the MPF mechanisms de-

scribed in Chapter 3. The centralised planning algorithm is adapted from the centralised plan

coordination algorithm of Clement (2002), the plan merging algorithm is an adaptation of the

centralised planning algorithm, and the distributed local planning algorithm is a novel blend of

heuristic depth first search and distributed constraint satisfaction that is inspired by the work of

Yokoo and Hirayama (2000). The approaches can be fairly compared because of their use of

the common mechanisms: an empirical comparison is conducted in Section 5.4.

Similarities between algorithms The algorithms presented in this chapter can be used with

pMPF and fMPF planning mechanisms alike by substituting in the appropriate definitions of

refinements and planning operators from Chapter 3. While the algorithms are all based on the

same planning mechanism, they use different search algorithms and different techniques for

coordination and recovery from failure.

The notation from Chapter 3 is used again to describe data structures and algorithms through-

out this chapter. A guide to the notation can be found in Appendix A.

130

4.1. Client-server model

4.1 Client-server model

The definition of an agent quoted at the beginning of Chapter 1 states that an agent is “a system

situated [in] an environment that senses the environment and acts on it [...] in pursuit of its own

agenda”. This implies that an agent is a self contained reasoning system with its own senses,

goals and internal data stores. To preserve this notion, the planning algorithms introduced in this

chapter are implemented as client / server systems. Each agent is run on a separate computer,

ensuring that it is as independent of the rest of the system as possible, and that agents are given

the same amount of processing power independent of the choice of approach and size of the

team. Multi CPU implementations such as this give teams of agents more processing power

than single CPU implementations, but incur an extra cost in inter-agent communication. This

thesis does not investigate the effect of different implementations on algorithmic performance,

although it would be a useful addition to the work presented.

Role of the server The server computer initiates the planning process, parses the problem

description file and generates an initial joint task tree. It then waits for the required number of

client computers to connect (one client per agent) and provides suitable initial individual task

trees for them to download. Once planning has started, the server acts as a communication

channel for the clients until a solution has been found or one or more clients has signalled

failure. It then collects solution plans if they are available and outputs a final joint plan and any

relevant experimental data.

While the plan server is capable of combining individual plans to produce a joint plan, it does

not remove conflicts between plans. Plan merging, the process of taking a set of uncoordinated

plans and removing conflicts to produce a coordinated joint plan, is done by a plan merging

agent, running on a client computer.

Role of the clients Each client runs on a separate computer on the network and supports a sin-

gle planning or merging agent. Centralised planning problems require a single client computer,

distributed problems require one client for each of the n agents in the problem, and plan-then-

merge problems require n + 1 clients (n clients for planning plus 1 for plan merging). Where

applicable, clients communicate with each other through the exchange of algorithm specific

131

4.2. Centralised planning

messages and summary information. Messages are broadcast or sent point-to-point, using the

server as an intermediary equivalent to a central email server. In the current implementation

all clients must be registered before planning is allowed to begin, although this is not a strict

requirement of any of the algorithms presented.

4.2 Centralised planning

The simplest way of solving a multi agent planning problem is to pool all knowledge of goals,

state constraints, tasks and methods and pass everything to a single delegate planning agent

(Section 2.2.1). The delegate uses all this knowledge to create a single joint plan for the whole

team, and then redistributes individual plans back to the individual agents.

The centralised planning algorithm described below is similar to the centralised coordination

algorithm described for CHiPs (Chapter 6 of Clement, 2002). In both algorithms, the process of

merging starting information and distributing final individual plans is ignored: the plan server

simply creates an initial task tree and a single client agent uses it to find a joint plan.

Strategy for refinement choice Clement defines a strategy for refinement choice called Ex-

pand Most Threats First (EMTF), in which the task with the most threats is always selected first

for decomposition1. This ensures that the agent is always attempting to resolve flaws involving

the task with the most predicted threats. The centralised planning approach here uses the same

technique for the same reason. The threats on each tasks are counted and an appropriate refine-

ment is applied to the task with the highest count. If the task is abstract, lifted or has more than

one decomposition, the decompose ref refinement is used. Otherwise, the order ref refinement

is used.

Communication There is no communication in this algorithm apart from the download of the

initial task tree from the server and the final upload of the solution plan.

1As mentioned in a footnote in Section 3.1, the verb “to decompose” refers to the same thing as the verb “to
expand” used by Clement. In the interests of consistency, the name of the EMTF heuristic has been kept the same
despite this terminological difference.

132

4.2. Centralised planning

Planning algorithm The algorithm itself is a simple implementation of Kambhampati’s re-

finement planning algorithm from Section 2.1.1. The is solution function is implemented with

the can any way function from Section 3.4.1, and the get refinement function is implemented

with the EMTF strategy above. The might some way function from Section 3.4.1 is used when

applying planning operators to immediately discard inconsistent plans and plans with unresolv-

able threats.

1 function find plan(initial)→ solution:
2 create empty open list
3 open list ← push(initial , open list)
4 while ¬ empty(open list):
5 (plan, open list)← pop(open list)
6 if can any way(plan):
7 solution ← plan
8 return
9 else if might some way(plan):
10 ref ← pick refinement(plan)
11 open list ← push(plans(ref), open list)
12 solution ← failure

Figure 4.1: Algorithm for centralised planning.

The complete centralised planning algorithm is shown in Figure 4.1. Best first (BFS) and heuris-

tic depth first (DFS) versions of the algorithm can be implemented using different implementa-

tions of the push and pop operators:

DFS uses stack like definitions: push adds to the front of the open list and pop removes from

the front (last in first out).

BFS uses priority queue like definitions2: push adds plans such that the list remains sorted

according to ascending heuristic value and pop removes from the beginning of the list

where the value is lowest. In MPF the heuristic value used to sort the open list is the

number of threats to level 1 summary conditions, so the planner always considers the

open plan with the fewest threats first.

The centralised planning and “plan-then-merge” algorithms described in this chapter are both

2Note that BFS stands for Best First Search: breadth first search is not considered here.

133

4.3. Plan-then-merge

based on the BFS variant of this algorithm. The distributed local planning is based on the DFS

variant, for reasons that will be discussed in Section 4.4.

Agent independence This approach is the least sensitive of the three to the privacy and in-

dependence of the planning agents. Agents have to submit complete information about their

initial task trees to the delegate agent before they start planning. This gives the delegate agent

complete access to the knowledge, goals and planning capabilities of the entire team. Agents

also effectively hand over all of their ability to make choices during planning, removing any

independence. Some independence may be regained by making the delegate produce several

candidate solutions and allowing the agents to negotiate over the final choice, although this

approach is not investigated in this thesis.

4.3 Plan-then-merge

An alternative to centralised planning is for each agent to create a plan in isolation, ignoring

the goals and plans of the rest of the team. The agents submit their final individual plans to a

delegate plan merging agent, which uses a variant of the planning algorithm above to coordinate

them. The coordinated individual plans are returned to the individual agents ready for execution.

Plan merging is a common approach to multi agent planning. The implementation described

here involves two stages, planning and merging, although in principle approaches with multiple

planning and merging stages are also possible. The plan server distributes initial individual task

trees to n planning agents, which use them to create uncoordinated individual plans. These

plans are then uploaded and merged into an initial joint task tree, which is sent to the merger

agent. The merger resolves conflicts in this tree and uploads a final coordinated joint plan.

Planning Planning is performed individually by the agents in the problem. Each agent is

aware only of the initial conditions of the problem and the tasks in its own plan. Agents down-

load initial individual task trees and use the centralised planning algorithm to create a solution

plan. When finished, they upload their solutions to the server.

134

4.3. Plan-then-merge

Plan merging Because the agents in the planning phase create plans without regard for each

others’ goals, knowledge, abilities and so on, there is a high chance that their individual solu-

tions will contain redundant or conflicting tasks. The merging stage involves taking the set of

individual plans and removing conflicts to create a coordinated joint plan.

Plans are merged using a variation of the centralised planning algorithm. The server creates an

initial joint task tree from the individual solutions uploaded by the planning agents. A merger

agent downloads the tree and uses the centralised planning algorithm to create a solution plan

to the complete joint planning problem. The final joint solution is then uploaded to the server.

Communication Apart from the downloading of initial task trees and the uploading of final

plans, there is no communication in this model. The planning agents, in particular, are oblivious

to each others’ presence.

An example Consider the following example from the Blocksworld. Three agents are in-

volved in a plan-then-merge problem. Two of these agents, planner 1 and planner 2, are plan-

ning agents. The third, merger , is a plan merging agent3.

B

B
D

C

D

C

A

B

A

Initial configuration

clear(A)
on(A, B)
on(B, C)
on(C, D)

on(D, Table)

on(D, C)
on(C, B)

on(B, A)
on(A, Table)

planner1 goals planner2 goals

Figure 4.2: Two agent Blocksworld problem suitable for the plan-then-merge approach.

The initial conditions of the problem and the goals of planner 1 and planner 2 are shown in

Figure 4.2. Assuming that both individual goal states have to be satisfied at the same time, the

joint problem is equivalent to a reversal of the initial tower. Given this input, the agents may be

expected to produce plans similar to those in Figure 4.3.

3In an actual application the role of merger may be taken on by one of the planning agents.

135

4.3. Plan-then-merge

task1
move(A, B, Table)

planner1

task2
move(B, C, Table)

planner1

task3
move(C, D, B)

planner1

task4
move(D, Table, C)

planner1

task5
move(A, B, Table)

planner2

task6
move(B, C, A)

planner2

Figure 4.3: Solutions to the individual problems in Figure 4.2. move actions are in the format
move(?block , ?source, ?destination). Arrows denote temporal orderings.

These plans are conflicting and cannot simply be unioned to form a joint plan. There are two

conflicts:

• task 1 and task 5 contain the same redundant action move(A, B,Table);

• task 2 and task 6 conflicting because they move B to different locations.

Tasks must be deleted and ordering constraints imposed to coordinate and merge the plans.

There are several ways of doing this, one of which is shown in Figure 4.4. In this solution task 2

and task 5 are deleted and ordering constraints are imposed on the remaining tasks to remove

conflicts.

Merging task trees By choosing a suitable initial task tree, many individual plans can be

merged with the centralised planning algorithm discussed in Section 4.2.

HTN planning algorithms are capable of adding ordering constraints to the joint plan to resolve

conflicts between actions, but they are not strictly capable of deleting tasks from a plan. Task

removal is implemented by adding a decomposition to each primitive task. The extra decom-

position represents a noop that can be performed instead of the actual task. An appropriate

decomposition is chosen for each task during plan merging, effectively deciding whether to

keep or delete the task. Tasks with noop decompositions are deleted from the final task tree as

a post-processing step.

136

4.3. Plan-then-merge

task1
move(A, B, Table)

planner1

task2
move(B, C, Table)

planner1

task3
move(C, D, B)

planner1

task4
move(D, Table, C)

planner1

task5
move(A, B, Table)

planner2

task6
move(B, C, A)

planner2

Figure 4.4: Coordinated joint plan created by merging the individual plans in Figure 4.3. Red
crosses denote deleted actions and red arrows denote new ordering constraints.

This approach requires that the goals of the individual problems be stated as state constraints as

well as abstract tasks. Without such a secondary specification, the merger agent would be able

to create a complete conflict free joint plan simply by deleting all the tasks from the joint plan.

These state constraints must be specified as part of the initial planning problem and ordered

appropriately with respect to the tasks for each agent.

Consider, for example, the plans in Figure 4.3. Precondition state constraints are

needed for the literals on(D, C), on(C, B), on(B, A) and on(A,Table) to make

sure the desired configuration of blocks is achieved once the plans have been

merged.

Efficiency of plan-then-merge By dividing a large joint problem up into a number of smaller

individual problems, plan-then-merge can sometimes achieve a speed increase over centralised

planning. The time taken to create individual plans can be significantly reduced because the

joint problem is broken down into smaller components. A speed gain is achieved overall if

the reduction in individual planning time is more significant than the time taken to merge the

individual plans into a joint plan.

As discussed in Section 2.2.2, plan-then-merge will not always be a more efficient strategy than

centralised planning. If individual plans have many redundant and conflicting actions, plan

137

4.3. Plan-then-merge

merging may be prohibitively expensive. The nature of the planning and merging approaches

used will also have an impact on the relative efficiency of the two techniques. Examples of this

are seen in the experimental results in Section 5.4.

Agent independence Agents are completely independent during the planning phase, but this

changes drastically during merging. From a privacy point of view, the agents have to share their

final plans with the delegate agent before they are executed, although this is not as much of an

issue as the complete knowledge sharing involved in centralised planning as goals and some

knowledge can remain private. From an independence point of view, the agents are able to

create individual plans according to their own specifications, but there is no guarantee they will

be merged fairly. It would be possible, for example, for the delegate to favour a single agent,

removing redundant actions from its plan and assigning them to other agents. “Unfair” plan

merging does not have to be deliberate: the merger agent may, for example, have a different

interpretation of plan quality from the planning agents.

Disadvantages of plan-then-merge The effectiveness of plan-then-merge is strongly depen-

dent on two factors: the ability of planning agents to produce individual plans without commu-

nication and the ability of the merging agent to produce a joint plan from the set of individual

plans.

Planning agents can only produce individual plans in isolation if they are not reliant on other

agents to achieve preconditions. Consider, for example, the robots in the airlock problem from

Section 1.2.2. If the robots do not communicate during planning they will not realise that they

are able to open the airlock doors for one another.

Even if planning agents are able to find individual plans that achieve their goals, the discovery

of a joint solution is dependent on the ability of the merger agent to create a joint plan. The

algorithm for plan merging described above, for example, is limited because it cannot add tasks

to or change tasks in the joint plan. If the planning agents produce tasks with unresolvable

conflicts, the merger agent will be unable to find a solution even if there is an alternative set of

non-conflicting tasks that could be chosen. This is a restriction of this specific implementation,

caused by strict adherence to the HTN principle of planning-by-decomposition.

138

4.4. Distributed local planning

If a problem cannot be solved by plan-then-merge because of conflicts that arise during merg-

ing, it is said to be non-mergeable4 (Section 2.2.2). Non-mergeable problems can sometimes

be solved using centralised planning as a fall-back, or by using a multi staged approach in

which sets of compatible goals are identified and distributed to avoid merging issues. Other

workarounds for this problem are discussed in Section 2.2.2.

The fall-back technique mentioned above is used in the Plan Merging Paradigm (Alami et al.,

1997), described in Section 2.2.2, in which agents continuously generate new goals, create

plans to achieve them, and then attempt to merge them with existing plans from other agents

in the environment. If a plan cannot be merged with the existing plans of the team, a deadlock

situation occurs and a centralised planner is called in to recreate the current joint plan from

scratch. This is potentially a time consuming approach that is also bad from an independence

point of view.

4.4 Distributed local planning

Even though some of the problems with plan-then-merge can be overcome by making changes

to the merging mechanism (see above), the approach is still capable of solving strictly fewer

problems than centralised planning. This is because agents do not exchange information before

or during planning.

Distributed local planning attempts to overcome this limitation without compromising indepen-

dence by allowing agents to exchange information about resource requirements during planning.

The plan server distributes initial individual task trees to the agents, which plan and exchange

messages with one another and upload coordinated individual plans. Agents are able to plan

semi-independently subject to the resource requirements of the team, and the need for a sepa-

rate merging stage is eliminated.

The disadvantage of this approach is that agents are effectively trying to find plans while the

external environment (the plans of the other agents) changes around them. Novel techniques

are required to plan effectively in these situations.

4By analogy to “non-serialisable” subgoals as identified by Korf (1987).

139

4.4. Distributed local planning

External summaries In this approach, agents exchange summary information as they plan.

The server maintains a shared external summary containing summary conditions and temporal

constraints from the level 1 nodes in the task trees of each agent5. Access to the external

summary is controlled with read and write tokens and the rules in Figure 4.5, which prevent

three types of concurrency issues:

Concurrent writes Data may be corrupted if two agents simultaneously attempt to update the

shared summary. Rules 4 and 6 prevent this by queuing write requests so that writes take

place serially rather than in parallel.

Dirty reads If one agent is reading the shared summary while another agent is writing to it (or

due to write to it), information can be downloaded that is either corrupt or immediately

invalidated. Rules 5 and 7 prevent this by forcing agents with read requests to wait if

another agent is already trying to update the shared summary.

Avoiding deadlock The combination of rules 7 and 10 prevent the system getting into dead-

lock. Without rule 10, it is possible to see a situation in which two agents A and B

continually re-issue and re-queue write requests, denying a third agent C read access.

With rule 10, however, A and B are required to issue a read request after every write,

making sure all agents including C get to read the summary before it is updated again.

The avoidance of dirty reads is a contentious issue as preventing agents from reading the shared

summary can potentially cause a bottleneck in communication. However, it is important that

agents’ local versions of the shared summary are as similar as possible when they are con-

sidering ways of resolving inter-agent threats, and this is one way of ensuring that this is the

case.

Applicability of local search Whenever the external summary information is updated on the

server, agents’ local copies become invalid. Agents must repeatedly refresh their copies of the

external summary to stay up to date with their surroundings. Every time an agent downloads

5This blackboard-like approach is equivalent to the broadcasting of external summary information to the team
every iteration, but gets around the problem of simultaneous communication.

140

4.4. Distributed local planning

1. An agent with a read token can download copies of the external summary but
may not upload new information;

2. An agent with a write token can download and upload external summary in-
formation;

3. Any number of read tokens may be granted at a time;
4. Only one write token can be granted at a time;
5. Read tokens and write tokens cannot be issued at the same time;
6. Upon requesting a token, an agent is held in a queue until the token can be

issued;
7. New read tokens are not issued while an agent is waiting for write permission

(the requests, however, are queued);
8. Tokens are issued on a first come, first served basis;
9. Once a token has been issued, it is the agent’s responsibility to complete its

transaction and release the token as quickly as possible;
10. Each agent is required to perform at least one successful read operation be-

tween each pair of consecutive writes.

Figure 4.5: Rules for client-server communication in distributed local planning.

a new external summary, its knowledge of the environment changes. Refinement search al-

gorithms such as those for centralised planning described above rely on a static environment

during planning, and are unsuitable for planning in these circumstances without modification.

The advantages of HTN planning and summary information come from abstraction and refine-

ment. While local search through the space of complete plans may seem attractive (Section

2.1.6), this approach is incompatible with the MPF formalism, which imposes a strict structure

of decomposition of partial plans. A distributed refinement search is implemented instead, us-

ing novel techniques to deal with changes in the external summary. However, local search is an

attractive alternative that may be considered in the future (Section 6.2).

Applicability of best first search Best first search, which performs very well in static sin-

gle agent environments, suffers from several problems in situations where agents are planning

socially:

Minimal commitment A key problem arises from the very aspect that makes BFS so fast in

single agent problems: its ability to arbitrarily swap between branches of search. Since

each agent in a multi agent environment is reliant on its surroundings changing as little

as possible, this lack of commitment to a single course of planning can be detrimental to

141

4.4. Distributed local planning

the team as a whole.

Changing heuristic values The heuristic value of a plan is dependent on inter-plan threats as

much as it is intra-plan threats. Heuristic values for stored plans are subject to change

whenever the external environment changes. This means that heuristics for open plans

need to be frequently recalculated and the open list resorted accordingly. Changing

heuristics include can any way and might some way as well as quantitative measures

of plan quality.

Reopening closed plans Changing heuristic values have dire consequences for systematicity.

In single agent planning, plans from the open list may be discarded once they have been

processed (Section 2.1.1). In multi agent planning, however, the might some way value

of a pruned plan may change later on in planning such that it becomes a valid plan for

further consideration. Consequently, “closed” plans cannot simply be discarded as they

can in single agent search.

These problems arise from the independence of the agents in a multi agent team. As an aside,

it is possible to exploit concurrency without introducing independence by having a single cen-

tralised planning algorithm and allowing agents to “check out” plans from the open list and

return results asynchronously (“distributed global planning”; Section 2.2.3). In this context,

agents become problem solvers within a larger architecture. They do not maintain their own

goals and plans, and have limited private internal state. This approach is not a “multi agent”

approach in the sense of providing agents with independence during planning, so it will not be

considered further.

Applicability of depth first search Some of the problems above are dealt with better by depth

first than by best first search:

Improved commitment Agents using depth first search make commitments and hold them

as long as possible before backtracking. Other agents can make decisions based upon

these commitments and be assured a certain level of consistency in their environment

(depending on the amount of backtracking required).

142

4.4. Distributed local planning

Smaller open lists While a list of open plans is maintained, the systematic nature of search

means that plans only need to be re-evaluated and resorted when the agent backtracks.

Additionally, heuristic orderings are only maintained across the operators resulting from

individual refinements, meaning that only a small number of plans need to be reordered

each time the agent backtracks.

The problem of reopening closed plans still exists despite these advantages. Other mechanisms

are required for achieving completeness and systematicity.

4.4.1 Distributed constraint satisfaction

Inspiration can be taken from Distributed Constraint Satisfaction Problems (DisCSP)6 and al-

gorithms such as those discussed by Yokoo and Hirayama (2000). This section provides a brief

overview of DisCSP and some of the approaches that can be taken.

A Constraint Satisfaction Problem (CSP) involves a set of variables , each with a set of possible

values domain(var ∈ variables) and a set of constraints defined on tuples of variables. For the

purposes of this discussion all constraints are assumed to be binary. The aim of the problem is

to find a set of variable assignments for which all of the constraints hold. An example problem

is shown in Figure 4.6.

?x1 ?x2

?x3

?x
1 ≠?x

3 ?x 2≠
?x 3

{1, 2}

{1, 2}

{2}

Figure 4.6: Example constraint satisfaction problem.

A DisCSP is a variant of a CSP where each variable is owned by a separate agent. Agents

communicate by passing messages to one another. Messages take a finite time to arrive but

6The abbreviation DCSP is typically used to refer to dynamic constraint satisfaction problems, which are very
different, and are not covered here.

143

4.4. Distributed local planning

guaranteed to arrive in the order they are sent. Each agent has a neighbourhood of other agents

with which it can interact, defined by the connectivity of the local constraints defined on its

variable.

Each agent has an agent view made up of the variable assignments of its neighbours. Agents

are concerned with making assignments to their own variables that are consistent with local

constraints and their agent view.

DisCSP versus multi agent planning Plans in multi agent planning are similar in many ways

to variables in DisCSP7:

• in planning, partial plans are owned by separate agents; in DisCSP, variables are owned

by separate agents;

• in planning, partial plans represent disjunctions of possible histories; in DisCSP, variables

represent disjunctions of possible values;

• in planning, agents are trying to find compatible sets of histories; in DisCSP, agents are

trying to find compatible sets of values.

The domains of variables in DisCSP are small and finite. The closest equivalent to an individual

value in multi agent planning is a history (Section 3.2.2): a completely decomposed, grounded

and ordered plan. According to this model, the domain of a partial plan may be very large, and

in some planning mechanisms infinitely so. The mechanisms from Chapter 3 put a maximum

limit on the depth of recursion, making problems in MPF potentially large but finite in size.

Similarly, DisCSP agents can make and retract variable assignments quickly and without much

effort. This is in sharp contrast to multi agent planning, where the production of a grounded

plan can be time consuming and may take many iterations of the planning algorithm.

Agent views provide efficiency through localisation in DisCSP because collections of variables

may only be sparsely interrelated. Plans in multi agent planning may have many preconditions

and effects, and in “traditional” academic planning problems these provide lots of interactions.

This makes the potential for inter-plan conflict great and the benefit from localised agent views
7They are more similar in many ways to sets of variables, but this would imply that a single plan is owned by

several agents.

144

4.4. Distributed local planning

rather small. Whether DisCSP is faster or slower than CSP depends on the structure of the

problem, the number of variables, the distribution of the agents responsible for them and the

density of intra- and inter-agent constraints.

Agents in DisCSP are only interested in finding conflict free values for their own variables, but

they obey a standard distributed search algorithm. This makes them them self interested but

trustworthy from the point of view of the definitions in Section 1.1.4.

Success requires that there is a set of variable assignments that satisfies all the constraints spec-

ified in the problem. In this is not the case, the algorithms presented here will fail. However,

with appropriate negotiation techniques it may be possible for agents to agree on a subset of

constraints that can be satisfied (Section 1.1.3).

Asynchronous Backtracking (ABT) Yokoo and Hirayama discuss several algorithms for the

solution of DisCSPs, the most relevant of which is Asynchronous Backtracking (ABT). This

algorithm is provably sound and complete, although it involves no maintenance of open lists.

The key properties of ABT are as follows:

Agent priorities To avoid infinite loops, agents are arbitrarily assigned priorities. Priorities are

fixed for the duration of problem solving. Lower priority agents have to submit to higher

priority agents whenever a conflict occurs. When an agent is happy with its solution it

keeps it until a joint solution is found or an alternative assignment is demanded by an

agent of higher priority.

Message passing Search is controlled by the passing of messages between neighbouring

agents. There are two types of message. Whenever an agent assigns a value to its vari-

able, it sends an okay? message to each of its neighbours, communicating the change and

checking whether it violates any constraints. Neighbours of higher priority can veto the

assignment by responding with nogood messages indicating sets of assignments that will

not work together.

Nogood constraints To prevent the system getting stuck in local minima or plateaux of heuris-

tic value, nogood constraints are added whenever nogood messages are received. These

extra constraints act just like the initial constraints in the problem specification (Figure

145

4.4. Distributed local planning

4.6), preventing the agents making the same conflicting assignments twice. Nogood con-

straints ensure completeness as they progressively restrict the search space until a solution

is found or the useful domain of one or more agents’ variables becomes empty.

Other constraint satisfaction algorithms The ABT algorithm uses a statically defined prior-

ity order to prevent loops. This can be restrictive, however, if the agent with the most constrain-

ing part of the problem has a low priority. A second algorithm, Asynchronous Weak Commitment

(AWC), allows agents to increase their own priorities whenever they are unable to find a valid

value for their variable. This allows poor decisions to be revised without extensive repeated

search.

A third algorithm, Distributed BreakOut (DBO), assigns a real valued weight to each constraint.

The sum of weights of potentially conflicting constraints is used as a heuristic when choosing

values for assignments. Agents work together in pairs to try to resolve conflicts: the agent that

is able to minimise the total heuristic value of the pair is given permission to change the value

of its variable. Weights are increased whenever a pair share violated constraints and cannot

improve on their current situation: this shapes search by indicating which constraints are the

most important in terms of how much they restrict the set of possible solutions.

4.4.2 Distributed planning with DisCSP techniques

The maximum depth imposed on recursion in Section 3.6.1 means that a maximum bound is

known for the number of selectable decompositions, orderable tasks and bindable variables.

This means that any multi agent planning problem expressed in MPF can be rewritten as a con-

straint satisfaction problem. However, there are arguments for maintaining a planning specific

representation rather than encoding it as a different form of problem (Brafman and Hoos, 1999),

including the use of more “natural” definitions of planning oriented refinements, operators and

heuristics. The distributed local planning algorithm, shown in Figure 4.7, uses novel ways of

approximating some of the features of ABT and its sister algorithms without encoding problems

as DisCSPs. MPF is used as the basic search mechanism. The main features of the algorithm

are discussed below:

146

4.4. Distributed local planning

1 function find plan(initial)→ solution:
2 create empty open list
3 open list ← push(copy(initial), open list)
4 while ¬ empty(open list):
5 handle messages(open list)
6 (plan, open list)← pop(open list)
7 sync(plan)
8 if ¬might some way(plan):
9 send messages(plan)
10 else if can any way(plan):
11 solution ← plan
12 return
13 else:
14 ref ← pick refinement(plan)
15 if ref 6= null:
16 open list ← push(plans(ref), open list)
17 solution ← failure

18 function sync(plan):
19 request and wait for write token
20 download external and update plan
21 if might some way(plan):
22 upload revised external from plan
23 release write token

Figure 4.7: Algorithm for distributed local planning. The handle messages and send messages
functions are shown in Figure 4.8.

External summaries Communication is an essential feature of any decentralised planning

algorithm capable of solving problems like the “airlock” problem in Figure 1.2. Agents must

share information about their plans if they are to make useful decisions about choices of re-

finements and operators. Summary information is useful in this respect because it conveys lots

of information about potential resource usage in a compact format for communication. Agents

broadcast summary information each time they change their current plan, using the external

summary mechanism described above.

Summary weighting In CSP, nogood constraints (or nogoods for short) represent combina-

tions of values that cannot be chosen, for example:

147

4.4. Distributed local planning

¬(x1 = 1 ∧ x2 = 1 ∧ x3 = 3)

Ideally nogoods represent minimal sets of incompatible assignments. However, the sets of

conflicting constraints discovered during problem solving are often not minimal, and minimal

subsets can be time consuming to calculate. CSP and DisCSP algorithms normally allow the

storage of non-minimal nogoods simply in the interests of speed.

In planning, nogoods correspond to sets of incompatible decompositions, orderings and binding

constraints. Since the set of combinations of these constraints is very large, the calculation and

storage of such fine grained nogoods is impractical: an alternative form is needed.

Another interpretation of a nogood is a set of threats that cause a plan to fail. This basically

involves any combination of must clobber relationships in a ¬might some way plan. This

kind of relationship is typically only uncovered late on in planning when tasks have been de-

composed to a fine level of detail, so typically only threats at low levels of abstraction can

be detected. One problem with summary conditions is that, because they are merged during

summarisation (Section 3.3.9), they are different at every level of abstraction. This means that

abstracted nogoods, or may nogoods, must be calculated between every combination of ances-

tors of the summary conditions involved. The generation and checking of this information is

prohibitively costly: a simpler representation is needed.

“Soft” constraints that alter the heuristic plan quality function may be used as an alternative to

nogoods. One way of implementing soft constraints is to use a weighting system on nodes in

the task tree, similar to the weighting system in distributed breakout above. Each summary con-

dition and state constraint is given an extra “weight” field. The weights of summary conditions

of state constraints involved in conflicts are increased whenever an agent backtracks, and the

weights of summary conditions of primitive and abstract tasks are derived from them:

• weights are maximised when summarising task networks because summary conditions at

task networks represent conjunctions of the summary conditions of their children;

• weights are minimised when summarising tasks because summary conditions at tasks

represent disjunctions of the summary conditions of their children.

148

4.4. Distributed local planning

This requires some summary information to be recomputed when weights are changed, but does

not require the storage of multiple annotations per summary condition. Summary weighting is

of low cost to planning agents compared to the approaches described above, but has some

limitations:

1. Weights only suggest which refinements and operators to select during planning; they do

not prune branches of search. This means that weighting does not provide completeness

like nogoods do.

2. Nogoods are very specific about which sets of constraints are allowed and which are not.

A complete nogood data structure is a disjunction of disallowed conjunctions of variable

assignments. Weights are much less specific. In particular there is no disjunctive part to

the weighting system: weights are considered all at the same time rather than in associated

groups.

3. Because individual summary conditions are weighted rather than complete links, threats

other than those originally intended may be adversely affected.

Third party conflicts ABT in DisCSP does not explicitly consider situations in which a con-

straint between two agents can only be satisfied by a third party. For example, if a postcondition

of a task task 1 owned by an agent agent1 clobbers a precondition of a task task 2 owned by an

agent agent2, it may be that the only way of breaking the relationship is to block it with a third

task task 3. Two possible situations result:

1. If task 3 is primitive and grounded, it may be directly ordered as a blocker using the

separation or exclusion strategies described in Section 3.3.8.

2. If task 3 is abstract or lifted, it might only may block the threat between task 1 and task 2.

In this case task 3 must be decomposed and/or grounded appropriately to be used as a

blocker.

If task 3 is not owned by agent2 in the second of these situations, agent2 will be unable to

perform the necessary decomposition to ensure that blocking occurs. There are two ways around

this:

149

4.4. Distributed local planning

Decomposition requests agent2 can send a message to the owner of task 3 requesting that

it decomposes the task. This is a non-trivial operation as several refinements may be

necessary to decompose task 3, and there may be several ways of performing the full

decomposition. The two agents will have to agree on the best choice of decomposition,

either by heuristic estimates or by some form of negotiation.

Decomposition-then-ordering agent2 can simply avoid order operations until it can be sure

third party decomposition will not be required. When picking refinements, agents avoid

any order ref where there are external may achieve relationships with a source node

with existence = may . decompose ref refinements are always allowed because they are

unaffected by causal links and threats. As the abstract tasks in the set of individual plans

are converted to primitive tasks, more order ref refinements become possible. If an agent

cannot pick a refinement at any point it simply waits until one becomes available.

The distributed local planning algorithm described in Figure 4.7 uses the second of these ap-

proaches. It uses a combination of message passing, summary weights and decomposition-then-

ordering to simulate the asynchronous backtracking approach to DisCSP.

Message passing Whenever an agent is forced to backtrack, it checks to see if the backtrack-

ing was caused by any inter-plan threats. If this is the case, it sends two types of message to the

other agents involved:

• penalise messages cause agents to update the weights of relevant leaf nodes in their task

trees to reflect the threats.

• reset messages cause agents to backtrack to their initial plans.

The message sending and handling functions are shown in Figure 4.8. The send messages

function is invoked when an agent is about to backtrack. If any inter-plan threats are discovered,

penalise and reset messages are sent such that all agents involved (including the originating

agent) restart their searches with new weights. If no inter-plan threats are identified, simple

backtracking is used and no messages are sent.

150

4.4. Distributed local planning

1 function send messages(plan):
2 for each threat sum1

must clobber−−−−−−−→ sum2:
3 create set to reset ← ∅
4 if owner(node(sum1)) 6= owner(node(sum2)):
5 send penalise(sum1) message to owner(node(sum1))
6 send penalise(sum2) message to owner(node(sum2))
7 to reset ← to reset ∪ {owner(node(sum1)), owner(node(sum2))
8 for each agent ∈ to reset
9 send reset message to agent

10 function handle messages(msg):
11 if there are any waiting reset messages:
12 plan ← initial
13 for each waiting penalise message msg :
14 penalise(plan,msg)
15 penalise(initial ,msg)

Figure 4.8: Algorithms for message passing in distributed local planning.

Waiting It is possible for an agent to reach a state where it is waiting on other agents in the

team to be able to do anything. This occurs in two situations:

• an agent has a can any way plan, but cannot upload a solution because other agents are

still planning.

• an agent has a completely decomposed might some way plan, but cannot perform any

refinements because other agents are yet to make necessary decompositions.

In these situations the agent simply waits until a suitable option becomes available. Assuming

the other agents remain planning and in communication, an option will eventually arise or a

reset will be forced.

Agent independence Distributed local planning is the most sensitive of the approaches pre-

sented in this chapter to the independence of the planning agents. Agents never exchange more

information than is necessary for the coordination of their plans. They also maintain control

of their own plans throughout the entire planning process. They are self-interested, but have

to be trustworthy and follow the planning algorithm: this makes negotiation unnecessary when

goals are compatible. Like centralised planning and plan-then-merge, however, distributed local

151

4.5. Summary of planning algorithms

planning only works when goals are compatible and agents are not competitive. As with the

other approaches, negotiation is needed if subsets of goals have to be selected to find a partial

solution.

4.5 Summary of planning algorithms

Three planning algorithms have been presented in this chapter, implementing the three multi

agent planning approaches identified in Section 2.2 using the common planning mechanism

developed in Chapter 3:

Centralised planning draws all agents’ individual problems together into a single joint plan-

ning problem that is solved by a single agent. This is bad from an independence point of

view, but allows the use of conventional refinement planning techniques that are hopefully

efficient, systematic, sound and complete.

Plan-then-merge is an implementation of a class of plan merging approaches. Agents create

individual plans without considering each others’ goals, knowledge, capabilities and so

on, and pass them to a single agent for merging into a coordinated joint plan. Planning

and merging agents use similar refinement planning algorithms to the agent in centralised

planning (the plan merging algorithm is simply a variant of the planning algorithm), but

are allowed partial independence in that goals and some knowledge can be kept private.

The partial parallelisation of planning in plan-then-merge may make it faster than cen-

tralised planning in some cases, but the costs of the extra plan merging stage may prevent

this in other cases. In addition, the division of search into discrete, non-overlapping areas

may prevent plan-then-merge from being able to solve some kinds of problem.

Distributed local planning removes the plan merging stage of plan-then-merge. Agents are al-

lowed to exchange summary information during planning to achieve the coordination that

would have been achieved by plan merging. Standard refinement planning algorithms are

inappropriate in this situation as every agent is essentially planning subject to a changing

environment. Agents use a hybrid planning algorithm instead that is inspired by refine-

152

4.5. Summary of planning algorithms

ment planning and distributed constraint satisfaction. Unfortunately, due to the nature of

its implementation, this novel algorithm is not guaranteed to be sound or complete.

In the next chapter, these approaches are compared on a number of “traditional” HTN planning

problems using a number of criteria. Chapter 6 concludes the thesis by revisiting and analysing

the contributions outlined in Section 1.3 and suggesting possibilities for future work.

153

Chapter 5

Experiments and empirical analysis

This chapter contains an empirical analysis of the planning mechanisms and algorithms de-

scribed in Chapters 3 and 4. The two planning mechanisms and the three planning algorithms

were compared on a variety of planning domains using a number of criteria. The criteria and

domains are described in Sections 5.1 and 5.2 respectively, and the experimental results are

discussed in Sections 5.3 and 5.4.

5.1 Evaluation criteria

Evaluation criteria are an essential part of empirical analysis as they provide the measure by

which to assess the success or failure of an approach. Different criteria were used when evalu-

ating the planning mechanisms from Chapter 3 and approaches from Chapter 4.

It should be noted that the algorithms presented in this thesis are not competitive when compared

against current single agent planners. The purpose of this thesis is not to compete on such

a level, but rather to highlight the relationships between different approaches and features of

problems. The important consideration is the relative performance of the algorithms when

applied to relevant problems (Section 1.2): if one algorithm is consistently poorer than the

others, for example, an analysis of the discrepancy may lead to a better understanding of how

to construct future related approaches.

154

5.1. Evaluation criteria

Planning mechanisms The pMPF and fMPF mechanisms were compared using four criteria:

Tree size Smaller task trees place smaller memory requirements on search algorithms and

speed up basic bookkeeping tasks such as creating copies of plans and searching for spe-

cific nodes and constraints. Tree size may be measured in several ways: height, number

of nodes, number of planning variables, and so on.

Tree generation time The creation of an initial task tree is a non-trivial part of the complete

planning process. Smaller trees of an equivalent mechanism will obviously be faster to

create, but the addition of planning variables to fMPF trees add a layer of complexity not

present in pMPF, increasing generation time per node.

Quality of summary information The production of an initial task tree is only a small part of

the overall planning process. The quality of summary information generated by the tree

will have a great effect on the quality of threat based heuristics and planning performance.

One concern is that fMPF may provide less accurate summary information than pMPF.

Planning algorithms The centralised planning, plan-then-merge and distributed local plan-

ning algorithms were compared using five criteria:

Ability to solve problems Weaknesses in the decentralised planning approaches make them

unable to solve certain classes of problem, even when the problems can be represented

using MPF. For example, if a planning agent in plan-then-merge is unable to find a plan

for its individual subproblem, the whole team fails as a consequence.

Solution efficiency An algorithm that is technically capable of solving a problem can some-

times still fail because it is unable to find a solution within the available time and/or mem-

ory. This is especially relevant to local search algorithms like distributed local planning

where completeness is not guaranteed.

Plan quality When a plan has been found there is no guarantee it will be an optimal solution to

the problem. Because the problems tackled in in this chapter are small, the plans produced

can be compared with hypothetical optimal plans. Plan quality is measured in terms of

the number of tasks in a plan: the fewer tasks in a correct solution plan, the better.

155

5.2. Experimental domains

Agent independence As discussed in Chapter 1, multi agent planning in general incorporates a

wide variety of problems: much larger and more complex than the problem subset chosen

for analysis here. In general “real world” problems, agent independence is very important.

Agents should be able to plan and coordinate their plans independently, without sharing

information with or relying on the services of others, to maintain robust performance and

a competitive advantage in a variety of problems.

Independence has been discussed in previous chapters and will be revisited in Chapter 6:

it will not be discussed further in this chapter.

5.2 Experimental domains

Three test domains were used as the basis of empirical analysis. Two of these, Blocksworld

and Navigation, are examples of recursive planning domains. Blocksworld obeys the action

independence assumption (Section 3.6.1) whereas Navigation does not. A third, Holes, is a non-

recursive domain primarily involving choices of resource. These domains were chosen because

they represent different types of problem: Blocksworld gives all agents complete freedom to

sense and alter the world, Navigation imposes restrictions on the robots that agents can control,

and thus the state literals they can change, and Holes imposes further restrictions on the types

of state information they can sense. The domains are described in more detail below.

Only problems with valid solutions are considered. The performance of the algorithms on

unsolvable problems is well known: centralised planning and plan-then-merge fail after an

exhaustive search of the problem space, and distributed local planning fails after a predefined

time limit or number of iterations. The solution of problems with conflicting goals requires

extra negotiation techniques that select a compatible subset for solution: this will be revisited

in Chapter 6.

5.2.1 The Blocksworld domain

The Blocksworld variant used here is a typed implementation the HTN Blocksworld presented

by Erol (1996). World objects are organised into two types, blocks and tables , subsumed

156

5.2. Experimental domains

under a third type, surfaces (grippers are not explicitly modelled). World state is described

using two sets of predicates: clear(?surface) and on(?block , ?surface). Two abstract tasks,

achieve on(?block , ?surface) and achieve clear(?block), are used in level 1 of the task tree,

with a primitive task, move(?block , ?surface1, ?surface2), used for their implementation. A

complete domain description and sample problem are given in Section B.1.

achieve on is defined in terms of achieve clear and move. achieve clear is recursive, being

defined in terms of itself and move. An initial task subtree for a level 1 achieve clear task

contains possible move tasks for all of the other blocks in the problem: the planning agent

effectively has to identify the blocks that are currently on top of the target block and choose

alternative locations for them. These moves effectively remove all possible preconditions from

the achieve clear task: the subtree of the task will contain appropriate histories for clear-

ing the block regardless of the initial conditions of the problem (Section 3.6). Consequently,

achieve on and achieve clear both obey the action independence assumption. Blocksworld

task trees may therefore be reliably generated using the value counting technique from Section

3.6.1.

Four types of Blocksworld problem were used:

bwUnstack problems These single agent problems1 involve clearing the bottom block in a

tower. Problems are named bwUnstack x where x is the number of blocks in the initial tower.

Each problem involves a single level 1 achieve clear task. This makes the problems useful

for comparing task tree sizes and generation times for the pMPF and fMPF mechanisms with

different numbers of values of free variables (Section 3.5).

bwSwap problems These problems involve reversing the order of lots of pairs of blocks.

Problems are named bwSwap x where x is the number of blocks: there are x/2 towers in each

problem. The level 1 tasks in these problems are independent of each other (Korf, 1987): each

task swaps a pair of blocks that are not involved in any other tasks, so inter-task conflicts do not

arise in sensible solution plans.

1All the other problems presented, in this and other domains, apply to single and multiple agents.

157

5.2. Experimental domains

bwReverse problems These problems involve reversing the order of a tower of blocks. Prob-

lems are named bwReverse x where x is the number of blocks in the problem.

In these problems the overall goal to reverse the tower of blocks is specified as a set of

achieve on tasks, each of which is broken down into three parts according to the specifica-

tion of the achieve clear method in the domain description (Section B.1):

1. Clear the block x to be moved.

2. Clear the destination block y.

3. Perform the move x→ y.

Step 3 above is a simple primitive task. Steps 1 and 2 involve recursively clearing all blocks

on top of x and y. It is these tasks that cause the bulk of the work for the planner. Given a set

of level 1 achieve on tasks for building a tower, a number of duplicated level 3 achieve clear

tasks are created as shown in Figure 5.1.

Level 1 task Level 3 tasks
achieve on(A, B) → achieve clear(A) achieve clear(B)
achieve on(B, C) → achieve clear(B) achieve clear(C)
achieve on(C, D) → achieve clear(C) achieve clear(D)

Figure 5.1: Redundancy in level 3 achieve clear tasks in bwReverse 4 . Pairs of duplicated
tasks are shown in blue and orange.

Once decomposed, these level 3 tasks will create other duplicate achieve clear tasks.

The planning agent(s) must decide which tasks to keep and which to discard using the

achieve clear noop method (Appendix B.1).

The overall complexity of any multi agent planning problem is partly determined by the distri-

bution of tasks between the agents, and bwReverse problems are a good example of this. Two

variants of the bwReverse problems were run:

bwReverseRobin problems When the server distributes initial plans, it assigns achieve on

tasks to agents starting at the top of the initial tower and working towards the bottom. In

bwReverseRobin problems, tasks are assigned in a round robin sequence. For example,

the tasks for a tower of five blocks would be distributed between two agents as follows:

158

5.2. Experimental domains

achieve on(A, B)→ agent1
achieve on(B, C)→ agent2
achieve on(C, D)→ agent1
achieve on(D, E)→ agent2

bwReverseSeq problems In these problems, tasks are assigned to agents in sequence such that

each agent receives a set of tasks for adjacent blocks in the tower. For example, the tasks

above would instead be distributed as follows:

achieve on(A, B)→ agent1
achieve on(B, C)→ agent1
achieve on(C, D)→ agent2
achieve on(D, E)→ agent2

bwRandom problems These are randomly generated Blocksworld problems, named

bwRandom x y , where x is the number of blocks involved and y is an index identifying the

randomly generated initial conditions and goals.

5.2.2 The Navigation domain

Navigation is an implementation of the multi-robot navigation domain introduced in Sec-

tion 3.6.1. World objects fall into two categories: robots and locations . World state is de-

scribed using three sets of state literals: edge(?location1, ?location2), at(?robot , ?location)

and clear(?location). A single recursive abstract task, travel(?robot , ?location1, ?location2),

is used in level 1 of the task tree, defined in terms of itself and a primitive task,

move(?robot , ?location1, ?location2). Preconditions and effects in the domain are structured

such that two robots cannot occupy the same location or travel on the same edge at the same

time. A complete domain description and sample problem are given in Section B.2.

As discussed in Section 3.6.1, the ability to move from one location to another depends partly on

the position of other robots on the location graph. Because subtrees of travel tasks only allow

the control of a single robot, this domain does not obey the action independence assumption

159

5.2. Experimental domains

when more than one robot is present.

Three types of Navigation problems are used in the following experiments:

navLine problems These problems involve moving robots along a line of locations. Problems

are named navLine x y where x is the number of locations and y is the number of robots. As

shown in Figure 5.2, robots are moved “in convoy” from one end of the line to the other.

l4

l5

l1

l2

l3

l4

l5

l1

l2

l3

l4

l5

l1

l2

l3

l4

l5

l1

l2

l3

l4

l5

l1

l2

l3

l4

l5

l1

l2

l3

l4

l5

l1

l2

l3

l4

l5

l1

l2

l3

l4

l5

l1

l2

l3

l4

l5

l1

l2

l3

navLine_5_1 navLine_5_2 navLine_5_3 navLine_5_4

Figure 5.2: Topology of navLine 5 1 to navStar 5 4 . Blue dots represent locations, orange
lines represent edges, purple circles represent the starting locations of agents, and purple arrows
point to goal locations.

navRing problems These multi robot problems involve moving robots on a ring of locations.

Problems are named navRing x y where x is the number of locations in the ring and y is the

number of robots. Robots are initially spaced equally around the ring. Each robot must travel

to the location on the ring that is farthest from its initial starting point.

p5

p2

p1

p6p4

p3

p5

p2

p1

p6p4

p3

p5

p2

p1

p6p4

p3

p5

p2

p1

p6p4

p3

Figure 5.3: Topology of navRing 6 1 to navRing 6 4 . Symbols have the same meanings as
those in Figure 5.2.

navStar problems These multi robot problems involve moving robots on a star-shaped graph.

Each “point” on the star consists of two locations as shown in Figure 5.4. Problems are named

navStar x y z where x is then number of points on the star2 and y is the number of robots.

2There are 2x + 1 locations on the star in total.

160

5.2. Experimental domains

Problems are generated with random start/destination points for the robots: z is a number iden-

tifying the pseudo-random configuration of start points and destinations problem.

hub stem1

stem3

point1

stem2

point2

point3

h

s4

p4

p2

p2

s2
s2

s3
s3

s4p3

p4

s5

p5

h

p5
p5

s1p3 p1

s1

p1

s2

s1

s6

s3

s4

p2

p1

p6p4

p3

h

Figure 5.4: Topology of navStar 3 y to navStar 6 y . Blue dots represent locations and orange
lines represent edges. Starting and goal locations are randomly determined for each problem,
so they are not shown.

Although Navigation does not obey the action independence assumption, all of these Naviga-

tion problems may be successfully generated and solved using value counting (Section 3.6).

However, this is not the case for Navigation problems in general, as was discussed in Section

3.6.1 (Figure 3.35).

5.2.3 The Holes domain

Holes is a non-recursive domain inspired by the children’s game where different shaped pegs

must be placed into holes cut into a wooden board. World objects fall into three categories:

pegs , holes and features . The set of features may be subdivided into shapes , colours and sizes .

Blocks and holes are subsumed by a super-type objects . World state is described by five sets of

predicates: in(?peg , ?hole), empty(?hole), shape(?object , ?shape), colour(?object , ?colour),

and size(?object , ?size). A complete domain description and sample problem are given in

Section B.3.1.

Problems involve inserting pegs into holes. This can only be done for combinations of peg

and hole with the same set of features, as described by the relevant shape, colour and size

predicates. More than one shape, size or colour can be specified per hole, allowing pegs of

various kinds to be placed there.

Pegs are placed using the abstract action locate(?peg), which is implemented with a number of

methods, a subset of which may be available to an agent:

161

5.2. Experimental domains

• The method match all chooses a hole with a matching shape, colour and size and places

the peg there.

• The method match shape chooses a hole with a matching shape and places the peg there.

• The method match color chooses a hole with a matching colour and places the peg there.

• The method match size chooses a hole with a matching size and places the peg there.

• The method verify shape does nothing but checks that a peg placed with match color or

match size has been located successfully according to its shape.

• The method verify color does nothing but checks that a peg placed with match shape or

match size has been located successfully according to its colour.

• The method verify size does nothing but checks that a peg placed with match shape or

match color has been located successfully according to its size.

These methods are implemented in terms of pre- and postconditions involving the relevant fea-

ture literals and tasks involving a primitive action place(?peg , ?hole), which updates the rele-

vant in and empty literals. Methods are selectively assigned to agents to create two types of

problems:

holesGeneral problems In these problems, agents are given access to the match all method.

Each agent has one or more pegs to place. Problems are randomly generated such that each

hole is specific about the values of certain feature types and relaxed about others. For example,

a hole might accept red pegs of any size or shape, or large, round pegs of any colour. Each hole

in a problem is specific about the same number of features, although the features themselves are

chosen on a per-hole basis. Problems are named holesGeneral w x y z where w is the number

of pegs and number of holes, x is the number of features about which each hole is specific,

y is the number of values per feature, and z is an index identifying the random assignment of

features for the given values of w, x and y.

holesSpecial problems Three agents are present (one agent in centralised planning). The first

agent is given access to the match shape and check shape methods, the second is given access

to the match color and check color methods, and the third is given access to the match size

and check size methods. Each agent is given the task of placing all the pegs in the correct

162

5.3. Comparison of planning mechanisms

holes. Because agents are only able to reason about one type of feature each, they are forced to

cooperate to identify which holes are appropriate. Problems are named holesSpecial w x y z

where w, x, y and z have the same meanings as those for holesGeneral problems. In particular,

the same random assignment of features is represented by a given combination of values of w,

x, y and z in each type of problem.

While they appear similar and have similar names, holesGeneral and holesSpecial problems are

vastly different in terms of complexity. holesSpecial problems involve much larger numbers of

tasks and potential conflicts, greatly increasing the size of task trees and search space alike.

5.3 Comparison of planning mechanisms

The pMPF and fMPF mechanisms (Sections 3.3 to 3.6) require empirical comparison. It is clear

that first order task trees will have the same number or fewer nodes than equivalent compiled

propositional task trees. In fact, first order trees avoid an exponential explosion in the number

of nodes on each level relative to the number of relevant world objects in the problem (Section

3.5). However, the effects of tree type on planning demand investigation.

Table 5.1 shows tree generation and planning data for for various bwUnstack and navLine

problems, chosen because they are recursive and have predictable structure. Each figure in

the table is averaged over five runs of the relevant algorithm. 10 minutes and 512 MB heap

space were allowed during tree generation. Where trees were successfully produced, a further

10 minutes and 512 MB heap space were allowed to create a solution plan using centralised

planning. A run was considered a failure if it exceeded either of these limits, although runs that

timed out are marked differently than runs that explicitly failed in tables of results.

Tree size The heights of the task trees in bwUnstack and navLine problems is proportional

to the number of values of the key variables in the problems. However, the sizes of the trees are

very different in terms of the number of nodes they contain:

• In bwUnstack problems there is a single level 1 task. The task has a subtree of height

163

5.3. Comparison of planning mechanisms

Problem First order (fMPF) Propositional (pMPF)
generation planning generation planning

time nodes vars time iterations time nodes vars time iterations
bwUnstack 2 50 34 14 224 1 151 19 0 184 1
bwUnstack 3 116 61 27 529 3 458 75 0 446 2
bwUnstack 4 153 88 40 1173 4 1565 439 0 1277 3
bwUnstack 5 185 115 53 2340 5 38388 3751 0 5231 4
bwUnstack 6 344 142 66 4160 6 300769 42967 0 t/out (p)
bwUnstack 7 347 169 79 8229 7 t/out (t)
bwUnstack 8 329 196 92 14669 8 t/out (t)
navLine 3 1 107 62 32 636 2 241 126 0 529 2
navLine 4 1 145 86 45 1625 3 1251 742 0 1449 3
navLine 5 1 202 110 58 3097 4 10717 6486 0 7780 4
navLine 6 1 337 134 71 6311 5 124790 75524 0 t/out (p)
navLine 3 2 227 116 64 678 3 457 244 0 720 3
navLine 4 2 209 161 90 4711 6 2584 1473 0 2450 6
navLine 5 2 235 206 116 9304 9 23880 12958 0 6441 36
navLine 6 2 660 251 142 34515 18 t/out (t)
navLine 4 3 399 236 135 1204 5 3905 2204 0 3696 5
navLine 5 3 467 302 174 7067 10 53672 19430 0 183915 121
navLine 6 3 842 368 213 32133 18 t/out (t)
navLine 5 4 813 398 232 2082 7 87275 25902 0 105784 7
navLine 6 4 730 485 284 19634 14 t/out (t)

Table 5.1: Tree generation and planning data for various recursive problems. All times are
in milliseconds. Experiments that exceeded time or memory limits during tree generation are
marked t/out (t). Experiments that exceeded time or memory limits during planning are marked
t/out (p). Figures for planning that were not collected due to failure during tree generation are
left blank.

O(x), where x is the number of blocks. The branching factor of the tree discounting state

constraints is O(x) for propositional task trees and 1 for first order trees.

• In navLine problems there are y level 1 tasks, where y is the number of robots in the

problem. Each task has a subtree of height x, where x is the number of locations. As in

bwUnstack problems, the branching factor is O(x) for propositional task trees and 1 for

first order trees.

The task trees in Table 5.1 show this pattern: first order trees have O(x) nodes with respect to

the number of blocks/locations in the problem, while propositional nodes have O(xx).

Task tree size in general is primarily determined by the abstract task and method with the highest

branching factor. In domains with mutually recursive tasks and methods, however, the situation

can be far worse. In these situations, tree size is dependent on the branching factors of all

tasks and methods involved in the recursion. Blocksworld and Navigation, for example, are

both singly recursive domains: each recursive method only calls itself once. The cost tree

generation and summarisation increases exponentially when doubly recursive methods or worse

164

5.3. Comparison of planning mechanisms

are introduced.

Consider, for example, a planning domain in which an agent has to retrieve data

from a binary tree. An abstract scan node(?node) task would be implemented

with three methods, one returning the value stored at ?node, one searching the

left hand branch and one searching the right hand branch. Both the left and right

methods would be implemented in terms of other scan node tasks. assuming value

counting is used in task tree generation, the number of nodes in a first order task

tree for a problem in this domain would be O(2x), while the number of nodes in a

propositional tree would be O((2x)x).

Tree generation time Tree generation time in the problems above is roughly proportional to

the size of the tree (a few milliseconds per node). The ratio of time to size is similar for both

first order and propositional task trees. It is primarily the number of nodes in the tree that affects

generation time, so propositional trees are at a severe disadvantage.

Summary information and planning times While it is not shown here, the summary in-

formation produced by initial first order and propositional task trees is identical. In simple

problems, the number of planning iterations is similar for the two mechanisms: any small

discrepancies (for example, the difference in number of planning iterations in bwUnstack 3

to bwUnstack 5) are artefacts of tree simplification (Section 3.4.4) and become negligible

as the recursion depth increases. However, two results indicate that a large discrepancy in

planning iterations might come about as problem complexity increases: in navLine 5 2 and

navLine 5 3 , pMPF takes many more iterations than fMPF. A hypothesis for this is as follows:

Initial pMPF and fMPF task trees produce identical summary information, and on the surface,

refinements and planning operators in pMPF and fMPF are very similar. However, the decom-

position refinement in fMPF allows more flexibility than that in pMPF because of the way it

handles free variables from methods (Section 3.5).

In pMPF, free variables in methods are bound to world objects during task tree generation.

When a pMPF planner decomposes a task, it chooses a fully grounded decomposition and is

165

5.4. Comparison of planning approaches

stuck with the bound variables therein: backtracking is required if the bindings turn out to

be incorrect. In fMPF, however, free variables are added to the task tree in their unbound

state. The presence of free variables generally has a positive effect on planning performance,

because fMPF planners can postpone variable binding until long after decomposition, when

the plan is generally less abstract and more accurate summary information is available. This

is in agreement with the principle of least commitment (Section 2.1.4) because binding of free

variables is delayed until it is required to resolve threats. However, delayed binding can have

a negative effect in complex problems where there are many potential bindings (Section 5.4.3),

as lots of summary information has to be recalculated after each possibility is tested: this is a

costly process when individual planning variables are used widely in the task tree.

The necessity of generating and maintaining a task tree clearly limits the scalability of MPF.

However, as predicted in Section 3.5, the use of first order task trees alleviates some of the prob-

lem, allowing the use of smaller task trees for problems of the same complexity. Consequently,

fMPF is chosen as the mechanism for the experiments in the remainder of this chapter.

5.4 Comparison of planning approaches

This section compares the performance of the planning approaches from Chapter 4 on the prob-

lems described in Section 5.2 above. Tables of results are included for each type of problem

examined. The tables have a common structure, described below. The reader is referred to Table

5.10 for concrete examples of the various labels described.

Results are labelled according to the planning algorithm and number of agents involved:

• c indicates centralised planning;

• mn indicates plan-then-merge with n agents;

• dn indicates distributed local planning with n agents.

In most experiments, seven algorithms are compared:

• centralised planning;

166

5.4. Comparison of planning approaches

• plan-then-merge with 2 to 4 agents;

• distributed local planning with 2 to 4 agents.

However, as the maximum number of agents in a problem is the same as the number of level 1

tasks in the initial task tree, some experiments were restricted to smaller teams of agents.

Each result is averaged over five runs of the relevant algorithm. Runs are limited to 10 minutes

maximum running time, 2 minutes per iteration and 512 MB total heap space. Two numbers

are listed where one or more runs was a success:

• the fraction of runs that succeeded;

• the average solution time for successful runs.

Solution times for plan merging are calculated as the sum of the average planning time and

the average plan merging time. The times listed are exclusive of the time taken to download

initial task trees and upload solutions (including intermediate solutions in plan-then-merge), but

inclusive of communication times in distributed local planning.

Where all runs of a particular experiment failed, the figures are replaced with a code to indicate

the type of failure:

• t/out (p) indicates time out during planning;

• t/out (m) indicates time out during plan merging;

• fail (p) indicates failure during planning (all possibilities were exhausted);

• fail (m) indicates failure out during plan merging.

Entries are left blank where an experiment was not run, usually because there were fewer agents

than level 1 tasks to distribute.

More detailed versions of the results in this section, including numbers of iterations of each

algorithm, plan merging times in plan-then-merge and numbers of resets in distributed local

planning, are provided in Appendix C.

167

5.4. Comparison of planning approaches

5.4.1 Blocksworld problems

bwSwap problems These problems demonstrate a situation in which plan-then-merge and

distributed local planning generally perform better than centralised planning. For problems of

a significant size, the time saving should increase as more agents are added to the problem.

However, the general performance of the planning mechanism prevented the investigation of

enough problems to provide conclusive results about this trend (see below).

Table 5.2 shows success rates and solution times for bwSwap 2 to bwSwap 10 . Plan-then-

merge and distributed local planning do better than centralised planning on all problems, with

plan-then-merge being the fastest approach.

Problem c m2 m3 m4 d2 d3 d4
bwSwap 2 100% 420
bwSwap 4 100% 13574 100% 5096 100% 8874
bwSwap 6 100% 391600 80% 41898 100% 9211 100% 194844 100% 64870
bwSwap 8 t/out (p) 80% 99337 100% 98714 100% 15698 t/out (p) t/out (p) t/out (p)
bwSwap 10 t/out (p) t/out (p) 60% 217571 40% 223002 t/out (p) t/out (p) t/out (p)

Table 5.2: Success rates and average solution times (in milliseconds) for bwSwap problems.

The numbers of tasks in successfully generated solutions are shown in Table 5.3. These figures

act as a rough guide to the quality of the plans produced. While the planning algorithms do

not explicitly search for optimal plans, all algorithms tend to favour shorter plans, as plans with

fewer tasks generally involve fewer potential conflicts. Plan-then-merge and distributed local

planning may be at a disadvantage in some problems, however, because they divide search up

into smaller components. In this case, all algorithms produced optimal plans.

Problem c m2 m3 m4 d2 d3 d4
bwSwap 2 2
bwSwap 4 4 4 4
bwSwap 6 6 6 6 6 6
bwSwap 8 8 8 8
bwSwap 10 10 10

Table 5.3: Average numbers of tasks per plan for bwSwap problems.

bwReverse problems These problems demonstrate the importance of the assignment of tasks

in the decentralised algorithms. A problem bwReverse x consists of x − 1 achieve on tasks.

Each task has an identical initial task tree to all the others, both in terms of the number of nodes

168

5.4. Comparison of planning approaches

in the tree and the number of potential conflicts with other tasks. However, the distribution

of tasks does cause the performance of plan-then-merge and distributed local planning to vary

greatly.

The cost of plan merging increases dramatically with respect to the number of redundant

tasks produced during the planning stage. This happens as the size of the problem and num-

ber of agents increase, as can be seen for two and three agent plan-then-merge applied to

bwReverseSeq problems. Figure 5.5 shows that, while planning times for three agents are lower

than those for two agents, increased plan merging times more than remove this advantage.

0

50000

100000

150000

200000

250000

3 4 5 6 7 8

Problem: bwReverseSeq_x

T
im

e
 /

 m
s

m2 planning time m2 merging time m3 planning time m3 merging time

Figure 5.5: Planning and plan merging times for two agent and three agent plan-then-merge for
bwReverseSeq problems.

The number of redundant tasks produced in bwReverseSeq problems is also higher than for

bwReverseRobin problems, as illustrated by the following example:

Consider the bwReverse 10 problem being solved by three agents: ignoring task

ownership, the initial joint task tree is the same regardless of task distribution.

However, the individual plans in Figure 5.6, generated during three agent plan-

then-merge applied to bwReverseRobin 10 and bwReverseSeq 10 , are of differ-

ent lengths. The bwReverseRobin plans are a total of six tasks shorter than their

bwReverseSeq equivalents. This makes the plan merging step much simpler as

169

5.4. Comparison of planning approaches

there are few possible task orderings and choices of noop decomposition to con-

sider.

bwReverseRobin bwReverseSeq
planner1 planner2 planner3 planner1 planner2 planner3

A→Table A→Table A→Table A→Table A→Table A→Table
B→A B→Table B→Table B→A B→Table B→Table
C→B C→Table C→Table C→Table C→B C→Table
D→C D→Table D→Table D→Table D→Table D→D

E→D E→Table E→D E→Table E→Table
F→E F→Table F→Table F→E F→Table
G→F G→Table G→Table G→Table G→F

H→G H→G H→Table H→Table
I→H I→H I→Table
J→I J→I

Figure 5.6: Individual plans produced during three agent plan-then-merge for
bwReverseRobin 10 and bwReverseSeq 10 .

Interestingly, the planning times in Table 5.4 show that plan-then-merge actually does

much worse on bwReverseRobin problems than bwReverseSeq problems. Performance on

bwReverseRobin is also routinely much worse than that of centralised planning, with many

experiments timing out on every run. The timeouts occur during planning rather than merging,

which indicates that other factors are affecting performance. It is hypothesised that when adja-

cent pairs of blocks are considered within the same plan, the redundancy in achieve clear tasks

causes the planner to favour them for refinement over other tasks. This is a sensible policy as it

sets up causal links for achieving multiple achieve on tasks. The round robin task distribution

prevents this preference forming, making planning harder for fewer tasks.

Distributed local planning is also affected by task distribution, although in a different manner

than plan-then-merge. Agents are able to remove duplicate tasks as they are discovered, keeping

redundancy lower during planning. If anything, distributed local planning benefits from round

robin task assignment. The agents share duplicate achieve clear tasks between them, and can

detect the corresponding increase in the number of conflicts through the shared external sum-

mary information. Distributed local planning never does as well as rival approaches, but is less

severely affected by task distribution than plan-then-merge.

170

5.4. Comparison of planning approaches

Problem c m2 m3 m4 d2 d3 d4
bwReverseRobin 2 100% 441
bwReverseRobin 3 100% 2295 100% 5114 100% 4054
bwReverseRobin 4 100% 6360 100% 15100 t/out (m) 100% 13244 100% 64630
bwReverseRobin 5 100% 16812 40% 131242 80% 60928 t/out (m) 100% 33419 100% 49943 t/out (p)
bwReverseRobin 6 100% 45553 t/out (p) t/out (p) 40% 471473 100% 84071 100% 116066 20% 258353
bwReverseRobin 7 100% 129446 t/out (p) t/out (p) t/out (m) 100% 228933 t/out (p) t/out (p)
bwReverseRobin 8 100% 339387 t/out (p) t/out (p) t/out (p) 100% 495945 t/out (p) t/out (p)
bwReverseRobin 9 t/out (p) t/out (p) t/out (p) t/out (p) t/out (p) t/out (p) t/out (p)
bwReverseRobin 10 t/out (p) t/out (p) t/out (p) t/out (p) t/out (p) t/out (p) t/out (p)

bwReverseSeq 2 100% 441
bwReverseSeq 3 100% 2295 40% 3525 100% 7453
bwReverseSeq 4 100% 6360 40% 9641 40% 9008 100% 40472 100% 60339
bwReverseSeq 5 100% 16812 40% 22153 40% 21583 t/out (m) 100% 102875 100% 475733 40% 387466
bwReverseSeq 6 100% 45553 40% 42681 40% 95460 t/out (m) 100% 452123 40% 624514 t/out (p)
bwReverseSeq 7 100% 129446 40% 62880 40% 239623 t/out (m) 80% 590276 t/out (p) t/out (p)
bwReverseSeq 8 100% 339387 40% 116367 40% 465592 t/out (m) t/out (p) t/out (p) t/out (p)
bwReverseSeq 9 t/out (p) t/out (m) t/out (m) t/out (m) t/out (p) t/out (p) t/out (p)
bwReverseSeq 10 t/out (p) t/out (m) t/out (m) t/out (m) t/out (p) t/out (p) t/out (p)

Table 5.4: Success rates and average solution times (in milliseconds) for bwReverse problems.

Problem c m2 m3 m4 d2 d3 d4
bwReverseRobin 2 2
bwReverseRobin 3 3 3 3.2
bwReverseRobin 4 4 5 4 5.4
bwReverseRobin 5 5 7 6 5 5
bwReverseRobin 6 6 7 6 6 6
bwReverseRobin 7 7 7
bwReverseRobin 8 8 8
bwReverseRobin 9
bwReverseRobin 10

bwReverseSeq 2 2
bwReverseSeq 3 3 3 3.2
bwReverseSeq 4 4 4 4 5 4.6
bwReverseSeq 5 5 5 5 5 6 6
bwReverseSeq 6 6 6 6 7 8
bwReverseSeq 7 7 7 7 7
bwReverseSeq 8 8 8 8
bwReverseSeq 9
bwReverseSeq 10

Table 5.5: Average numbers of tasks per plan for bwReverse problems.

171

5.4. Comparison of planning approaches

The numbers of tasks in successfully generated plans are shown in Table 5.5. Centralised plan-

ning consistently produces optimal plans, and plan-then-merge and distributed local planning

typically produce plans that are optimal or near optimal3. From the small amount of evidence

available (plan lengths for bwReverseRobin 5 and bwReverseRobin 6) it is hypothesised that,

if plan-then-merge had been more successful on bwReverseRobin problems, it would have pro-

duced lower quality solutions than distributed local planning. However, this cannot be con-

firmed with the few figures available.

bwRandom problems The results for bwRandom problems are shown in Table 5.6 and

graphically in Figure 5.7. The fastest algorithm is normally either centralised planning or

plan-then-merge. The results for plan-then-merge show increasing figures for large numbers of

agents in some problems, and decreasing figures in others. This indicates that some problems

decompose well into separate individual problems and some do not. Distributed local plan-

ning, while never being quite as fast as centralised planning, is slightly more consistent than

plan-then-merge, successfully solving many problems that otherwise time out during merging.

Problem c m2 m3 m4 d2 d3 d4
bwRandom 4 1 100% 8360 100% 18215 100% 14445 100% 44532 100% 31361 100% 72749 100% 92423
bwRandom 4 2 100% 2558 100% 3673 100% 3026 100% 3726 100% 4125 100% 5618 100% 11889
bwRandom 4 3 100% 118833 t/out (p) 100% 9764 t/out (m) t/out (p) * t/out (p) * t/out (p) *
bwRandom 4 4 100% 4480 100% 6345 100% 6375 100% 7122 100% 11430 100% 11358 100% 19632
bwRandom 4 5 100% 4906 100% 12421 100% 42636 t/out (m) 100% 18766 100% 31459 100% 43032
bwRandom 4 6 100% 297896 100% 57232 100% 58685 100% 59680 80% 391353 100% 160838 100% 234950
bwRandom 4 7 100% 6512 100% 12293 100% 15020 100% 14532 100% 40222 100% 38672 100% 86273
bwRandom 4 8 100% 7286 100% 14364 100% 3763 100% 3771 100% 19651 100% 9010 100% 11651
bwRandom 4 9 100% 6963 100% 20981 100% 34694 100% 35026 100% 69792 100% 44140 100% 87729
bwRandom 4 10 100% 123348 100% 199444 t/out (m) t/out (m) t/out (p) 100% 76188 100% 99904
bwRandom 4 11 100% 7659 100% 15521 100% 25038 t/out (m) 100% 34721 100% 49821 100% 124590
bwRandom 4 12 100% 2914 100% 4564 100% 8190 100% 4734 100% 6909 100% 11372 100% 17636
bwRandom 4 13 100% 10407 100% 14512 100% 14641 100% 21348 100% 39633 100% 50072 80% 228519
bwRandom 4 14 t/out (p) t/out (m) 100% 35743 t/out (m) 100% 160094 100% 126994 100% 174400
bwRandom 4 15 100% 7527 100% 27180 100% 17067 t/out (m) 100% 18043 100% 45318 100% 121318
bwRandom 4 16 100% 3729 100% 9005 100% 6152 100% 6008 100% 9212 100% 15796 100% 23795
bwRandom 4 17 100% 33131 t/out (m) t/out (m) t/out (m) t/out (p) 100% 314004 100% 417068
bwRandom 4 18 100% 52626 100% 7930 t/out (m) t/out (m) t/out (p) * 100% 69144 t/out (p) *
bwRandom 4 19 t/out (p) t/out (p) t/out (p) t/out (m) t/out (p) t/out (p) * t/out (p) *
bwRandom 4 20 100% 154815 100% 9142 t/out (m) t/out (m) t/out (p) * t/out (p) * t/out (p) *

Table 5.6: Success rates and average solution times (in milliseconds) for bwRandom problems.
* indicates that one or more runs failed due to weight explosion.

The number of tasks in solution plans is shown in Table 5.7. Many problems show the same

patterns as before: centralised planning produced the shortest plans while plan-then-merge and
3Sub-optimalities arise from a tendency to move blocks via the table when they could be moved directly.

172

5.4. Comparison of planning approaches

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem: bwRandom_4_x

S
o

lu
ti

o
n

 t
im

e
 /

 m
s

c m2 m3 m4

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem: bwRandom_4_x

S
o

lu
ti

o
n

 t
im

e
 /

 m
s

c d2 d3 d4

Figure 5.7: Average solution times for bwRandom problems. Error bars represent standard error
calculations based on the average, maximum and minimum times recorded for each experiment.

173

5.4. Comparison of planning approaches

distributed local planning produce plans that are of equal length or longer. However, in some

problems (bwRandom 4 3 , 7 , 9 , 18 and 20) plan-then-merge and distributed local plan-

ning actually outperform centralised planning in this respect.

Problem c m2 m3 m4 d2 d3 d4
bwRandom 4 1 4 4 4 4 4.2 5 4.8
bwRandom 4 2 1 1 1 1 1 1 1
bwRandom 4 3 5 4
bwRandom 4 4 2 2 2 2 2 2 2
bwRandom 4 5 4 4 4 4 4 4
bwRandom 4 6 5 5 5 5 6 6 6
bwRandom 4 7 4 3 3 3 3.8 3.6 3.2
bwRandom 4 8 2 2 2 2 2 2 2
bwRandom 4 9 5 4 4 4 5 4.6 5
bwRandom 4 10 6 6 6 6
bwRandom 4 11 4 4 4 4 4.6 4.2
bwRandom 4 12 2 2 2 2 2 2 2
bwRandom 4 13 4 4 4 4 4 4 4.6
bwRandom 4 14 6 6 6 6
bwRandom 4 15 3 3 3 3 3.6 3.6
bwRandom 4 16 2 2 2 2 2 2 2
bwRandom 4 17 6 6 6
bwRandom 4 18 4 3 4
bwRandom 4 19
bwRandom 4 20 5 4

Table 5.7: Average numbers of tasks per plan for bwRandom problems.

Weight explosions in distributed local planning The results for bwRandom problems show

the first of several bits of evidence of erratic behaviour in distributed local planning, which

occasionally exhibited a pattern of failure that will be referred to as weight explosion. Relevant

experiments are marked with an asterisk in Table 5.6.

In this situation the agents get caught in a loop which is not broken by increasing summary

weights. A plot of heuristic value against time for an example run is shown in Figure 5.8.

A cycle is visible where the agents search a set of partial plans before resetting, increasing

their summary weights and repeating the process. After the third repetition shown the weights

overflow: the agents get stuck at high weight values for the remainder of the 10 minute time

limit.

Weight explosion occurs consistently in bwRandom problems: if a particular algorithm fails

due to weight explosion on one run, it fails again on all the other runs of the same problem. The

phenomenon also occurs in some holesSpecial problems (Section 5.4.3), although runs of these

problems are a mixture of explosions and successful solutions. It appears that weight explosion

174

5.4. Comparison of planning approaches

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

 1e+10

 0 10000 20000 30000 40000

H
eu

ris
tic

 v
al

ue
 /

w
ei

gh
te

d
th

re
at

s

Time / ms

planner1
planner2

Figure 5.8: Plot of heuristic value against time for three agent distributed local planning on
bwRandom 4 3 showing weight explosion in distributed local planning. The x axis is trun-
cated: both plots actually extend horizontally all the way to the 10 minute time limit.

is a particular type of situation in which agents get trapped in a local heuristic minimum, and

the summary weights are insufficient to help them escape. With a proper implementation of

nogood constraints in which agents are prevented from revisiting sets of plans that have caused

a reset, it would be impossible for this cycle to happen indefinitely.

5.4.2 Navigation problems

Navigation problems are fundamentally different to Blocksworld problems in that each agent is

only allowed to control a specific subset of the resources (in this case robots) in the environment.

This highlights a key weakness in the plan-then-merge approach. As mentioned in Section 4.3,

planning fails if one or more planner agents is unable to create a valid individual plan. However,

in this domain agents are reliant on one another to move robots out of the way so their robots

can reach their destinations.

Initial conditions and plan-then-merge Without special treatment plan-then-merge fails to

solve all but the most trivial problems in this domain. Each planning agent receives an initial

task tree containing the travel tasks for its robots and the initial conditions for all robots. The

175

5.4. Comparison of planning approaches

agent is only able to move its own robots, and it is unaware during planning that the other robots

are being moved by other agents. Consider the multi robot navLine and navRing problems in

Figures 5.2 and 5.4: in each case there is at least one robot which has to pass the start point of

another robot to reach its destination.

To work around this problem, agents in plan-then-merge are only informed of the initial po-

sitions of their own robots. By restricting access to this knowledge many more problems are

made solvable. All Navigation experiments involving plan-then-merge were modified in this

way. Distributed local planning is unaffected by this: agents are able to share information about

their plans as they are built up, so they are aware of the movement of each others’ robots and

are able to indirectly request changes in routes by issuing reset commands.

navLine problems The planning times for navLine problems are are shown in Table 5.8.

Again, centralised planning and plan-then-merge have similar performance. Figure 5.9 shows

the relative durations of the planning and merging phases of plan-then-merge and the total

durations of centralised planning and plan-then-merge. Two trends are noticeable. Firstly,

the merging phase of plan-then-merge occupies more time as the number of agents increases.

Secondly, plan-then-merge tends to perform better on larger problems involving more robots

and more locations: on smaller problems the cost of the merging phase is prohibitively high.

Problem c m2 m3 m4 d2 d3 d4
navLine 3 1 100% 579
navLine 3 2 100% 579 100% 1220 100% 1114
navLine 4 1 100% 1402
navLine 4 2 100% 2067 100% 3271 100% 2717
navLine 4 3 100% 1068 100% 1899 100% 2087 100% 1983 100% 2242
navLine 5 1 100% 2559
navLine 5 2 100% 5528 100% 10004 100% 98392
navLine 5 3 100% 5717 100% 5635 100% 7965 100% 8197 100% 12333
navLine 5 4 100% 1728 100% 3265 100% 2905 100% 3436 100% 2939 100% 5837 40% 8999
navLine 6 1 100% 5235
navLine 6 2 100% 24512 100% 25850 100% 283050
navLine 6 3 100% 23382 100% 23294 100% 26416 100% 30121 t/out (p)
navLine 6 4 100% 14803 100% 14316 100% 12633 100% 16434 20% 28385 100% 68449 100% 87357
navLine 6 5 100% 3413 100% 5145 100% 5063 100% 25608 100% 7409 100% 14262 100% 15886

Table 5.8: Success rates and average solution times (in milliseconds) for navLine problems.

Average lengths of plans are shown in Table 5.9. Algorithms typically perform equally well

in this respect, although all algorithms tend to produce Navigation plans with extra redundant

tasks in them, as will be demonstrated below.

176

5.4. Comparison of planning approaches

0

5000

10000

15000

20000

25000

na
vL

in
e_

3_
2
(2

)

na
vL

in
e_

4_
2
(2

)

na
vL

in
e_

4_
3
(2

)

na
vL

in
e_

5_
2
(2

)

na
vL

in
e_

5_
3
(2

)

na
vL

in
e_

5_
4
(2

)

na
vL

in
e_

6_
2
(2

)

na
vL

in
e_

6_
3
(2

)

na
vL

in
e_

6_
4
(2

)

na
vL

in
e_

6_
5
(2

)

na
vL

in
e_

4_
3
(3

)

na
vL

in
e_

5_
3
(3

)

na
vL

in
e_

5_
4
(3

)

na
vL

in
e_

6_
3
(3

)

na
vL

in
e_

6_
4
(3

)

na
vL

in
e_

6_
5
(3

)

na
vL

in
e_

5_
4
(4

)

na
vL

in
e_

6_
4
(4

)

na
vL

in
e_

6_
5
(4

)

Problem (number of agents)

T
im

e
 /

 m
s

mX planning mX merging

0

5000

10000

15000

20000

25000

na
vL

in
e_

3_
2
(2

)

na
vL

in
e_

4_
2
(2

)

na
vL

in
e_

4_
3
(2

)

na
vL

in
e_

5_
2
(2

)

na
vL

in
e_

5_
3
(2

)

na
vL

in
e_

5_
4
(2

)

na
vL

in
e_

6_
2
(2

)

na
vL

in
e_

6_
3
(2

)

na
vL

in
e_

6_
4
(2

)

na
vL

in
e_

6_
5
(2

)

na
vL

in
e_

4_
3
(3

)

na
vL

in
e_

5_
3
(3

)

na
vL

in
e_

5_
4
(3

)

na
vL

in
e_

6_
3
(3

)

na
vL

in
e_

6_
4
(3

)

na
vL

in
e_

6_
5
(3

)

na
vL

in
e_

5_
4
(4

)

na
vL

in
e_

6_
4
(4

)

na
vL

in
e_

6_
5
(4

)

Problem (number of agents)

T
im

e
 /

 m
s

c planning mX planning and merging

Figure 5.9: Comparison of solutions times for centralised planning and plan-then-merge for
navLine problems.

177

5.4. Comparison of planning approaches

Problem c m2 m3 m4 d2 d3 d4
navLine 2 1 1
navLine 3 1 2
navLine 3 2 2 2 2
navLine 4 1 3
navLine 4 2 4 4 4
navLine 4 3 3 3 3 3 3
navLine 5 1 4
navLine 5 2 6 6 6
navLine 5 3 6 6 6 6 6
navLine 5 4 4 4 4 4 4 4 4
navLine 6 1 5
navLine 6 2 10 8 8
navLine 6 3 9 9 9 9
navLine 6 4 8 8 8 8 8 8 8
navLine 6 5 5 5 5 5 5 5 5

Table 5.9: Average numbers of tasks per plan for navLine problems.

navRing problems The solution times for navRing problems are shown in Table 5.10. What

is immediately apparent is that despite the alterations made to the initial conditions, plan-then-

merge fails to solve almost all of the problems. What is more, the failures are all in the plan

merging stage.

Problem c m2 m3 m4 d2 d3 d4
navRing 3 2 100% 966 fail (m) 100% 2105
navRing 4 1 100% 987
navRing 4 2 100% 2103 fail (m) 100% 28274
navRing 4 3 100% 9640 100% 7011 fail (m) t/out (p) 100% 133506
navRing 5 1 100% 1332
navRing 5 2 100% 3855 fail (m) 100% 7605
navRing 5 3 100% 197350 fail (m) fail (m) t/out (p) 100% 39137
navRing 5 4 t/out (p) fail (m) fail (m) t/out (p) t/out (p) t/out (p)
navRing 6 1 100% 3009
navRing 6 2 100% 9950 fail (m) 100% 9884
navRing 6 3 100% 453511 fail (m) t/out (p) 100% 433342
navRing 6 4 t/out (p) t/out (m) t/out (m) t/out (p) t/out (p) t/out (p)
navRing 6 5 t/out (p) t/out (p) t/out (m) t/out (p) t/out (p) t/out (p)

Table 5.10: Success rates and average solution times (in milliseconds) for navRing problems.

A hypothesis for this failure can be formed by looking at a typical successful plan from the cen-

tralised planning algorithm. The plan for navRing 5 3 in Figure 5.10 shows that the agent has

chosen a sub-optimal route for robot r2 : the robot travels backward at one point in its journey.

None of the planning algorithms from Chapter 4 search for optimal plans: each algorithm sim-

ply chooses the first successful plan it finds. If a planner is presented with two candidate plans

of equal heuristic value, it will arbitrarily choose one plan based on the order in which they are

formed. This can easily result in plans involving one or more sub-optimal backward steps, or

in a single robot case, a single robot plan that travels the opposite way around the ring to the

178

5.4. Comparison of planning approaches

others. In the example the joint plan is coordinated because the search process is centralised,

but the tendency for “backward” travel is revealed. Given the likelihood of this behaviour ap-

pearing in individual plans, it is extremely likely that a set of non-mergeable individual plans

is produced. The single successful result for navRing 4 3 shows that it is possible (though

unlikely) that the individual plans will be mergeable and a joint solution possible.

move(r3,p5,p4)

move(r3,p1,p5)

move(r1,p2,p1)

move(r1,p1,p5)

move(r2,p3,p2)

move(r2,p2,p1)move(r3,p4,p3)

move(r2,p3,p2)

move(r2,p2,p3)

move(r2,p4,p3)

Figure 5.10: Plan produced by centralised planning for navRing 5 3 , showing a sub-optimal
route for robot r2 around locations p2 and p3.

Distributed local planning performs well when the number of robots matches the number of

agents, and poorly when one agent is in control of several robots. A hypothesis for this follows:

Distributed local planning is effectively a blend of refinement based depth first search (DFS;

Section 4.2) and asynchronous-backtracking-like removal of inter-plan threats (ABT; Section

4.4.1). When either the ABT or the DFS part of the algorithm dominates, the algorithm as a

whole tends to do well. If DFS dominates, for example, the agents do not have to perform

many resets and a solution is typically found very quickly. Similarly, if ABT dominates, resets

are frequent but the recovery time from each is small, allowing the agents to quickly converge

on a solution. When agents have to perform lots of resets and the time to recover from each

reset is large, the time to solve the problem explodes in polynomial fashion as the product

number resets × average recovery time becomes large. In larger Navigation and Holes prob-

lems (Section 5.4.3), the large time taken per refinement, coupled with this explosion, quickly

179

5.4. Comparison of planning approaches

causes the total solution time to rise over the 10 minute limit.

Numbers of tasks in solution plans are shown in Table 5.11. Unfortunately, success rates are

too low for patterns or trends to be seen.

Problem c m2 m3 m4 d2 d3 d4
navRing 3 1 1
navRing 3 2 3 3
navRing 4 1 2
navRing 4 2 4 8
navRing 4 3 6 6 6 7.2
navRing 5 1 2
navRing 5 2 5 5
navRing 5 3 10 7
navRing 5 4
navRing 6 1 3
navRing 6 2 6 6
navRing 6 3 13 11
navRing 6 4
navRing 6 5

Table 5.11: Average numbers of tasks per plan for navRing problems.

navStar problems The solution times for navStar problems are shown in Table 5.12. Given

the performance of plan-then-merge on navRing problems, it is unsurprising that it fails during

merging on many navStar problems, and particularly on problems with a high ratio of robots to

locations. Distributed local planning fails to solve many problems within the time and memory

limits, for the same reasons described above and the reasons below.

Plateaux in distributed local planning A pattern can be seen among many of the failed runs

of distributed local planning on Navigation problems. Quite often, runs seem to fail because

the heuristic weights of the agents stop changing, forming a “plateau” of heuristic value. An

example of this is shown in Figure 5.11. This graph is typical of many of the failed runs from

navLine , navRing and navStar problems, and may suggest a second type of situation in which

distributed local planning gets stuck in a dead end from which it cannot escape.

There is evidence in some cases to suggest that distributed local planning does not get perma-

nently caught in plateaux, but merely spends a long time in them. For example, Figure 5.12

shows another run from the same experiment shown in Figure 5.11. In this figure the planners

clearly escape from the plateau and find a solution.

180

5.4. Comparison of planning approaches

Problem c m2 m3 m4 d2 d3 d4
navStar 3 2 2 100% 367634 fail (m) 80% 182565
navStar 3 2 3 100% 81359 fail (m) t/out (p)
navStar 3 2 4 100% 160218 fail (m) 20% 53984
navStar 3 2 5 100% 15090 100% 10614 100% 66902
navStar 3 2 6 100% 7072 100% 9841 100% 66697
navStar 3 2 7 100% 8846 100% 8222 100% 13076
navStar 3 2 8 100% 233345 fail (m) t/out (p)
navStar 3 2 9 100% 22882 fail (m) 100% 17354
navStar 3 2 10 100% 177119 fail (m) 100% 82791
navStar 4 2 1 100% 25190 100% 18399 100% 261841
navStar 4 2 2 100% 9295 100% 10308 100% 31836
navStar 4 2 3 80% 487028 fail (m) 80% 537830
navStar 4 2 4 t/out (p) fail (m) 80% 359805
navStar 4 2 5 100% 33235 100% 21851 100% 390803
navStar 4 2 6 100% 43377 100% 27605 t/out (p)
navStar 4 2 7 t/out (p) fail (m) t/out (p)
navStar 4 2 8 t/out (p) fail (m) 80% 298879
navStar 4 2 9 t/out (p) fail (m) t/out (p)
navStar 4 2 10 t/out (p) fail (m) t/out (p)
navStar 4 3 1 100% 11395 100% 42282 100% 21283 100% 36974 100% 64621
navStar 4 3 2 t/out (p) fail (m) fail (m) t/out (p) t/out (p)
navStar 4 3 3 100% 19770 100% 15395 100% 21584 100% 53078 80% 96707
navStar 4 3 4 100% 386381 100% 239789 fail (m) t/out (p) t/out (p)
navStar 4 3 5 t/out (p) fail (m) fail (m) t/out (p) t/out (p)
navStar 4 3 6 t/out (p) fail (p) fail (m) 80% 527918 20% 564518
navStar 4 3 7 t/out (p) fail (m) fail (m) t/out (p) t/out (p)
navStar 4 3 8 100% 48835 100% 44555 100% 19228 100% 270059 20% 198028
navStar 4 3 9 100% 170716 fail (m) fail (m) t/out (p) t/out (p)
navStar 4 3 10 t/out (p) fail (p) fail (m) t/out (p) t/out (p)
navStar 5 2 1 100% 302786 fail (m) t/out (p)
navStar 5 2 2 100% 26801 100% 33942 t/out (p)
navStar 5 2 3 t/out (p) fail (m) t/out (p)
navStar 5 2 4 t/out (p) fail (m) t/out (p)
navStar 5 2 5 100% 366400 fail (m) t/out (p)
navStar 5 2 6 t/out (p) fail (m) t/out (p)
navStar 5 2 7 100% 26419 100% 35008 t/out (p)
navStar 5 2 8 100% 84023 100% 46943 t/out (p)
navStar 5 2 9 100% 85030 100% 49336 t/out (p)
navStar 5 2 10 100% 247315 100% 40543 t/out (p)
navStar 5 3 1 t/out (p) fail (m) fail (m) t/out (p) t/out (p)
navStar 5 3 2 100% 95264 100% 82921 100% 56255 t/out (p) 20% 304508
navStar 5 3 3 t/out (p) fail (m) fail (m) t/out (p) t/out (p)
navStar 5 3 4 t/out (p) fail (p) fail (m) t/out (p) t/out (p)
navStar 5 3 5 t/out (p) fail (p) fail (m) t/out (p) t/out (p)
navStar 5 3 6 80% 365514 100% 399564 100% 57791 t/out (p) t/out (p)
navStar 5 3 7 100% 132781 100% 68507 100% 63369 t/out (p) t/out (p)
navStar 5 3 8 100% 232181 100% 43207 100% 60782 t/out (p) t/out (p)
navStar 5 3 9 100% 278276 fail (m) 100% 76573 100% 187274 t/out (p)
navStar 5 3 10 100% 417474 fail (p) 100% 72574 t/out (p) t/out (p)
navStar 5 4 1 t/out (p) fail (m) t/out (p) fail (m) t/out (p) t/out (p) t/out (p)
navStar 5 4 2 t/out (p) fail (m) fail (m) fail (m) t/out (p) t/out (p) t/out (p)
navStar 5 4 3 t/out (p) fail (m) fail (m) fail (m) t/out (p) t/out (p) t/out (p)
navStar 5 4 4 t/out (p) fail (m) fail (m) fail (m) t/out (p) t/out (p) t/out (p)
navStar 5 4 5 t/out (p) fail (m) t/out (p) fail (m) t/out (p) t/out (p) t/out (p)
navStar 5 4 6 t/out (p) fail (m) fail (m) fail (m) t/out (p) t/out (p) t/out (p)
navStar 5 4 7 t/out (p) t/out (p) t/out (m) fail (m) t/out (p) t/out (p) t/out (p)
navStar 5 4 8 t/out (p) t/out (p) fail (m) fail (m) t/out (p) t/out (p) t/out (p)
navStar 5 4 9 t/out (p) fail (m) t/out (m) fail (m) t/out (p) t/out (p) t/out (p)
navStar 5 4 10 t/out (p) t/out (p) t/out (p) fail (m) t/out (p) t/out (p) t/out (p)

Table 5.12: Success rates and average planning times (in milliseconds) for navStar problems.

181

5.4. Comparison of planning approaches

 1

 10

 100

 1000

 0 100000 200000 300000 400000 500000 600000

H
eu

ris
tic

 v
al

ue
 /

w
ei

gh
te

d
th

re
at

s

Time / ms

planner1
planner2
planner3

Figure 5.11: Plot of heuristic value against time for three agent distributed local planning on
navStar 4 3 8 showing a heuristic plateau in distributed local planning.

Plateaux are caused by agents visiting large numbers of plans with the same heuristic value.

These plans generally contain different groundings or different orderings of the same set of

tasks. In distributed local planning, the effect is worse as agents often have to wait for one

another to create concrete effectors before they can investigate possible new plans (Section

4.4.2). This can cause a succession of plateaux from which it takes a very long time to escape.

The situation is made worse still by the lack of a check for equality or dominance when adding

plans to the open list. An equality check determines whether a newly produced plan is the same

as another plan that is already open (on the open list) or closed (already visited). A dominance

check determines whether there is a currently open or closed plan that has the same effects as

a new plan but is less costly to perform (takes less time or resources). A dominance test was

included in CHiPs (Chapter 6 of Clement, 2002), but with the introduction of planning variables

and the possibility of equivalent plans with alternative variable namings it was considered too

costly for inclusion in MPF. The decompose-then-order refinement strategy in MPF is designed

to minimise the production of redundant plans, but some plans with equivalent orderings are

still produced.

Numbers of tasks in solution plans are shown in Table 5.13. Plan-then-merge tends to perform

the best in the problems it can solve. A hypothesis for this lies in the ability of plan-then-merge

182

5.4. Comparison of planning approaches

 1

 10

 100

 1000

 0 100000 200000 300000

H
eu

ris
tic

 v
al

ue
 /

w
ei

gh
te

d
th

re
at

s

Time / ms

planner1
planner2
planner3

Figure 5.12: Plot of heuristic value against time for a different run of the experiment in Figure
5.11 showing escape from a heuristic plateau.

to directly remove tasks from the final joint plan. Centralised and distributed local planning

have similar average performance.

5.4.3 Holes problems

Two types of problems were considered in the Holes domain: holesGeneral problems are sim-

ilar to Navigation problems in that they involve agents with restricted control over resources

in the environment, while holesSpecial problems impose further restrictions in terms of the

knowledge the agents have of the environment.

MPF does not directly allow the domain designer to specify the knowledge of external state

information on a per agent basis. However, limited knowledge can be simulated by limiting the

types of preconditions of agents’ tasks. This is the purpose of the match shape, match color

and match size methods and their counterparts, verify shape, verify color and verify size

(Section 5.2.3). Each method contains preconditions for just one of the three types of feature.

By appropriately assigning methods of one type to each agent, the domain designer can restrict

the type of state that the agent can reason about, effectively “blinding” it to the other types of

feature. holesGeneral problems require agents to be able to reason about all types of feature,

183

5.4. Comparison of planning approaches

Problem c m2 m3 m4 d2 d3 d4
navStar 3 2 1 9 9
navStar 3 2 2 9 9
navStar 3 2 3 9
navStar 3 2 4 10 8
navStar 3 2 5 7 5 7
navStar 3 2 6 5 5 7
navStar 3 2 7 5 5 5
navStar 3 2 8 9
navStar 3 2 9 9 5
navStar 3 2 10 10 8
navStar 4 2 1 6 6 12
navStar 4 2 2 4 4 4
navStar 4 2 3 11 9
navStar 4 2 4 8
navStar 4 2 5 6 6 6
navStar 4 2 6 8 8
navStar 4 2 7
navStar 4 2 8 8
navStar 4 2 9
navStar 4 2 10
navStar 4 3 1 5 5 5 5 5
navStar 4 3 2
navStar 4 3 3 6 6 6 6 6
navStar 4 3 4 13 9
navStar 4 3 5
navStar 4 3 6 9 7
navStar 4 3 7
navStar 4 3 8 11 5 5 11 8
navStar 4 3 9 12
navStar 4 3 10
navStar 5 2 1 13
navStar 5 2 2 5 5
navStar 5 2 3
navStar 5 2 4
navStar 5 2 5 11
navStar 5 2 6
navStar 5 2 7 5 5
navStar 5 2 8 7 7
navStar 5 2 9 8 8
navStar 5 2 10 13 7
navStar 5 3 1
navStar 5 3 2 8 8 8 8
navStar 5 3 3
navStar 5 3 4
navStar 5 3 5
navStar 5 3 6 15 15 9
navStar 5 3 7 8 8 8
navStar 5 3 8 13 7 7
navStar 5 3 9 14 8 8
navStar 5 3 10 16 10
navStar 5 4 1
navStar 5 4 2
navStar 5 4 3
navStar 5 4 4
navStar 5 4 5
navStar 5 4 6
navStar 5 4 7
navStar 5 4 8
navStar 5 4 9
navStar 5 4 10

Table 5.13: Average numbers of tasks per plan for navStar problems.

184

5.4. Comparison of planning approaches

requiring a seventh method, match all .

Domain specific optimisations Initial results for Holes problems (not presented here) showed

extremely poor performance across all algorithms. This was surprising, as Holes is a non-

recursive domain in which very large task trees cannot be created.

The reason for this poor performance was found to be related to MPF’s poor handling of “static”

literals that cannot be changed by actions in the plan. The problem and solution are discussed

below:

Consider the holesGeneral problem shown in Figure 5.13. During the task tree

generation phase, the simplify function (Section 3.4.4) decomposes the locate tasks

producing the initial task tree in Figure 5.14. Planning essentially involves finding

a conflict free set of assignments for ?hole1 to ?hole3.

The agent can use the decompose refinement to ground any of the tasks or state

constraints that have variables in them. It typically starts by grounding a place

task, in which case it creates new plans for each possible binding of the relevant

?hole variable. The trouble is that the decomposition of the task does not have a

direct effect on the values of the relevant ?shape, ?color or ?size variables. Be-

cause all of the relevant conflicts are to do with features, the agent is unable to tell

which task grounding is the “best” to work on. The agent effectively chooses a ran-

dom set of hole variable bindings, and iterates through a number of combinations

of feature variable bindings before it backtracks and tries another set of holes. This

phenomenon produces poor performance during planning, and especially in dis-

tributed local planning, where a lot of reset messages may be necessary to identify

the most constraining features of the problem.

A workaround for this problem, shown in Figure 5.15, involves altering the simplify function

such that feature variables are grounded as soon as possible after the decomposition of the

relevant place task. This was a domain specific optimisation that could be extended to a domain

independent case: in general it should be treated as a refinement as there may be more than one

way of resolving relevant threats. However, in the Holes domain, level 1 threats routinely arise

185

5.4. Comparison of planning approaches

〈root, null, {〈task 1, locate(peg1), {. . .}〉, 〈task 2, locate(peg2), {. . .}〉,
〈task 3, locate(peg3), {. . .}〉}, {}, {
〈post1, shape(peg1, square)〉, 〈post2, color(peg1, red)〉, 〈post3, size(peg1, small)〉,
〈post4, shape(peg2, circle)〉, 〈post5, color(peg2, blue)〉, 〈post6, size(peg2, large)〉,
〈post7, shape(peg3, square)〉, 〈post8, color(peg3, blue)〉, 〈post9, size(peg3, large)〉,
〈post10, shape(hole1, square)〉, 〈post11, color(hole1, red)〉, 〈post12, size(hole1, small)〉,
〈post13, shape(hole2, circle)〉, 〈post14, color(hole2, blue)〉, 〈post15, size(hole2, large)〉,
〈post16, shape(hole3, square)〉, 〈post17, color(hole3, blue)〉, 〈post18, size(hole3, large)〉},
{. . .}, {}〉

Figure 5.13: Example holesGeneral problem for single agent placing three pegs. The features
of each peg and hole are completely specified. Ordering constraints are omitted: postconditions
occur simultaneously before any tasks begin.

〈root, null, {〈task 4, place(peg1, ?hole1), {}〉, 〈task 5, place(peg2, ?hole2), {}〉,
〈task 6, place(peg3, ?hole3), {}〉}, {
〈pre1, shape(?hole1, ?shape1)〉, 〈pre2, color(?hole1, ?color 1)〉, 〈pre3, size(?hole1, ?size1)〉,
〈pre4, shape(?hole2, ?shape2)〉, 〈pre5, color(?hole2, ?color 2)〉, 〈pre6, size(?hole2, ?size2)〉,
〈pre7, shape(?hole3, ?shape3)〉, 〈pre8, color(?hole3, ?color 3)〉, 〈pre9, size(?hole3, ?size3)〉}, {
〈post1, shape(peg1, square)〉, 〈post2, color(peg1, red)〉, 〈post3, size(peg1, small)〉,
〈post4, shape(peg2, circle)〉, 〈post5, color(peg2, blue)〉, 〈post6, size(peg2, large)〉,
〈post7, shape(peg3, square)〉, 〈post8, color(peg3, blue)〉, 〈post9, size(peg3, large)〉,
〈post10, shape(hole1, square)〉, 〈post11, color(hole1, red)〉, 〈post12, size(hole1, small)〉,
〈post13, shape(hole2, circle)〉, 〈post14, color(hole2, blue)〉, 〈post15, size(hole2, large)〉,
〈post16, shape(hole3, square)〉, 〈post17, color(hole3, blue)〉, 〈post18, size(hole3, large)〉},
{. . .}, {. . .}〉

Figure 5.14: Initial task tree for the problem in Figure 5.13, shown after simplification. Ordering
and binding constraints are omitted: postconditions occur simultaneously before any tasks of
preconditions begin, each task is ordered after all preconditions involving the same planning
variables, and planning variables are completely unbound.

186

5.4. Comparison of planning approaches

1 function simplify plan(plan) :
2 call simplify(plan)
3 for each level 1 threat may clobber(con1, con2):
4 node1 ← node(con1)
5 node2 ← node(con2)
6 if node1 and node2 are state constraints:
7 if there is 1 variable in total between literal(node1) and literal(node2):
8 add constraints to vars(plan) such that literal(node1) 6= literal(node2)

Figure 5.15: Algorithm for domain specific task tree simplification in Holes problems. The
function calls the original simplify function (line 2) and then performs extra optimisations on
level 1 state constraints.

that can only be resolved by binding planning variables. It is safe to resolve a threat as an extra

stage of simplification if there is only one way it can be removed:

• the threat cannot be resolved by adding ordering constraints to the plan;

• the threat cannot be resolved by decomposition (the existence of each summary condition

is must);

• the threat is between level 1 summary conditions (so that the variables involved can easily

be discovered);

• the literals of the relevant summary conditions share exactly 1 ungrounded planning vari-

able (so that bindings of alternative variables do not need to be considered).

With this optimisation in place, agents are able to make appropriate variable bindings as tasks

are grounded, resulting in a large gain in planning efficiency. For example, the problem in Fig-

ure 5.13 can be solved by an agent in 1 refinement using the optimised simplification technique,

as opposed to 37 refinements without optimisation. The new version of the simplify function

was used in all Holes problems.

holesGeneral problems The results for these problems are shown in Table 5.14 and graph-

ically in Figure 5.16. The problems posed little difficulty for centralised planning, which typ-

ically solved them in a single refinement. Plan-then-merge also showed good performance,

typically being one or two seconds slower than centralised planning. This success is surpris-

ing given the inability of plan-then-merge to cope with Navigation problems, although there

187

5.4. Comparison of planning approaches

is a straightforward explanation for it. In Navigation problems, planning agents tend to create

very specific plans that produce unresolvable conflicts during plan merging. In Holes problems,

however, the simplify plan function in Figure 5.15 helps agents produce abstract solutions

(Section 3.2.2) in which ?hole variables are partially grounded such that pegs can be placed in

any appropriate hole.

Consider, for example, a two agent plan-then-merge problem in which:

• agent1 is trying to locate a large blue peg, peg1;

• agent2 is trying to locate a small blue peg, peg2;

• there are two holes: hole1 only accepts small pegs and hole2 only accepts blue

pegs.

In this problem, agent1 would produce a plan in which peg1 is placed in hole1 and

agent2 would produce a plan in which peg2 could be placed in either hole. These

plans are mergeable, as the merger can add binding constraints to agent2’s plan to

make sure it is placed in the free hole.

The small speed advantage of centralised planning over plan-then-merge in the results is at-

tributed to the extra time taken for the plan merging agent to remove noop decompositions

from the task tree. The generally poor performance of distributed local planning is attributed

to a combination of the number of resets required and the overheads of communication and

maintenance of summary information. This is discussed further below.

Problem c m3 d3 Problem c m3 d3
holesGeneral 3 1 3 z 100 510 94 2507 82 58780 holesGeneral 4 1 3 z 100 1321 100 3331 72 949408
holesGeneral 3 1 4 z 100 610 100 2264 76 50067 holesGeneral 4 1 4 z 100 1701 100 5998 84 353861
holesGeneral 3 2 3 z 100 219 100 1767 100 95960 holesGeneral 4 2 3 z 100 464 100 2709 94 417945
holesGeneral 3 2 4 z 100 146 100 1820 100 72118 holesGeneral 4 2 4 z 100 267 94 2693 84 182335
holesGeneral 3 3 3 z 100 280 94 1795 100 15161 holesGeneral 4 3 3 z 100 384 100 2678 90 62592
holesGeneral 3 3 4 z 100 309 88 1888 100 15236 holesGeneral 4 3 4 z 100 479 68 2661 100 39094

Table 5.14: Success rates and average planning times (in milliseconds) for holesGeneral prob-
lems. Results are averaged over 100 runs of 10 randomly generated problems.

holesSpecial problems The results for these problems are shown in Table 5.15 and graphi-

cally in Figure 5.17. Remember that the configuration of features of pegs and holes in any prob-

lem holesSpecial w x y z is the same as it is in the equivalent problem holesGeneral w x y z .

188

5.4. Comparison of planning approaches

1

10

100

1000

10000

100000

1000000

10000000

3_1_3_1 3_1_3_6 3_1_4_1 3_1_4_6 3_2_3_1 3_2_3_6 3_2_4_1 3_2_4_6 3_3_3_1 3_3_3_6 3_3_4_1 3_3_4_6

Problem: holesGeneral_w_x_y_z

S
o

lu
ti

o
n

 t
im

e
 /

 m
s

c m3 d3

1

10

100

1000

10000

100000

1000000

10000000

4_1_3_1 4_1_3_6 4_1_4_1 4_1_4_6 4_2_3_1 4_2_3_6 4_2_4_1 4_2_4_6 4_3_3_1 4_3_3_6 4_3_4_1 4_3_4_6

Problem: holesGeneral_w_x_y_z

S
o

lu
ti

o
n

 t
im

e
 /

 m
s

c m3 d3

Figure 5.16: Average solution times for holesGeneral problems. Experiments are placed in
groups of five for clarity. X axis labels refer to the problem name for the first experiment in
each group: subsequent problems have successive z indices.

189

5.4. Comparison of planning approaches

The times for centralised planning are much larger than their counterparts for holesGeneral

problems, demonstrating that the structure of holesSpecial problems is much more convoluted:

agents have three tasks to consider per peg and each task has two decompositions, as opposed

to the single task and single decomposition in holesGeneral problems.

Plan-then-merge shows good performance relative to centralised planning, and even beats it

in some cases (many holesSpecial 3 2 4 problems, all holesSpecial 4 1 4 and 4 2 4 prob-

lems, and most holesSpecial 4 3 4 problems), despite the fact that agents have access to dif-

ferent information. Again this is due to the agents’ ability to find abstract solutions that can be

merged into suitable plans afterwards. In other planning domains the individual plans produced

will often not be so conveniently mergeable.

Distributed local planning times out on most of the problems here: this is unsurprising given

that holesGeneral 3 3 y z problems that took centralised planning up to 15 seconds to solve,

take up to 5 minutes to in their equivalent holesSpecial 3 3 y z forms. Again, this problem of

speed is caused by a combination of the number of resets required and the extremely long time

taken to perform refinements. The detailed results in Appendix C show the refinement times

to be roughly equivalent to those in holesGeneral problems, but the numbers of refinements

needed to be larger.

Holes problems are essentially constraint satisfaction problems. In their simplest form, they can

be represented as a set of variables for peg/hole assignments, together with a set of constraints

on which pegs can go where. MPF is a convoluted mechanism on which to base algorithms

for solving these kinds of problems: far more complicated than equivalent CSP representations.

There is much research in the CSP literature on these kinds of problems, including analytical

and empirical analysis of phase transitions (Hogg et al., 1996; Rintanen, 2004), where the

relative performance of different kinds of algorithms varies dramatically as the density and

pattern of constraints changes. Further research with alternative planning mechanisms would

be useful to find and analyse equivalent phase changes in multi agent planning.

190

5.4. Comparison of planning approaches

Problem c d3 Problem c d3
holesSpecial 3 1 3 z 100 27337 8 199969 holesSpecial 4 1 3 z 80 129241 0 0
holesSpecial 3 1 4 z 100 33401 0 0 holesSpecial 4 1 4 z 100 186237 0 0
holesSpecial 3 2 3 z 100 38034 4 65119 holesSpecial 4 2 3 z 100 145646 0 0
holesSpecial 3 2 4 z 100 43133 8 113394 holesSpecial 4 2 4 z 100 170415 0 0
holesSpecial 3 3 3 z 100 20498 54 283510 holesSpecial 4 3 3 z 100 69642 0 0
holesSpecial 3 3 4 z 100 23807 70 273792 holesSpecial 4 3 4 z 100 90336 6 97891

Table 5.15: Success rates and average planning times (in milliseconds) for holesSpecial prob-
lems. Results are averaged over 100 runs of 10 randomly generated problems.

1

10

100

1000

10000

100000

1000000

10000000

3_1_3_1 3_1_3_6 3_1_4_1 3_1_4_6 3_2_3_1 3_2_3_6 3_2_4_1 3_2_4_6 3_3_3_1 3_3_3_6 3_3_4_1 3_3_4_6

Problem: holesSpecial_w_x_y_z

S
o

lu
ti

o
n

 t
im

e
 /

 m
s

c m3 d3

1

10

100

1000

10000

100000

1000000

10000000

4_1_3_1 4_1_3_6 4_1_4_1 4_1_4_6 4_2_3_1 4_2_3_6 4_2_4_1 4_2_4_6 4_3_3_1 4_3_3_6 4_3_4_1 4_3_4_6

Problem: holesSpecial_w_x_y_z

S
o

lu
ti

o
n

 t
im

e
 /

 m
s

c m3 d3

Figure 5.17: Average solution times for holesSpecial problems. Experiments are placed in
groups of five for clarity. X axis labels refer to the problem name for the first experiment in
each group: subsequent problems have successive z indices.

191

5.5. Summary of empirical analysis

5.5 Summary of empirical analysis

This chapter presented experiments analysing the relative performance of the planning mecha-

nisms from Chapter 3 and the planning algorithms from Chapter 4.

Comparison of planning mechanisms The experiments in Section 5.3 compared the pMPF

and fMPF planning mechanisms from Chapter 3 on selected single agent first order recursive

problems. As predicted in Section 3.5, the size of pMPF task trees was exponentially related

to the number of world objects in the problem. The size of fMPF trees, by comparison, was

linearly related to the number of world objects. Tree generation time was found to be primarily

affected by the number of nodes in the tree: fMPF trees were found to be much smaller and

faster to generate than pMPF trees despite the presence of planning variables.

The summary information in initial task trees was identical for the two formalisms. Planning

with fMPF was found to be more memory efficient than planning with pMPF for the problems

tested, partly because of the reduced maintenance time of the smaller trees, and partly because

of the requirement for fewer iterations in problems of significant size. The lower number of

iterations was attributed to the later binding of planning variables from methods in the problem

description (Section 5.3).

Comparison of planning approaches As expected, the centralised planning and plan-then-

merge approaches showed similar performance overall. Centralised planning faired better than

plan-then-merge on problems that did not decompose naturally into smaller parts (such as many

bwRandom problems), while plan-then-merge faired better on other problems that did (such

as bwSwap problems). Unfortunately, “decomposability” could not be determined in advance

from the structure of the task tree or summary information.

As expected, plan-then-merge was unable to solve many Navigation problems because of

agents’ restricted control over resources (Section 5.4.2), but showed a surprising success at

Holes problems because of individual agents’ ability to produce abstract solutions that could

subsequently be merged into a valid joint plan (Section 5.4.3). The allocation of tasks to agents

was also found to have a dramatic effect on plan-then-merge, partly because of the amount of

192

5.5. Summary of empirical analysis

redundancy that needed to be removed during plan merging, and partly because of the effects of

different task arrangements on planning (for example, in bwReverse problems). The restriction

of knowledge of initial conditions was also useful, if used carefully in a problem specific way:

inappropriate alteration of agents’ knowledge has implications for the soundness of planning.

Distributed local planning was on the whole slower than the other approaches, and was subject

to local search related problems such as weight explosion (Section 5.4.1) and plateauing (Sec-

tion 5.4.2). Much of the trouble with the approach were attributed to the poor implementation

of nogood constraints (Section 4.4.2), which did not effectively prevent agents from revisit-

ing sets of plan features that had previously been found to be incompatible. Distributed local

planning cannot be scaled to deal with larger problems in its current form: for this, significant

reimplementation would be required.

Chapter 6 uses the the analysis above, along with insight gained through the rest of the thesis,

to review the contributions from Section 1.3 and outline a course for future work.

193

Chapter 6

Conclusions and future work

6.1 Summary of contributions

The principal contributions of this thesis were outlined in Section 1.3. They are revisited here

within the wider context of the whole thesis.

6.1.1 Taxonomy of multi agent planning problems

The space of multi agent planning problems is very large, far beyond the scope of this thesis.

Section 1.1 provided a taxonomy of issues in multi agent planning, including a precise inter-

pretation of multi agent planning, a set of standard features present in all multi agent planning

problems according to this interpretation, and a discussion of features that may appear in some

problems but not others.

The taxonomy is an important contribution for two reasons. Firstly, it proposes a set of standard

definitions of terms that are used with a wide variety of meanings in the literature, removing

ambiguity and providing a common language for talking about multi agent planning. Secondly,

it creates a space of problems which researchers can use to categorise specific scenarios and

identify the strengths and weaknesses of different planning approaches.

The most basic problem definition was chosen for study in the empirical section of this thesis,

with just a few extensions selected from the taxonomy (Section 1.2). Essentially this reduces

194

6.1. Summary of contributions

to:

• producing fast, memory efficient multi agent planning that maximises the independence

of the agents;

• implementing and evaluating multi agent planning with heterogeneous resource control;

• implementing and evaluating multi agent planning with heterogeneous knowledge about

external state.

6.1.2 Approaches to multi agent planning

Rather than concentrating on a single approach to multi agent planning, the empirical work in

this thesis attempted to compare and contrast different approaches on a variety of problems.

Three approaches to multi agent planning were identified in Section 2.2: centralised planning,

plan-then-merge and distributed local planning. Of these, centralised planning and plan-then-

merge have been implemented extensively in the literature. Distributed local planning, however,

has received relatively little attention, although extensive research has been done in the related

fields of distributed constraint satisfaction (Yokoo and Hirayama, 2000) and single agent plan-

ning with local search (Kautz and Selman, 1992; Chien et al., 1999; Narayek, 2002).

The three approaches provide a representative selection of the variety of approaches that are

possible. Most current multi agent planning systems follow one of these patterns. Notable

simplifications in the approaches as presented included the following:

• Goal selection, assignment and reassignment were ignored. Agents were given their own

set of goals that could not be changed or contracted out to others. This is in contrast

with, for example, the work of Decker and Lesser (1992, 1995), which focuses on the

distribution of problem solving processes between of agents, treating agents as resources

for problem solving and data processing, across which processing may be load balanced.

• Consensus mechanisms such as negotiation were not used. Agents were considered to

be self interested but trustworthy, goals were assumed to be non-conflicting, and partial

solutions were not permitted, making distributed algorithms alone sufficient. It would be

195

6.1. Summary of contributions

possible to build negotiation in to any of the three approaches, expanding its applicability

to a larger set of problems. This is an important future extension of this work.

• The planning system was not embedded in a more complete agent architecture. Other is-

sues than planning, such as plan execution and learning from past mistakes, are important

aspects of agency that need to be combined with planning to produce complete agents

that can adapt to a wider range of problems from Section 1.1. Learning, in particular, is

an important part of a more complete notion of agency.

6.1.3 Common planning mechanism for multi agent planning

The HTN planning mechanism MPF was developed in Chapter 3 to provide a common platform

on which to implement the three multi agent planning approaches. MPF was based on the

CHiPs planning mechanism (Clement and Durfee, 1999a,b,c; Clement, 2002). CHiPs and its

task tree based plan representation and summary information based heuristics (Section 3.2)

were a natural starting point for the development of MPF because of their previous use for the

coordination of multiple plans and their foundation in standard HTN planning.

The empirical analysis in Section 5.3 indicates that MPF does not scale well when applied

to standard planning domains such as Blocksworld and Navigation (Section 5.2). These are

merely toy problems, intended as a means of investigating properties of the algorithms being

developed: if an algorithm does not scale well on these it has little chance of faring well in the

real world.

The inability to scale to larger problems is partly due to the time and memory taken maintain-

ing multiple task trees, and partly due to the time taken calculating summary information for

use in heuristics. The first of these problems was partly alleviated through the use of planning

variables and value counting, which allowed larger problems to be tackled faster than propo-

sitional approaches. However, the maintenance of planning variables increased the amount of

time spent recalculating summary information (Section 3.5) and doing tree simplification (Sec-

tion 3.4.4). This made the evaluation of new partial plans much slower, which in turn slowed

down the process of refinement and of planning overall. This meant that, while fMPF was still

preferable to pMPF for most of the problems in this thesis, its use was not as beneficial as it

196

6.1. Summary of contributions

might otherwise have been.

While task trees and summary information have been shown to help the fast coordination of

plans for multiple executives by a single coordination agent (Chapter 6 of Clement, 2002), and

have been successfully implemented in the single agent local search planner ASPEN (Chapter 8

of Clement, 2002; Rabideau et al., 1999), they were not originally designed with decentralised

planning in mind. MPF has several limitations as a result:

• The size of the initial task tree has to be calculated prior to planning. This is a simple

task for non-recursive planning problems, but is more difficult when recursive tasks and

methods are present. The value counting technique described in Section 3.6 is, in a sense,

a naı̈ve solution that is applicable in a limited set of cases. A more comprehensive solu-

tion involves allowing a small initial task tree to be expanded during planning (Gurnell,

2004)1. This is the subject of ongoing research, and has not been discussed in the body

of this thesis.

• Pure HTN planning proceeds by the decomposition of tasks. This is inappropriate for

the implementation of plan merging and local search algorithms. As discussed in Section

4.3, plan merging ideally involves the addition of tasks to a plan as well as the detection

and removal of conflicting or duplicate tasks. The implementation of this in MPF would

involve adding new level 1 tasks to the task tree. However, such additions would require

time consuming updates, would potentially cause a large increase in the size of search

space, and would require lots of recalculation of summary based heuristics.

• Local search planning typically involves the use of special local search operators that

repair flaws without having to use the normal refinement based search structure (Sec-

tion 2.1.6). Again, this is difficult without dropping the decomposition-only planning

paradigm and allowing the addition of tasks to the plan, either as forward- or backward-

chaining state space search (Section 2.1.3) or in a least commitment style response to

threats (Section 2.1.4). The distributed local search algorithm presented in Section 2.2.3

may benefit from the use of local search operators: currently it is “local” only because

agents have local control over their own planning. Agents still perform a refinement based

1Available from http://www.cs.bham.ac.uk/∼djg.

197

6.1. Summary of contributions

search, interrupting it only when reset or penalise messages are received (Section 4.4.2).

When search is interrupted it is reset to its initial state, which is potentially inefficient

compared to more direct methods of threat resolution.

• The addition of nogood constraints is a fundamental requirement for completeness in

distributed constraint satisfaction (Section 4.4.1). As discussed in Section 4.4.2, however,

the implementation of nogood constraints in MPF is impractical as summary information

changes whenever tasks are decomposed.

Many of the problems above are a result of the use of task trees in planning, as opposed to

more the traditional plan representations described in Section 2.1. Plan merging and distributed

local planning would be better suited to planning algorithms that do not rely on the storage of

many copies of large, complicated plan structures and the continuous recalculation of expensive

heuristics. While task trees support accurate heuristics that are useful for resolving inter-plan

conflicts, such heuristics could also be generated from a number of other sources (Bonet and

Geffner, 1998; Hawes, 2003; Hoffmann and Nebel, 2001; Nguyen et al., 2002).

6.1.4 Comparison of multi agent planning approaches

The multi agent planning approaches introduced in Section 2.2 and implemented in Chapter 4

were compared and contrasted in Section 5.4. The following observations were made:

Ability to solve problems Centralised planning was able to solve many of the problems at-

tempted within the time and memory limits imposed. Plan-then-merge and distributed local

planning could only solve subsets of these problems, the details of which are discussed in the

relevant sections below.

Solution efficiency Centralised planning was faster than the other techniques on over half of

all problems considered. Plan-then-merge was faster than centralised planning on a significant

number of problems, and distributed local planning was generally not competitive with the

others. This is perhaps to be expected, as the lower performance of distributed local planning

must be offset against the increased independence it provides for the planning agents.

198

6.1. Summary of contributions

Quality of plans produced The heuristics in MPF favour plans with fewer threats between

summary conditions: plan length and resource usage were not considered. Plans with fewer

tasks tend to contain fewer conflicts, so near-optimal plans were common, but there was no

guarantee of optimality.

It was hypothesised that plan-then-merge and distributed local planning may be at a disadvan-

tage compared to centralised planning, because of the way in which they split search up into

smaller parts. However, this was found not to be the case, as there were cases in which each al-

gorithm performed best. Unfortunately, due to low solution rates in many problem types, trends

and patterns in solution quality could not be analysed.

Plan-then-merge While the performance of plan-then-merge was good on problems it could

solve, there were a large number of problems that it could not, three categories of which are

identified below:

1. The individual planning stage often failed on problems in which agents had limited con-

trol of resources in the environment. For example, in navLine problems the movement of

each robot apart from the leading robot required the movement of the robot in front: if an

agent did not have control of the necessary robots it failed to produce an individual plan,

and the whole team failed as a result.

This issue did not occur when agents had complete control over all resources in the prob-

lem. In Blocksworld, for example, every agent was able to move every block: agents

simply moved blocks that prevented them achieving their goals in their individual plans,

and redundant tasks were subsequently removed during plan merging.

The resource control issue can be overcome in certain cases by altering agents’ knowl-

edge of world state. For example, navLine problems are solvable if agents are unaware

of the positions of robots that are not part of their individual plan (Section 5.4.2). In

navRing problems, however, the restriction of knowledge did not help: non-mergeable

plans were still produced. There was no general rule for when and how to restrict knowl-

edge: restrictions were made in an ad hoc and problem specific way.

In Holes problems, planning agents were able to produce mergeable individual plans de-

199

6.1. Summary of contributions

spite having limited control of resources and knowledge of external state. This is because

they were able to produce abstract solutions that represented a set of possible candidate

plans: the structure of the Holes domain just so happened to encourage solutions that

could be merged into a joint plan. While abstraction was helpful in this case, it is unlikely

to occur in problems in general, especially if agents are only partially aware of the com-

plete set of constraints on their tasks. Planning agents have to make some commitments

to orderings, decompositions and variable bindings to produce valid individual plans: if

they have limited control of resources or knowledge of the environment, it is likely that

incompatible commitments will make plan merging impossible without subsequent re-

planning.

2. The plan merging stage can fail if the merger does not have complete freedom to change

agents’ individual plans. As discussed previously, MPF does not permit the addition of

tasks to the joint plan to remove conflicts. Every refinement planning algorithm has a

restriction like this, because every refinement planning algorithm relies on backtracking

to undo operations it has performed that have not led to a valid plan (Section 2.1.1). The

trouble with this in plan merging is that some of the operations performed during planning

may have to be undone to allow the plans to be merged. Local search techniques (Section

2.1.6) are not bound by this regimented refinement based approach, and may be better

suited to the ad hoc nature of plan merging.

3. The plan merging stage can fail if agents create individual plans without complete knowl-

edge of the environment. This was not an issue in Holes problems because of the ability

of the agents to produce abstract solutions, but it did cause problems in navRing and

some navStar problems.

Problems 1 and 3 above are a result of agents’ isolation during the planning phase. These

problems can be overcome in a number of ways:

1. Domain specific social rules can be imposed to prevent agents coming into conflict (Sec-

tion 2.2.2; Shoham and Tennenholtz, 1995), although possibly at the expense of sound-

ness.

200

6.1. Summary of contributions

2. Coordination can be performed prior to planning to ensure individual planning and merg-

ing stages are possible (Valk et al., 2005). If individual planning and/or merging are not

possible, or if the coordination phase fails, centralised planning can be used as a fallback

technique.

3. Agents can be allowed to communicate during planning, as in distributed local planning,

the advantages and disadvantages of which are discussed below.

Distributed local planning Distributed local planning was outperformed by centralised plan-

ning and plan-then-merge on most problems. This is unsurprising due to the nature of the

algorithm:

1. Because of the incompatibility of best first search (BFS) and the requirement for progres-

sive commitment in distributed problem solving (Section 2.2.3), distributed local plan-

ning uses depth first search (DFS). Given the same heuristics, BFS will usually solve

problems in at least as few refinements as DFS, so a single agent using distributed local

planning will normally take longer than an equivalent agent using centralised planning,

even without the presence of other agents to initiate resets. Distributed local planning

only performs competitively with respect to plan-then-merge when the extra overhead of

performing the distributed search with its depth first structure is less than the time taken

to merge plans, and only performs competitively with respect to centralised planning if

no resets and little backtracking is required.

2. Communication and updating of external summaries imposes a further overhead on agents

using distributed local planning. Time taken evaluating summary based heuristics also

contributes to this cost, as the “write” tokens used to avoid problems with concurrent

communication (Section 4.4) have to be held while heuristics are calculated.

3. The algorithm used in distributed local planning is a cross between DFS and asyn-

chronous backtracking (ABT, Yokoo and Hirayama, 2000, discussed in Section 4.4.1).

In the case of unresolvable conflicts during planning, the ABT part of the algorithm in-

terrupts the DFS part and resets the agent to its initial plan. Resetting is not an issue

in distributed constraint satisfaction, as agents are only responsible for a single variable

201

6.1. Summary of contributions

each. However, a single reset in distributed local planning can force the agents involved

to repeat many refinements that centralised planning and plan-then-merge agents would

only perform once (Section 5.4.1).

4. Two aspects of distributed local planning meant that it fell foul of some of the classic

problems of local search algorithms (Section 2.1.6). Firstly, the summary weights used

to do the job of nogood constraints merely discouraged (rather than prevented) agents

from revisiting combinations of plans that had previously caused unresolvable conflicts.

It was possible for agents to get trapped in a local minimum from which they could

not escape, creating a weight explosion (Section 5.4.2). Secondly, the policy of waiting

for decompositions during third party threat resolution (Section 4.4.2) meant that agents

could spend long periods of time on heuristic plateaux (Section 5.4.3). Although these

plateaux did not cause search to fail, they imposed serious delays that caused time outs

on many problems.

A number of techniques are suggested as workaround for these problems:

1. The completeness and speed of the ABT part of the distributed local planning algorithm

are dependent on the use of concrete nogood constraints. The summary weighting tech-

nique described in Section 4.4.2 is a rudimentary approximation of the ABT technique,

but suffers (end of Section 5.4.2) because it does not explicitly tell an agent which areas

of search are not to be repeated after a reset. Real nogood constraints are required to

avoid repeated resetting because of the same unresolvable conflicts.

2. Resets occur when unresolvable conflicts are found during planning. However, some un-

resolvable conflicts could be made resolvable by giving agents more flexible local search

refinements and operators for plan repair.

Task trees and summary information are inappropriate for the implementation of nogood con-

straints and local search algorithms. Alternative planning mechanisms are required to fix these

problems with distributed local planning.

202

6.1. Summary of contributions

6.1.5 Conclusions

Centralised planning is the fastest and most widely applicable approach above. This is unsur-

prising given that it has its roots in conventional single agent refinement planning, which has

evolved over several decades. However, centralised planning does not provide agents in multi

agent problems with any independence: it cannot be used when agents wish to maintain privacy,

it permits misinterpretation of implicit or explicit goals (Section 1.1.3), it is inefficient when the

overlap between agents’ individual problems is small, and it will not scale up to large problems

involving many agents and highly complex environments.

Plan-then-merge is representative of a variety of possible approaches based on plan merging.

Plan merging approaches allow agents to retain a certain amount of independence while using

the same single agent planning techniques. Consequently, if a problem lends itself well to

decomposition, approaches like plan-then-merge can be faster than centralised planning in terms

of both speed and memory usage. However, plan merging approaches can only be used when

individual problems can be solved in isolation, and so their usefulness is restricted to a limited

set of situations.

Distributed local planning is one of a variety of possible approaches in which agents can com-

municate, cooperate, exchange knowledge and exchange resources during planning. These

algorithms are the most promising in terms of agent independence and their usefulness in real

world multi agent environments, although they cannot be implemented with traditional refine-

ment based planning techniques. Unfortunately, the implementation of distributed local plan-

ning algorithm in this thesis was quite inefficient, causing it to time out on many of the problems

attempted. Further work is required on distributed local planning and other distributed planning

techniques to enhance their performance and their applicability to larger, more complex plan-

ning problems. Lessons learned during the implementation and analysis of the algorithms in

this thesis provide useful pointers for possible directions of future research.

203

6.2. Future work

6.2 Future work

As discussed above, distributed local planning is a promising approach despite a number of

flaws in its implementation here. This section describes possibilities for the development of the

approach into something more efficient and scalable:

Adoption of new planning mechanisms MPF is a complex and expensive planning mecha-

nism: task trees are large structures that consume a lot of memory and take time to duplicate,

and the calculation of summary based heuristics is expensive when first order trees are used.

For distributed local planning to be effective, a simpler, more compact plan representation is

needed.

One approach would be to encode planning as a constraint satisfaction problem (Chapter 8 of

Ghallab et al., 2004; Frank et al., 2000). This would be convenient for the implementation of

nogood constraints and other techniques inspired by distributed constraint satisfaction (DisCSP)

problems (Section 4.4.1).

An alternative approach would be to use more traditional plan representations from plan space

planning (Sections 2.1.4 and 2.1.5). If a pure HTN mechanism were used, agents would be

restricted to planning by decomposition. This could be avoided by using a least commitment

planning mechanism, or a hybrid HTN mechanism incorporating, for example, decomposition

space and state space search (McCluskey et al., 2002). Nogood constraints could be represented

as conjunctions of actions, binding constraints and ordering constraints, although care would

need to be taken to preserve their meanings as actions are added to and deleted from the plan.

Heuristics could be based on causal links (Section 2.1.4) and nogood constraints.

New distributed planning mechanisms and algorithms may benefit from ideas such as the ex-

change of external summary information, even if the word “summary” is not used with the

same literal meaning it is here: the abstraction of relevant information for communication

to other agents reduces communication costs and improves privacy and communications ef-

ficiency. Other key concepts include progressive commitment/decommitment from aspects of

plans, continuous collection of nogood information, and other concepts from Section 4.4. Care

must be taken when developing new planning mechanisms to satisfy the requirements discussed

204

6.2. Future work

in Section 3.1 without succumbing to the pitfalls observed in the empirical work in Chapter 5

(Section 6.1.4).

Adaptive approaches An important aspect of distributed local planning is that it is not totally

reliant on communication to produce valid plans. Agents are not required to wait for new in-

formation to arrive: they continue planning regardless, and simply respond appropriately when

external information does change. This should be an important consideration in any distributed

planning algorithm: agents should be as independent as is sensible for any given problem and

multi agent environment.

This thesis has demonstrated that different planning approaches are suited to different types of

problem: sometimes a distributed approach is better than a centralised one and sometimes it is

not. It was originally an intention to produce an adaptive planning system that automatically

decided which of the three approaches to use and switch to it for the remainder of planning

(Gurnell, 2003)2. Unfortunately, the three approaches developed were different enough that the

only sensible time to choose between them was before planning began. Summary information

in the initial task tree proved to be uninformative enough to make such a decision impossible so

early on in planning.

Within limits, distributed local planning can behave like centralised planning or distributed con-

straint satisfaction depending on the nature of the problem being solved. The important aspect

of this is the number of conflicts that are discovered between agents’ plans. By proactively

changing the amount of communication between agents, it is hypothesised that a distributed

planning algorithm can be produced that can move between two contrasting states:

Refinement driven search, in which communication is infrequent (and thus inexpensive), co-

ordination is kept to a minimum, and refinement based planning dominates.

Coordination driven search, in which communication is frequent, coordination is maximised,

and distributed constraint satisfaction style search dominates3.

By moving between these states appropriately, the three approaches of this thesis may be recre-
2Available from http://www.cs.bham.ac.uk/∼djg.
3Local search operators (Section 2.1.6) may be used to minimise backtracking due to unresolvable inter-agent

conflicts.

205

6.2. Future work

ated using a single algorithm. Appropriate points for switching could be identified by analysing

the structure of the problem or the status of planning. If there is no reliable way to determine

the best policy directly from the information available, agents could use learning techniques to

identify situations that are similar to previously encountered problems and apply approaches

that have been successful in the past. Research on phase transitions in constraint satisfaction

and planning could also have relevance here (Section 5.5).

Application to wider classes of problem Real world multi agent planning problems may be

large and complex, and may involve many difficult features not present in the toy problems in

this thesis. If the efficiency of distributed planning techniques such as distributed local planning

can be increased sufficiently, new classes of problem from Section 1.1 may be dealt with.

One class of problem is seen as particularly important: any generally applicable distributed

planning algorithm must be able to cope with agents that have conflicting goals. As a last

resort, agents should be able to resolve conflicts by dropping less important goals to produce

a partial solution. Where agents are self interested, this will necessarily involve negotiation to

ensure mutually satisfactory goal selection. Learning can also be important here: agents can

use past experience to identify situations where compromises might be necessary and come up

with sensible strategies with little or no search.

Distributed local planning, while currently unperfected and significantly slower than centralised

planning and plan merging approaches, holds the key to the application of planning techniques

to a wider class of social situations. If agents can be developed that are able to plan satisfactorily

when other agents are present, with problems of varying complexity and decomposability and

potentially conflicting goals, then a significant step will have been taken towards generalising

planning into an activity where agents can take a wide set of multi agent problems in their stride.

206

Appendix A

Guide to notation

This appendix briefly describes some of the non-standard text formatting and notation used in

the descriptions of algorithms and data structures in Chapters 2 to 4.

A.1 Data structures

Names of data structures The names of data structures, actions, state literals and world ob-

jects are written using mathematical italics , as are the names of their types.

Names of planning variables The names of planning variables (variables created by a planner

to refer to a disjunction of possible world objects) are prefixed with a question mark. For

example: ?src, ?x , ?r 1 and so on.

Names of types of world object The names of types of world objects in pMPF are are prefixed

with an exclamation mark. For example: !location, !robot , !block and so on.

Tuples Most data structures are defined as tuples, the elements of which are written between

angular brackets (“〈” and “〉”). For example:

〈t1, t2, t3 . . . tn〉

Accessor functions Wherever a tuple is defined, accessor functions are implicitly defined using

207

Appendix A. Guide to notation

the names of its elements written in mathematical italics . For example, the definition

above implies the following accessors for a tuple t:

t1(t)

t2(t)

t3(t)

...
tn(t)

Names of functions, refinements and operators The names of all other subroutines, func-

tions, refinements and planning operators are written as textual mathematical operators.

A.2 Pseudocode

Block structure Block structure is indicated by indentation, in a similar fashion to the Python

programming language.

Keywords Keywords for programming constructs are written in bold text.

Assignments Assignments are written as left hand arrows (“←”). For example:

x← x + 1

Assignments with forward propagation The double left arrow symbol (“⇐”) is used to de-

note the addition of a constraint to a (temporal or binding) constraint network, followed

by forward propagation to update the state of the network accordingly. For example:

network ⇐ constraint

Function headers Each function takes zero or more arguments and returns zero or more return

values. The return values of a function, if any, are written after a right hand arrow (“→”)

in the function header. For example:

208

Appendix A. Guide to notation

1 function my function(a, b)→ (c, d) :
2 line 1
3 line 2
4 line 3
5 etc...

Returning from functions Functions always return the specified number of values. This either

occurs when function execution ends naturally, or when a return statement is encoun-

tered. The values returned are always the values with the names specified in the function

header.

209

Appendix B

Domain descriptions and sample problems

This appendix presents the domain description and sample problem description files for each

of the three test domains in Chapter 5. While the XML syntax used has not been formally

introduced in the body of this thesis, readers of Chapter 3 should find it simple and intuitive.

The planner="" attributes of task nodes in the sample problems are used to identify groups

of tasks, state constraints and methods belonging to the same agent. These attributes are

mapped to actual agents during task tree generation. Top level state constraints that do not

have planner="" attributes are global constraints that are part of all agents’ problems. Vari-

able identifiers are denoted by initial question marks. Type identifiers are denoted by initial

exclamation marks.

B.1 Blocksworld

B.1.1 Domain description

<?xml version="1.0" encoding="utf-8"?>

<domain name="blocksworld">

<type name="!surface">
</type>

<type name="!block">
<extends>!surface</extends>

</type>

<type name="!table">
<extends>!surface</extends>

210

Appendix B. Domain descriptions and sample problems

<values>table</values>
</type>

<predicate>on(!block !surface)</predicate>
<predicate>clear(!surface)</predicate>

<action type="primitive">move(!block !surface !surface)</action>
<action type="abstract">achieve_clear(!block)</action>
<action type="abstract">achieve_on(!block !surface)</action>

<method name="move_block_block" action="move(?block ?src ?des)">
<var name="?block" type="!block"/>
<var name="?src" type="!block"/>
<var name="?des" type="!block"/>

<notequal a="?block" b="?src"/>
<notequal a="?block" b="?des"/>
<notequal a="?src" b="?des"/>

<pre name="pre1">clear(?block)</pre>
<pre name="pre2">clear(?des)</pre>
<pre name="pre3">on(?block ?src)</pre>

<post name="post1">not(on(?block ?src))</post>
<post name="post2">clear(?src)</post>
<post name="post3">on(?block ?des)</post>
<post name="post4">not(clear(?des))</post>

<order a="pre1" b="pre2">e</order>
<order a="pre1" b="pre3">e</order>
<order a="pre1" b="post1">m</order>
<order a="post1" b="post2">m</order>
<order a="post1" b="post3">m</order>
<order a="post1" b="post4">m</order>

</method>

<method name="move_block_table" action="move(?block ?src ?des)">
<var name="?block" type="!block"/>
<var name="?src" type="!block"/>
<var name="?des" type="!table"/>

<notequal a="?block" b="?src"/>
<notequal a="?block" b="?des"/>
<notequal a="?src" b="?des"/>

<pre name="pre1">clear(?block)</pre>
<pre name="pre2">on(?block ?src)</pre>

<post name="post1">not(on(?block ?src))</post>
<post name="post2">clear(?src)</post>
<post name="post3">on(?block ?des)</post>

<order a="pre1" b="pre2">e</order>
<order a="pre1" b="post1">m</order>
<order a="post1" b="post2">m</order>
<order a="post1" b="post3">m</order>

</method>

<method name="move_table_block" action="move(?block ?src ?des)">
<var name="?block" type="!block"/>
<var name="?src" type="!table"/>
<var name="?des" type="!block"/>

<notequal a="?block" b="?src"/>
<notequal a="?block" b="?des"/>
<notequal a="?src" b="?des"/>

<pre name="pre1">clear(?block)</pre>
<pre name="pre2">clear(?des)</pre>
<pre name="pre3">on(?block ?src)</pre>

<post name="post1">not(on(?block ?src))</post>
<post name="post2">on(?block ?des)</post>
<post name="post3">not(clear(?des))</post>

211

Appendix B. Domain descriptions and sample problems

<order a="pre1" b="pre2">e</order>
<order a="pre2" b="pre3">e</order>
<order a="pre1" b="post1">m</order>
<order a="post1" b="post2">m</order>
<order a="post1" b="post3">m</order>

</method>

<method name="achieve_clear" action="achieve_clear(?block)">
<var name="?block" type="!block"/>
<var name="?on" type="!block"/>
<var name="?table" type="!table"/>

<notequal a="?block" b="?on"/>

<task name="task1">achieve_clear(?on)</task>
<task name="task2">move(?on ?block ?table)</task>

<order a="task1" b="task2">b m</order>
</method>

<method name="achieve_clear_noop" action="achieve_clear(?block)">
<var name="?block" type="!block"/>

<pre name="pre1">clear(?block)</pre>
</method>

<method name="achieve_on" action="achieve_on(?block ?des)">
<var name="?block" type="!block"/>
<var name="?src" type="!surface"/>
<var name="?des" type="!surface"/>

<notequal a="?block" b="?src"/>
<notequal a="?block" b="?des"/>
<notequal a="?src" b="?des"/>

<task name="task1">achieve_clear(?block)</task>
<task name="task2">achieve_clear(?des)</task>

<task name="task3">move(?block ?src ?des)</task>

<order a="task1" b="task3">b</order>
<order a="task2" b="task3">b</order>

</method>

<method name="achieve_on_noop" action="achieve_on(?block ?des)">
<var name="?block" type="!block"/>
<var name="?des" type="!surface"/>

<notequal a="?block" b="?des"/>

<pre name="pre1">on(?block ?des)</pre>
</method>

</domain>

B.1.2 Sample problem: bwReverse 3

<?xml version="1.0" encoding="utf-8"?>

<problem name="bwReverse_3" domain="blocksworld">

<type name="!block">
<values>a b c</values>

</type>

<global>
<post name="post1">clear(c)</post>
<post name="post2">on(c b)</post>
<post name="post3">on(b a)</post>

212

Appendix B. Domain descriptions and sample problems

<post name="post4">on(a table)</post>

<task name="task1" planner="pl1">achieve_on(a b)</task>
<task name="task2" planner="pl2">achieve_on(b c)</task>

<pre name="pre1" planner="pl1">on(a b)</pre>
<pre name="pre2" planner="pl2">on(b c)</pre>

<order a="post1" b="post2">e</order>
<order a="post1" b="post3">e</order>
<order a="post1" b="post4">e</order>

<order a="post1" b="task1">b m</order>
<order a="post1" b="task2">b m</order>

<order a="pre1" b="pre2">e</order>

<order a="task1" b="pre1">b m</order>
<order a="task2" b="pre1">b m</order>

</global>

<planner name="pl1">
<methods>

achieve_on
achieve_on_noop
achieve_clear
achieve_clear_noop
move_block_block
move_block_table
move_table_block

</methods>
</planner>

<planner name="pl2">
<methods>

achieve_on
achieve_on_noop
achieve_clear
achieve_clear_noop
move_block_block
move_block_table
move_table_block

</methods>
</planner>

</problem>

B.2 Navigation

B.2.1 Domain description

<?xml version="1.0" encoding="utf-8"?>

<domain name="navigation">

<type name="!loc">
</type>

<type name="!robot">
</type>

<predicate>edge(!loc !loc)</predicate>
<predicate>at(!robot !loc)</predicate>
<predicate>clear(!loc)</predicate>

<action type="primitive">move(!robot !loc !loc)</action>

213

Appendix B. Domain descriptions and sample problems

<action type="abstract">travel(!robot !loc !loc)</action>

<method name="travel_indirect" action="travel(?r ?src ?des)">
<var name="?r" type="!robot"/>
<var name="?src" type="!loc"/>
<var name="?aux" type="!loc"/>
<var name="?des" type="!loc"/>

<notequal a="?src" b="?aux"/>

<task name="task1">move(?r ?src ?aux)</task>
<task name="task2">travel(?r ?aux ?des)</task>

<order a="task1" b="task2">b m</order>
</method>

<method name="travel_direct" action="travel(?r ?src ?des)">
<var name="?r" type="!robot"/>
<var name="?src" type="!loc"/>
<var name="?des" type="!loc"/>

<notequal a="?src" b="?des"/>

<task name="task1">move(?r ?src ?des)</task>
</method>

<method name="move" action="move(?r ?a ?b)">
<var name="?r" type="!robot"/>
<var name="?a" type="!loc"/>
<var name="?b" type="!loc"/>

<notequal a="?a" b="?b"/>

<pre name="pre1">edge(?a ?b)</pre>
<pre name="pre2">at(?r ?a)</pre>
<pre name="pre3">clear(?b)</pre>

<post name="post1">at(?r ?b)</post>
<post name="post2">not clear(?b)</post>
<post name="post3">not at(?r ?a)</post>
<post name="post4">clear(?a)</post>

<order a="pre1" b="pre2">si</order>
<order a="pre2" b="pre3">si</order>

<order a="pre1" b="post1">fi</order>

<order a="pre2" b="post1">o</order>
<order a="pre3" b="post1">m</order>

<order a="post1" b="post2">e</order>
<order a="post1" b="post3">e</order>
<order a="post1" b="post4">e</order>

</method>

</domain>

B.2.2 Sample problem: navRing 3 2

<?xml version="1.0" encoding="utf-8"?>

<problem name="navRing_3_2" domain="navigation">

<type name="!robot">
<values>r1 r2</values>

</type>

<type name="!loc">
<values>p1 p2 p3</values>

</type>

214

Appendix B. Domain descriptions and sample problems

<global>
<post name="post1">at(r1 p2)</post>
<post name="post2">at(r2 p1)</post>

<post name="post3">clear(p3)</post>

<post name="post4">edge(p1 p2)</post>
<post name="post5">edge(p2 p1)</post>
<post name="post6">edge(p2 p3)</post>
<post name="post7">edge(p3 p2)</post>
<post name="post8">edge(p3 p1)</post>
<post name="post9">edge(p1 p3)</post>

<task name="task1" planner="pl1">travel(r1 p2 p1)</task>
<task name="task2" planner="pl2">travel(r2 p1 p2)</task>

<pre name="pre1" planner="pl1">at(r1 p1)</pre>
<pre name="pre2" planner="pl2">at(r2 p2)</pre>

<order a="post1" b="post2">e</order>
<order a="post1" b="post3">e</order>
<order a="post1" b="post4">e</order>
<order a="post1" b="post5">e</order>
<order a="post1" b="post6">e</order>
<order a="post1" b="post7">e</order>
<order a="post1" b="post8">e</order>
<order a="post1" b="post9">e</order>

<order a="post1" b="task1">b</order>
<order a="post1" b="task2">b</order>

<order a="task1" b="pre1">b</order>
<order a="task2" b="pre1">b</order>

<order a="pre1" b="pre2">e</order>
</global>

<planner name="pl1">
<methods>travel_indirect travel_direct move</methods>

</planner>

<planner name="pl2">
<methods>travel_indirect travel_direct move</methods>

</planner>

</problem>

B.3 Holes

B.3.1 Domain description

<?xml version="1.0" encoding="utf-8"?>

<domain name="holes">

<type name="!object">
</type>

<type name="!peg">
<extends>!object</extends>

</type>

<type name="!hole">
<extends>!object</extends>

</type>

215

Appendix B. Domain descriptions and sample problems

<type name="!feature">
<values>any</values>

</type>

<type name="!shape">
<extends>!feature</extends>

</type>

<type name="!color">
<extends>!feature</extends>

</type>

<type name="!size">
<extends>!feature</extends>

</type>

<predicate type="dynamic">empty(!hole)</predicate>
<predicate type="dynamic">placed(!peg)</predicate>
<predicate type="dynamic">in(!peg !hole)</predicate>
<predicate type="static">shape(!object !shape)</predicate>
<predicate type="static">size(!object !size)</predicate>
<predicate type="static">color(!object !color)</predicate>

<action type="abstract">locate(!peg)</action>
<action type="primitive">place(!peg !hole)</action>

<method name="match_all" action="locate(?peg)">
<var name="?peg" type="!peg"/>

<var name="?hole" type="!hole"/>
<var name="?shape" type="!shape"/>
<var name="?size" type="!size"/>
<var name="?color" type="!color"/>

<pre name="pre1">shape(?peg ?shape)</pre>
<pre name="pre2">shape(?hole ?shape)</pre>
<pre name="pre3">size(?peg ?size)</pre>
<pre name="pre4">size(?hole ?size)</pre>
<pre name="pre5">color(?peg ?color)</pre>
<pre name="pre6">color(?hole ?color)</pre>

<task name="task1">place(?peg ?hole)</task>

<order a="pre1" b="pre2">e</order>
<order a="pre1" b="pre3">e</order>
<order a="pre1" b="pre4">e</order>
<order a="pre1" b="pre5">e</order>
<order a="pre1" b="pre6">e</order>
<order a="pre1" b="task1">m</order>

</method>

<method name="match_shape" action="locate(?peg)">
<var name="?peg" type="!peg"/>

<var name="?hole" type="!hole"/>
<var name="?shape" type="!shape"/>

<pre name="pre1">not placed(?peg)</pre>
<pre name="pre1">shape(?peg ?shape)</pre>
<pre name="pre2">shape(?hole ?shape)</pre>

<task name="task1">place(?peg ?hole)</task>

<order a="pre1" b="pre2">e</order>
<order a="pre1" b="task1">m</order>

</method>

<method name="verify_shape" action="locate(?peg)">
<var name="?peg" type="!peg"/>

<var name="?hole" type="!hole"/>
<var name="?shape" type="!shape"/>

216

Appendix B. Domain descriptions and sample problems

<pre name="pre1">in(?peg, ?hole)</pre>
<pre name="pre2">shape(?peg ?shape)</pre>
<pre name="pre3">shape(?hole ?shape)</pre>

<order a="pre1" b="pre2">e</order>
<order a="pre1" b="pre3">e</order>

</method>

<method name="match_size" action="locate(?peg)">
<var name="?peg" type="!peg"/>

<var name="?hole" type="!hole"/>
<var name="?size" type="!size"/>

<pre name="pre1">size(?peg ?size)</pre>
<pre name="pre2">size(?hole ?size)</pre>

<task name="task1">place(?peg ?hole)</task>

<order a="pre1" b="pre2">e</order>
<order a="pre1" b="task1">m</order>

</method>

<method name="verify_size" action="locate(?peg)">
<var name="?peg" type="!peg"/>

<var name="?hole" type="!hole"/>
<var name="?size" type="!size"/>

<pre name="pre1">in(?peg, ?hole)</pre>
<pre name="pre2">size(?peg ?size)</pre>
<pre name="pre3">size(?hole ?size)</pre>

<order a="pre1" b="pre2">e</order>
<order a="pre1" b="pre3">e</order>

</method>

<method name="match_color" action="locate(?peg)">
<var name="?peg" type="!peg"/>

<var name="?hole" type="!hole"/>
<var name="?color" type="!color"/>

<pre name="pre1">color(?peg ?color)</pre>
<pre name="pre2">color(?hole ?color)</pre>

<task name="task1">place(?peg ?hole)</task>

<order a="pre1" b="pre2">e</order>
<order a="pre1" b="task1">m</order>

</method>

<method name="verify_color" action="locate(?peg)">
<var name="?peg" type="!peg"/>

<var name="?hole" type="!hole"/>
<var name="?color" type="!color"/>

<pre name="pre1">in(?peg, ?hole)</pre>
<pre name="pre2">color(?peg ?color)</pre>
<pre name="pre3">color(?hole ?color)</pre>

<order a="pre1" b="pre2">e</order>
<order a="pre1" b="pre3">e</order>

</method>

<method name="place" action="place(?peg ?hole)">
<var name="?peg" type="!peg"/>
<var name="?hole" type="!hole"/>

<pre name="pre1">empty(?hole)</pre>
<pre name="pre1">not placed(?peg)</pre>

<post name="post1">not empty(?hole)</post>

217

Appendix B. Domain descriptions and sample problems

<post name="post2">placed(?peg)</post>
<post name="post3">in(?peg ?hole)</post>

<order a="pre1" b="post1">m</order>
<order a="post1" b="post2">e</order>
<order a="post1" b="post3">e</order>

</method>

</domain>

B.3.2 Sample problem: holesSpecial 3 1 3 1

<?xml version="1.0" encoding="utf-8"?>

<problem name="holesSpecial_3_1_3_1" domain="holes">

<type name="!peg">
<values>b1 b2 b3</values>

</type>

<type name="!hole">
<values>h1 h2 h3</values>

</type>

<type name="!shape">
<values>circle triangle square</values>

</type>

<type name="!color">
<values>red yellow pink</values>

</type>

<type name="!size">
<values>medium large small</values>

</type>

<global>
<post name="post1">shape(b1 triangle)</post>
<post name="post2">color(b1 red)</post>
<post name="post3">size(b1 large)</post>

<post name="post4">shape(b2 circle)</post>
<post name="post5">color(b2 pink)</post>
<post name="post6">size(b2 large)</post>

<post name="post7">shape(b3 square)</post>
<post name="post8">color(b3 red)</post>
<post name="post9">size(b3 medium)</post>

<post name="post10">shape(h1 triangle)</post>
<post name="post11">color(h1 red)</post>
<post name="post12">color(h1 pink)</post>
<post name="post13">size(h1 large)</post>
<post name="post14">size(h1 medium)</post>
<post name="post15">empty(h1)</post>

<post name="post16">shape(h2 triangle)</post>
<post name="post17">shape(h2 circle)</post>
<post name="post18">shape(h2 square)</post>
<post name="post19">color(h2 pink)</post>
<post name="post20">size(h2 large)</post>
<post name="post21">size(h2 medium)</post>
<post name="post22">empty(h2)</post>

<post name="post23">shape(h3 square)</post>
<post name="post24">color(h3 red)</post>
<post name="post25">size(h3 large)</post>
<post name="post26">size(h3 medium)</post>
<post name="post27">empty(h3)</post>

218

Appendix B. Domain descriptions and sample problems

<task name="task1" planner="pl1">locate(b1)</task>
<task name="task2" planner="pl2">locate(b1)</task>
<task name="task3" planner="pl3">locate(b1)</task>
<task name="task4" planner="pl1">locate(b2)</task>
<task name="task5" planner="pl2">locate(b2)</task>
<task name="task6" planner="pl3">locate(b2)</task>
<task name="task7" planner="pl1">locate(b3)</task>
<task name="task8" planner="pl2">locate(b3)</task>
<task name="task9" planner="pl3">locate(b3)</task>

<order a="post1" b="post2">e</order>
<order a="post1" b="post3">e</order>
<order a="post1" b="post4">e</order>
<order a="post1" b="post5">e</order>
<order a="post1" b="post6">e</order>
<order a="post1" b="post7">e</order>
<order a="post1" b="post8">e</order>
<order a="post1" b="post9">e</order>
<order a="post1" b="post10">e</order>
<order a="post1" b="post11">e</order>
<order a="post1" b="post12">e</order>
<order a="post1" b="post13">e</order>
<order a="post1" b="post14">e</order>
<order a="post1" b="post15">e</order>
<order a="post1" b="post16">e</order>
<order a="post1" b="post17">e</order>
<order a="post1" b="post18">e</order>
<order a="post1" b="post19">e</order>
<order a="post1" b="post20">e</order>
<order a="post1" b="post21">e</order>
<order a="post1" b="post22">e</order>
<order a="post1" b="post23">e</order>
<order a="post1" b="post24">e</order>
<order a="post1" b="post25">e</order>
<order a="post1" b="post26">e</order>
<order a="post1" b="post27">e</order>

<order a="post1" b="task1">b m</order>
<order a="post1" b="task2">b m</order>
<order a="post1" b="task3">b m</order>
<order a="post1" b="task4">b m</order>
<order a="post1" b="task5">b m</order>
<order a="post1" b="task6">b m</order>
<order a="post1" b="task7">b m</order>
<order a="post1" b="task8">b m</order>
<order a="post1" b="task9">b m</order>

</global>

<planner name="pl1">
<methods>match_shape verify_shape place</methods>

</planner>

<planner name="pl2">
<methods>match_color verify_color place</methods>

</planner>

<planner name="pl3">
<methods>match_size verify_size place</methods>

</planner>

</problem>

219

Appendix C

Experimental data

The tables of timing data in Section 5.4 only include information on the number of successful

runs and the average time taken to solve the problem with each algorithm. This appendix

contains more detailed information on:

• The percentage success, average solution time and average number of refinements for

runs of the centralised planning algorithm.

• The percentage success, average solution time, average merging time and average number

of refinements for runs of the plan-then-merge algorithm.

• The percentage success, average solution time, average number of refinements and aver-

age number of resets for runs of the distributed local planning algorithm.

Columns are labelled according to the planning algorithm and number of agents involved:

• c indicates centralised planning;

• mn indicates plan-then-merge with n agents;

• dn indicates distributed local planning with n agents.

Time to generate and download initial task trees and upload final plans, including individual

plans during plan-then-merge, is ignored. Time spent communicating external summary in-

formation in distributed local planning, however, is included. Numbers of refinements in dis-

tributed local planning include “wait” refinements where one agent is waiting for another to

decompose an appropriate effector (Section 4.4.2).

220

Appendix C. Experimental data

The following special codes are used where the above fields cannot be displayed:

• a blank entry indicates that an algorithm was not run on a problem;

• t/out (p) indicates that an algorithm timed out during planning in every run;

• t/out (m) indicates that an algorithm timed out during plan merging in every run;

• fail (p) indicates that an algorithm exhausted its search during planning in every run;

• fail (m) indicates that an algorithm exhausted its search during plan merging in every run.

221

Appendix C. Experimental data

Ta
bl

e
C

.1
:C

om
pl

et
e

ex
pe

ri
m

en
ta

ld
at

a
fo

rb
w
S
w
a
p

pr
ob

le
m

s.

Pr
ob

le
m

c
m

2
m

3
m

4
d2

d3
d4

bw
S
w
a
p

4
10

0%
13

57
4

38
10

0%
37

73
13

23
24

10
0%

88
74

41
0

bw
S
w
a
p

6
10

0%
39

16
00

17
2

80
%

39
19

8
27

00
48

10
0%

64
96

27
16

33
10

0%
19

48
44

60
4

0
10

0%
64

87
0

29
0

bw
S
w
a
p

8
t/o

ut
(p

)
80

%
94

67
1

46
66

72
10

0%
94

02
2

46
92

51
10

0%
11

38
8

43
10

39
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
bw

S
w
a
p

1
0

t/o
ut

(p
)

t/o
ut

(p
)

60
%

21
02

04
73

67
69

40
%

21
55

49
74

54
57

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

Ta
bl

e
C

.2
:C

om
pl

et
e

ex
pe

ri
m

en
ta

ld
at

a
fo

rb
w
R
ev

er
se

R
o
bi

n
pr

ob
le

m
s.

Pr
ob

le
m

c
m

2
m

3
m

4
d2

d3
d4

bw
R
ev

er
se

R
o
bi

n
2

10
0%

44
1

3
bw

R
ev

er
se

R
o
bi

n
3

10
0%

22
95

16
10

0%
32

07
19

07
26

10
0%

40
54

15
0

bw
R
ev

er
se

R
o
bi

n
4

10
0%

63
60

24
10

0%
89

53
61

46
72

t/o
ut

(m
)

10
0%

13
24

4
35

0
10

0%
64

63
0

43
5

bw
R
ev

er
se

R
o
bi

n
5

10
0%

16
81

2
31

40
%

86
62

2
44

61
9

24
4

80
%

32
43

0
28

49
8

10
5

t/o
ut

(m
)

10
0%

33
41

9
22

0
10

0%
49

94
3

25
0

t/o
ut

(p
)

bw
R
ev

er
se

R
o
bi

n
6

10
0%

45
55

3
39

t/o
ut

(p
)

t/o
ut

(p
)

40
%

24
03

17
23

11
56

29
6

10
0%

84
07

1
69

0
10

0%
11

60
66

21
0

20
%

25
83

53
26

0
bw

R
ev

er
se

R
o
bi

n
7

10
0%

12
94

46
48

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(m
)

10
0%

22
89

33
63

0
t/o

ut
(p

)
t/o

ut
(p

)
bw

R
ev

er
se

R
o
bi

n
8

10
0%

33
93

87
56

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

10
0%

49
59

45
11

9
0

t/o
ut

(p
)

t/o
ut

(p
)

bw
R
ev

er
se

R
o
bi

n
9

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

bw
R
ev

er
se

R
o
bi

n
1
0

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

bw
R
ev

er
se

S
eq

2
10

0%
44

1
3

bw
R
ev

er
se

S
eq

3
10

0%
22

95
16

40
%

24
65

10
60

16
10

0%
74

53
17

0
bw

R
ev

er
se

S
eq

4
10

0%
63

60
24

40
%

57
66

38
75

36
40

%
54

96
35

12
27

10
0%

40
47

2
39

0
10

0%
60

33
9

23
1

bw
R
ev

er
se

S
eq

5
10

0%
16

81
2

31
40

%
13

61
4

85
39

45
40

%
12

52
1

90
62

47
t/o

ut
(m

)
10

0%
10

28
75

23
0

10
0%

47
57

33
67

7
40

%
38

74
66

39
0

bw
R
ev

er
se

S
eq

6
10

0%
45

55
3

39
40

%
25

34
1

17
34

0
62

40
%

49
69

4
45

76
5

98
t/o

ut
(m

)
10

0%
45

21
23

10
6

20
40

%
62

45
14

48
10

t/o
ut

(p
)

bw
R
ev

er
se

S
eq

7
10

0%
12

94
46

48
40

%
41

67
1

21
21

0
64

40
%

12
57

44
11

38
79

13
1

t/o
ut

(m
)

80
%

59
02

76
32

0
t/o

ut
(p

)
t/o

ut
(p

)
bw

R
ev

er
se

S
eq

8
10

0%
33

93
87

56
40

%
72

79
5

43
57

2
78

40
%

24
13

03
22

42
89

15
6

t/o
ut

(m
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

bw
R
ev

er
se

S
eq

9
t/o

ut
(p

)
t/o

ut
(m

)
t/o

ut
(m

)
t/o

ut
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
bw

R
ev

er
se

S
eq

1
0

t/o
ut

(p
)

t/o
ut

(m
)

t/o
ut

(m
)

t/o
ut

(m
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

Ta
bl

e
C

.3
:C

om
pl

et
e

ex
pe

ri
m

en
ta

ld
at

a
fo

rb
w
R
a
n
d
o
m

pr
ob

le
m

s.

Pr
ob

le
m

c
m

2
m

3
m

4
d2

d3
d4

bw
R
a
n
d
o
m

4
2

10
0%

25
58

8
10

0%
25

28
11

45
17

10
0%

22
42

78
4

13
10

0%
24

53
12

73
16

10
0%

41
25

7
0

10
0%

56
18

5
0

10
0%

11
88

9
4

0
bw

R
a
n
d
o
m

4
3

10
0%

11
88

33
18

6
t/o

ut
(p

)
10

0%
66

48
31

16
25

t/o
ut

(m
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

bw
R
a
n
d
o
m

4
4

10
0%

44
80

12
10

0%
41

90
21

56
24

10
0%

40
18

23
56

24
10

0%
49

71
21

51
22

10
0%

11
43

0
6

0
10

0%
11

35
8

5
0

10
0%

19
63

2
3

0
bw

R
a
n
d
o
m

4
5

10
0%

49
06

15
10

0%
79

58
44

64
29

10
0%

24
72

8
17

90
7

10
9

t/o
ut

(m
)

10
0%

18
76

6
38

0
10

0%
31

45
9

21
0

10
0%

43
03

2
21

0
bw

R
a
n
d
o
m

4
6

10
0%

29
78

96
77

6
10

0%
48

13
8

90
94

88
10

0%
32

76
0

25
92

5
74

10
0%

33
37

6
26

30
4

75
80

%
39

13
53

22
1

46
10

0%
16

08
38

31
3

10
0%

23
49

50
27

2
bw

R
a
n
d
o
m

4
7

10
0%

65
12

18
10

0%
80

32
42

61
42

10
0%

86
98

63
21

44
10

0%
85

34
59

98
42

10
0%

40
22

2
44

2
10

0%
38

67
2

18
1

10
0%

86
27

3
18

2
bw

R
a
n
d
o
m

4
8

10
0%

72
86

17
10

0%
13

00
8

13
57

24
10

0%
25

10
12

53
18

10
0%

24
56

13
15

18
10

0%
19

65
1

8
0

10
0%

90
10

5
0

10
0%

11
65

1
4

0
bw

R
a
n
d
o
m

4
9

10
0%

69
63

21
10

0%
13

89
8

70
82

36
10

0%
19

08
8

15
60

6
63

10
0%

19
34

9
15

67
7

61
10

0%
69

79
2

58
7

10
0%

44
14

0
16

0
10

0%
87

72
9

16
2

bw
R
a
n
d
o
m

4
1
0

10
0%

12
33

48
35

6
10

0%
18

82
51

11
19

3
26

0
t/o

ut
(m

)
t/o

ut
(m

)
t/o

ut
(p

)
10

0%
76

18
8

16
0

10
0%

99
90

4
17

0
bw

R
a
n
d
o
m

4
1
1

10
0%

76
59

22
10

0%
10

42
2

51
00

32
10

0%
14

50
6

10
53

2
50

t/o
ut

(m
)

10
0%

34
72

1
47

0
10

0%
49

82
1

18
0

10
0%

12
45

90
32

2
bw

R
a
n
d
o
m

4
1
2

10
0%

29
14

9
10

0%
31

91
13

73
18

10
0%

64
16

17
74

17
10

0%
33

05
14

30
16

10
0%

69
09

32
0

10
0%

11
37

2
6

0
10

0%
17

63
6

4
0

bw
R
a
n
d
o
m

4
1
3

10
0%

10
40

7
27

10
0%

94
55

50
57

36
10

0%
94

77
51

64
30

10
0%

12
55

6
87

93
36

10
0%

39
63

3
35

7
10

0%
50

07
2

12
0

80
%

22
85

19
28

5
bw

R
a
n
d
o
m

4
1
4

t/o
ut

(p
)

t/o
ut

(m
)

10
0%

21
30

0
14

44
3

43
t/o

ut
(m

)
10

0%
16

00
94

90
13

10
0%

12
69

94
46

5
10

0%
17

44
00

33
1

bw
R
a
n
d
o
m

4
1
5

10
0%

75
27

19
10

0%
22

91
6

42
64

42
10

0%
10

64
0

64
28

34
t/o

ut
(m

)
10

0%
18

04
3

12
0

10
0%

45
31

8
11

0
10

0%
12

13
18

21
4

222

Appendix C. Experimental data

Pr
ob

le
m

c
m

2
m

3
m

4
d2

d3
d4

bw
R
a
n
d
o
m

4
1
6

10
0%

37
29

11
10

0%
73

08
16

97
22

10
0%

44
22

17
30

19
10

0%
43

61
16

46
19

10
0%

92
12

21
0

10
0%

15
79

6
10

0
10

0%
23

79
5

11
0

bw
R
a
n
d
o
m

4
1
7

10
0%

33
13

1
10

9
t/o

ut
(m

)
t/o

ut
(m

)
t/o

ut
(m

)
t/o

ut
(p

)
10

0%
31

40
04

57
6

10
0%

41
70

68
50

7
bw

R
a
n
d
o
m

4
1
8

10
0%

52
62

6
92

10
0%

56
59

22
70

22
t/o

ut
(m

)
t/o

ut
(m

)
t/o

ut
(p

)
10

0%
69

14
4

41
0

t/o
ut

(p
)

bw
R
a
n
d
o
m

4
1
9

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(m
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

bw
R
a
n
d
o
m

4
2
0

10
0%

15
48

15
27

3
10

0%
70

38
21

04
24

t/o
ut

(m
)

t/o
ut

(m
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

Ta
bl

e
C

.4
:C

om
pl

et
e

ex
pe

ri
m

en
ta

ld
at

a
fo

rn
a
vL

in
e

pr
ob

le
m

s.

Pr
ob

le
m

c
m

2
m

3
m

4
d2

d3
d4

n
a
vL

in
e

3
1

10
0%

57
9

2
n
a
vL

in
e

3
2

10
0%

57
9

3
10

0%
83

8
38

2
6

10
0%

11
14

2
0

n
a
vL

in
e

4
1

10
0%

14
02

3
n
a
vL

in
e

4
2

10
0%

20
67

6
10

0%
22

15
10

55
12

10
0%

27
17

5
0

n
a
vL

in
e

4
3

10
0%

10
68

5
10

0%
12

57
64

2
8

10
0%

13
66

72
2

8
10

0%
19

83
3

0
10

0%
22

42
2

0
n
a
vL

in
e

5
1

10
0%

25
59

4
n
a
vL

in
e

5
2

10
0%

55
28

9
10

0%
63

32
36

71
29

10
0%

98
39

2
10

7
61

n
a
vL

in
e

5
3

10
0%

57
17

10
10

0%
37

04
19

32
18

10
0%

49
89

29
76

17
10

0%
81

97
15

0
10

0%
12

33
3

7
0

n
a
vL

in
e

5
4

10
0%

17
28

7
10

0%
21

36
11

29
13

10
0%

18
20

10
85

11
10

0%
21

47
12

89
10

10
0%

29
39

5
0

10
0%

58
37

3
0

40
%

89
99

2
0

n
a
vL

in
e

6
1

10
0%

52
35

5
n
a
vL

in
e

6
2

10
0%

24
51

2
18

10
0%

16
61

0
92

40
42

10
0%

28
30

50
12

1
99

n
a
vL

in
e

6
3

10
0%

23
38

2
18

10
0%

14
03

5
92

59
50

10
0%

15
17

7
11

24
0

33
10

0%
30

12
1

33
0

t/o
ut

(p
)

n
a
vL

in
e

6
4

10
0%

14
80

3
14

10
0%

99
25

43
91

24
10

0%
74

59
51

74
21

10
0%

95
28

69
06

20
20

%
28

38
5

10
0

10
0%

68
44

9
9

0
10

0%
87

35
7

6
0

n
a
vL

in
e

6
5

10
0%

34
13

9
10

0%
32

52
18

93
16

10
0%

28
91

21
71

14
10

0%
15

00
4

10
60

4
64

10
0%

74
09

5
0

10
0%

14
26

2
5

0
10

0%
15

88
6

3
0

Ta
bl

e
C

.5
:C

om
pl

et
e

ex
pe

ri
m

en
ta

ld
at

a
fo

rn
a
vR

in
g

pr
ob

le
m

s.

Pr
ob

le
m

c
m

2
m

3
m

4
d2

d3
d4

n
a
vR

in
g

3
2

10
0%

96
6

6
fa

il
(m

)
10

0%
21

05
4

0
n
a
vR

in
g

4
1

10
0%

98
7

2
n
a
vR

in
g

4
2

10
0%

21
03

6
fa

il
(m

)
10

0%
28

27
4

32
6

n
a
vR

in
g

4
3

10
0%

96
40

41
10

0%
48

79
21

32
18

fa
il

(m
)

t/o
ut

(p
)

10
0%

13
35

06
36

4
n
a
vR

in
g

5
1

10
0%

13
32

2
n
a
vR

in
g

5
2

10
0%

38
55

9
fa

il
(m

)
10

0%
76

05
10

0
n
a
vR

in
g

5
3

10
0%

19
73

50
37

3
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
10

0%
39

13
7

18
7

n
a
vR

in
g

5
4

t/o
ut

(p
)

fa
il

(m
)

fa
il

(m
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

n
a
vR

in
g

6
1

10
0%

30
09

3
n
a
vR

in
g

6
2

10
0%

99
50

9
fa

il
(m

)
10

0%
98

84
10

0
n
a
vR

in
g

6
3

10
0%

45
35

11
33

7
fa

il
(m

)
t/o

ut
(p

)
10

0%
43

33
42

39
18

n
a
vR

in
g

6
4

t/o
ut

(p
)

t/o
ut

(m
)

0
0

0
t/o

ut
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vR

in
g

6
5

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(m
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

223

Appendix C. Experimental data

Ta
bl

e
C

.6
:C

om
pl

et
e

ex
pe

ri
m

en
ta

ld
at

a
fo

rn
a
vS

ta
r

pr
ob

le
m

s.

Pr
ob

le
m

c
m

2
m

3
m

4
d2

d3
d4

n
a
vS

ta
r

3
2

1
10

0%
28

73
0

18
fa

il
(m

)
10

0%
10

45
95

55
0

n
a
vS

ta
r

3
2

2
10

0%
36

76
34

29
0

fa
il

(m
)

80
%

18
25

65
15

6
20

n
a
vS

ta
r

3
2

3
10

0%
81

35
9

61
fa

il
(m

)
t/o

ut
(p

)
n
a
vS

ta
r

3
2

4
10

0%
16

02
18

16
5

fa
il

(m
)

20
%

53
98

4
32

14
n
a
vS

ta
r

3
2

5
10

0%
15

09
0

9
10

0%
97

28
88

5
12

10
0%

66
90

2
99

0
n
a
vS

ta
r

3
2

6
10

0%
70

72
5

10
0%

89
56

88
5

12
10

0%
66

69
7

10
0

0
n
a
vS

ta
r

3
2

7
10

0%
88

46
6

10
0%

70
34

11
88

12
10

0%
13

07
6

14
0

n
a
vS

ta
r

3
2

8
10

0%
23

33
45

19
4

fa
il

(m
)

t/o
ut

(p
)

n
a
vS

ta
r

3
2

9
10

0%
22

88
2

18
fa

il
(m

)
10

0%
17

35
4

16
0

n
a
vS

ta
r

3
2

1
0

10
0%

17
71

19
10

3
fa

il
(m

)
10

0%
82

79
1

75
0

n
a
vS

ta
r

4
2

1
10

0%
25

19
0

7
10

0%
16

00
1

23
97

18
10

0%
26

18
41

92
0

n
a
vS

ta
r

4
2

2
10

0%
92

95
5

10
0%

92
49

10
59

12
10

0%
31

83
6

47
0

n
a
vS

ta
r

4
2

3
80

%
48

70
28

13
3

fa
il

(m
)

80
%

53
78

30
23

8
58

n
a
vS

ta
r

4
2

4
t/o

ut
(p

)
fa

il
(m

)
80

%
35

98
05

13
1

31
n
a
vS

ta
r

4
2

5
10

0%
33

23
5

9
10

0%
19

37
7

24
74

20
10

0%
39

08
03

19
2

28
n
a
vS

ta
r

4
2

6
10

0%
43

37
7

9
10

0%
23

05
7

45
48

30
t/o

ut
(p

)
n
a
vS

ta
r

4
2

7
t/o

ut
(p

)
fa

il
(m

)
t/o

ut
(p

)
n
a
vS

ta
r

4
2

8
t/o

ut
(p

)
fa

il
(m

)
80

%
29

88
79

12
4

37
n
a
vS

ta
r

4
2

9
t/o

ut
(p

)
fa

il
(m

)
t/o

ut
(p

)
n
a
vS

ta
r

4
2

1
0

t/o
ut

(p
)

fa
il

(m
)

t/o
ut

(p
)

n
a
vS

ta
r

4
3

1
10

0%
11

39
5

7
10

0%
40

10
4

21
78

17
10

0%
19

55
0

17
33

12
10

0%
36

97
4

45
0

10
0%

64
62

1
12

0
n
a
vS

ta
r

4
3

2
t/o

ut
(p

)
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

4
3

3
10

0%
19

77
0

7
10

0%
13

19
9

21
96

16
10

0%
19

38
1

22
03

15
10

0%
53

07
8

24
0

80
%

96
70

7
19

0
n
a
vS

ta
r

4
3

4
10

0%
38

63
81

73
10

0%
19

26
98

47
09

0
17

5
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

4
3

5
t/o

ut
(p

)
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

4
3

6
t/o

ut
(p

)
fa

il
(p

)
fa

il
(m

)
80

%
52

79
18

44
7

36
20

%
56

45
18

83
22

n
a
vS

ta
r

4
3

7
t/o

ut
(p

)
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

4
3

8
10

0%
48

83
5

12
10

0%
41

95
2

26
02

18
10

0%
17

19
0

20
38

13
10

0%
27

00
59

18
2

0
20

%
19

80
28

34
0

n
a
vS

ta
r

4
3

9
10

0%
17

07
16

41
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

4
3

1
0

t/o
ut

(p
)

fa
il

(p
)

fa
il

(m
)

t/o
ut

(p
)

t/o
ut

(p
)

n
a
vS

ta
r

5
2

1
10

0%
30

27
86

21
fa

il
(m

)
t/o

ut
(p

)
n
a
vS

ta
r

5
2

2
10

0%
26

80
1

6
10

0%
32

18
5

17
57

16
t/o

ut
(p

)
n
a
vS

ta
r

5
2

3
t/o

ut
(p

)
fa

il
(m

)
t/o

ut
(p

)
n
a
vS

ta
r

5
2

4
t/o

ut
(p

)
fa

il
(m

)
t/o

ut
(p

)
n
a
vS

ta
r

5
2

5
10

0%
36

64
00

44
fa

il
(m

)
t/o

ut
(p

)
n
a
vS

ta
r

5
2

6
t/o

ut
(p

)
fa

il
(m

)
t/o

ut
(p

)
n
a
vS

ta
r

5
2

7
10

0%
26

41
9

5
10

0%
33

86
9

11
39

12
t/o

ut
(p

)
n
a
vS

ta
r

5
2

8
10

0%
84

02
3

9
10

0%
43

41
3

35
30

22
t/o

ut
(p

)
n
a
vS

ta
r

5
2

9
10

0%
85

03
0

9
10

0%
44

69
7

46
39

24
t/o

ut
(p

)
n
a
vS

ta
r

5
2

1
0

10
0%

24
73

15
16

10
0%

36
72

0
38

23
24

t/o
ut

(p
)

n
a
vS

ta
r

5
3

1
t/o

ut
(p

)
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
3

2
10

0%
95

26
4

11
10

0%
80

20
1

27
20

18
10

0%
50

55
4

57
01

22
t/o

ut
(p

)
20

%
30

45
08

10
0

n
a
vS

ta
r

5
3

3
t/o

ut
(p

)
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
3

4
t/o

ut
(p

)
fa

il
(p

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
3

5
t/o

ut
(p

)
fa

il
(p

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
3

6
80

%
36

55
14

19
10

0%
38

44
01

15
16

2
52

10
0%

51
36

1
64

30
25

t/o
ut

(p
)

t/o
ut

(p
)

n
a
vS

ta
r

5
3

7
10

0%
13

27
81

12
10

0%
62

45
5

60
52

26
10

0%
53

56
6

98
02

28
t/o

ut
(p

)
t/o

ut
(p

)

224

Appendix C. Experimental data

Pr
ob

le
m

c
m

2
m

3
m

4
d2

d3
d4

n
a
vS

ta
r

5
3

8
10

0%
23

21
81

17
10

0%
40

06
3

31
44

21
10

0%
56

52
7

42
55

20
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
3

9
10

0%
27

82
76

20
fa

il
(m

)
10

0%
63

09
0

13
48

4
32

10
0%

18
72

74
28

0
t/o

ut
(p

)
n
a
vS

ta
r

5
3

1
0

10
0%

41
74

74
22

fa
il

(p
)

10
0%

55
89

1
16

68
2

41
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
4

1
t/o

ut
(p

)
fa

il
(m

)
t/o

ut
(p

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
4

2
t/o

ut
(p

)
fa

il
(m

)
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
4

3
t/o

ut
(p

)
fa

il
(m

)
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
4

4
t/o

ut
(p

)
fa

il
(m

)
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
4

5
t/o

ut
(p

)
fa

il
(m

)
t/o

ut
(p

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
4

6
t/o

ut
(p

)
fa

il
(m

)
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
4

7
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
4

8
t/o

ut
(p

)
t/o

ut
(p

)
fa

il
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
4

9
t/o

ut
(p

)
fa

il
(m

)
t/o

ut
(m

)
fa

il
(m

)
t/o

ut
(p

)
t/o

ut
(p

)
t/o

ut
(p

)
n
a
vS

ta
r

5
4

1
0

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

fa
il

(m
)

t/o
ut

(p
)

t/o
ut

(p
)

t/o
ut

(p
)

Ta
bl

e
C

.7
:C

om
pl

et
e

ex
pe

ri
m

en
ta

ld
at

a
fo

rh
o
le

sG
en

er
a
l

pr
ob

le
m

s.

Pr
ob

le
m

c
m

3
d3

Pr
ob

le
m

c
m

3
d3

h
o
le

sG
en

er
a
l
3

1
3

1
10

0%
31

7
1

10
0%

12
16

65
8

3
10

0%
31

08
9

1
0

h
o
le

sG
en

er
a
l
4

1
3

1
10

0%
38

2
1

10
0%

15
68

12
62

4
t/o

ut
(p

)
h
o
le

sG
en

er
a
l
3

1
3

2
10

0%
32

8
1

10
0%

11
08

75
5

4
10

0%
36

52
9

2
0

h
o
le

sG
en

er
a
l
4

1
3

2
10

0%
84

5
3

10
0%

19
86

17
94

4
t/o

ut
(p

)
h
o
le

sG
en

er
a
l
3

1
3

3
10

0%
49

1
2

10
0%

12
36

97
3

3
40

%
71

48
6

3
0

h
o
le

sG
en

er
a
l
4

1
3

3
10

0%
65

55
14

10
0%

17
76

17
48

5
t/o

ut
(p

)
h
o
le

sG
en

er
a
l
3

1
3

4
10

0%
69

4
3

10
0%

29
44

23
88

8
10

0%
52

95
5

4
0

h
o
le

sG
en

er
a
l
4

1
3

4
10

0%
44

0
1

10
0%

17
02

11
64

4
t/o

ut
(p

)
h
o
le

sG
en

er
a
l
3

1
3

5
10

0%
32

4
1

10
0%

15
64

96
4

4
60

%
46

51
1

2
0

h
o
le

sG
en

er
a
l
4

1
3

5
10

0%
62

9
2

10
0%

19
15

14
52

4
t/o

ut
(p

)
h
o
le

sG
en

er
a
l
3

1
3

6
10

0%
12

54
7

10
0%

14
06

94
1

3
40

%
13

76
14

2
0

h
o
le

sG
en

er
a
l
4

1
3

6
10

0%
14

70
4

10
0%

19
76

17
79

5
t/o

ut
(p

)
h
o
le

sG
en

er
a
l
3

1
3

7
10

0%
55

0
3

10
0%

14
94

11
02

3
80

%
47

50
6

3
0

h
o
le

sG
en

er
a
l
4

1
3

7
10

0%
57

2
2

10
0%

17
84

14
72

4
t/o

ut
(p

)
h
o
le

sG
en

er
a
l
3

1
3

8
10

0%
38

0
2

10
0%

13
53

92
4

3
10

0%
34

07
9

3
0

h
o
le

sG
en

er
a
l
4

1
3

8
10

0%
58

0
10

0%
16

01
91

6
4

t/o
ut

(p
)

h
o
le

sG
en

er
a
l
3

1
3

9
10

0%
35

2
1

40
%

86
8

42
4

3
10

0%
25

23
5

2
0

h
o
le

sG
en

er
a
l
4

1
3

9
10

0%
11

20
3

10
0%

15
76

15
46

5
t/o

ut
(p

)
h
o
le

sG
en

er
a
l
3

1
3

1
0

10
0%

40
7

2
10

0%
17

34
10

22
3

10
0%

10
47

90
3

0
h
o
le

sG
en

er
a
l
4

1
3

1
0

10
0%

11
38

4
10

0%
23

86
19

08
4

t/o
ut

(p
)

h
o
le

sG
en

er
a
l
3

1
4

1
10

0%
28

7
1

10
0%

11
32

76
0

4
10

0%
49

92
9

1
0

h
o
le

sG
en

er
a
l
4

1
4

1
10

0%
43

4
1

10
0%

18
08

14
50

4
10

0%
50

82
86

1
0

h
o
le

sG
en

er
a
l
3

1
4

2
10

0%
47

3
2

10
0%

13
46

93
4

3
80

%
36

96
0

2
0

h
o
le

sG
en

er
a
l
4

1
4

2
10

0%
82

2
2

10
0%

21
76

15
04

4
10

0%
34

39
02

2
0

h
o
le

sG
en

er
a
l
3

1
4

3
10

0%
49

2
2

10
0%

16
85

11
47

3
60

%
55

38
1

3
0

h
o
le

sG
en

er
a
l
4

1
4

3
10

0%
64

0
2

10
0%

22
97

17
64

4
10

0%
28

68
67

1
0

h
o
le

sG
en

er
a
l
3

1
4

4
10

0%
41

2
1

10
0%

13
42

82
7

3
10

0%
37

00
4

1
0

h
o
le

sG
en

er
a
l
4

1
4

4
10

0%
59

2
2

10
0%

20
54

13
50

4
10

0%
40

27
31

2
0

h
o
le

sG
en

er
a
l
3

1
4

5
10

0%
30

3
1

10
0%

12
32

53
0

3
80

%
25

67
2

2
0

h
o
le

sG
en

er
a
l
4

1
4

5
10

0%
62

8
2

10
0%

22
43

16
23

4
10

0%
40

33
93

2
0

h
o
le

sG
en

er
a
l
3

1
4

6
10

0%
47

5
2

10
0%

16
06

10
80

3
80

%
61

80
2

3
0

h
o
le

sG
en

er
a
l
4

1
4

6
10

0%
40

5
1

10
0%

14
71

95
2

4
10

0%
25

45
67

1
0

h
o
le

sG
en

er
a
l
3

1
4

7
10

0%
38

7
1

10
0%

10
22

55
4

3
80

%
52

97
7

1
0

h
o
le

sG
en

er
a
l
4

1
4

7
10

0%
30

76
7

10
0%

21
78

14
36

4
40

%
29

28
47

1
0

h
o
le

sG
en

er
a
l
3

1
4

8
10

0%
12

93
7

10
0%

18
45

10
40

3
80

%
40

99
1

2
0

h
o
le

sG
en

er
a
l
4

1
4

8
10

0%
89

40
16

10
0%

66
50

59
26

13
t/o

ut
(p

)
h
o
le

sG
en

er
a
l
3

1
4

9
10

0%
14

81
7

10
0%

14
69

10
04

3
40

%
69

05
0

3
0

h
o
le

sG
en

er
a
l
4

1
4

9
10

0%
92

6
2

10
0%

10
37

5
99

25
14

10
0%

27
61

01
1

0
h
o
le

sG
en

er
a
l
3

1
4

1
0

10
0%

49
8

2
10

0%
12

80
80

2
3

60
%

70
90

8
1

0
h
o
le

sG
en

er
a
l
4

1
4

1
0

10
0%

54
7

2
10

0%
15

28
12

68
4

10
0%

41
60

58
3

0
h
o
le

sG
en

er
a
l
3

2
3

1
10

0%
13

95
7

10
0%

15
71

11
79

3
10

0%
12

50
01

3
0

h
o
le

sG
en

er
a
l
4

2
3

1
10

0%
57

4
2

10
0%

12
47

88
6

5
10

0%
38

10
54

1
0

h
o
le

sG
en

er
a
l
3

2
3

2
10

0%
51

0
10

0%
88

6
57

5
4

10
0%

91
62

8
1

0
h
o
le

sG
en

er
a
l
4

2
3

2
10

0%
45

6
1

10
0%

15
75

95
0

4
10

0%
43

48
76

1
0

h
o
le

sG
en

er
a
l
3

2
3

3
10

0%
70

0
10

0%
13

17
60

1
3

10
0%

10
43

35
0

0
h
o
le

sG
en

er
a
l
4

2
3

3
10

0%
59

5
2

10
0%

17
38

13
72

4
10

0%
39

03
29

1
0

h
o
le

sG
en

er
a
l
3

2
3

4
10

0%
23

1
1

10
0%

11
86

68
4

3
10

0%
82

57
8

1
0

h
o
le

sG
en

er
a
l
4

2
3

4
10

0%
41

6
1

10
0%

15
41

11
20

4
10

0%
40

83
67

1
0

h
o
le

sG
en

er
a
l
3

2
3

5
10

0%
10

0
0

10
0%

12
28

58
6

3
10

0%
98

16
4

0
0

h
o
le

sG
en

er
a
l
4

2
3

5
10

0%
43

5
1

10
0%

17
36

10
73

5
10

0%
44

71
40

1
0

h
o
le

sG
en

er
a
l
3

2
3

6
10

0%
74

0
10

0%
10

56
72

7
3

10
0%

83
39

4
1

0
h
o
le

sG
en

er
a
l
4

2
3

6
10

0%
62

0
10

0%
15

71
10

76
4

10
0%

33
81

14
1

0
h
o
le

sG
en

er
a
l
3

2
3

7
10

0%
78

0
10

0%
77

4
46

6
3

10
0%

94
97

0
0

0
h
o
le

sG
en

er
a
l
4

2
3

7
10

0%
46

5
1

10
0%

17
76

13
06

4
40

%
58

55
55

1
0

h
o
le

sG
en

er
a
l
3

2
3

8
10

0%
68

0
10

0%
11

66
59

7
3

10
0%

10
54

32
0

0
h
o
le

sG
en

er
a
l
4

2
3

8
10

0%
64

4
2

10
0%

14
18

10
80

5
10

0%
50

08
59

1
0

h
o
le

sG
en

er
a
l
3

2
3

9
10

0%
74

0
10

0%
10

79
60

6
3

10
0%

11
52

58
0

0
h
o
le

sG
en

er
a
l
4

2
3

9
10

0%
39

7
1

10
0%

14
76

10
70

4
10

0%
26

90
65

1
0

h
o
le

sG
en

er
a
l
3

2
3

1
0

10
0%

48
0

10
0%

89
7

48
8

3
10

0%
58

84
1

0
0

h
o
le

sG
en

er
a
l
4

2
3

1
0

10
0%

59
8

2
10

0%
16

83
13

94
4

10
0%

42
40

88
1

0
h
o
le

sG
en

er
a
l
3

2
4

1
10

0%
21

1
1

10
0%

12
20

79
8

3
10

0%
65

81
4

1
0

h
o
le

sG
en

er
a
l
4

2
4

1
10

0%
84

2
3

10
0%

23
01

19
68

4
t/o

ut
(p

)

225

Appendix C. Experimental data

Pr
ob

le
m

c
m

3
d3

Pr
ob

le
m

c
m

3
d3

h
o
le

sG
en

er
a
l
3

2
4

2
10

0%
29

6
1

10
0%

11
67

72
0

3
10

0%
79

00
8

1
0

h
o
le

sG
en

er
a
l
4

2
4

2
10

0%
90

0
10

0%
13

60
92

6
4

10
0%

12
03

39
1

0
h
o
le

sG
en

er
a
l
3

2
4

3
10

0%
74

0
10

0%
10

73
60

6
3

10
0%

85
90

4
0

0
h
o
le

sG
en

er
a
l
4

2
4

3
10

0%
33

7
1

10
0%

15
93

10
49

4
40

%
20

41
27

1
0

h
o
le

sG
en

er
a
l
3

2
4

4
10

0%
29

8
1

10
0%

15
38

69
2

3
10

0%
57

68
3

1
0

h
o
le

sG
en

er
a
l
4

2
4

4
10

0%
10

2
0

10
0%

13
47

98
8

4
10

0%
13

40
39

0
0

h
o
le

sG
en

er
a
l
3

2
4

5
10

0%
68

0
10

0%
10

69
68

7
3

10
0%

68
35

7
1

0
h
o
le

sG
en

er
a
l
4

2
4

5
10

0%
37

7
1

10
0%

16
12

12
46

4
10

0%
29

58
18

2
0

h
o
le

sG
en

er
a
l
3

2
4

6
10

0%
31

2
1

10
0%

10
56

72
8

3
10

0%
89

01
8

1
0

h
o
le

sG
en

er
a
l
4

2
4

6
10

0%
94

0
10

0%
17

75
12

89
5

10
0%

15
93

02
0

0
h
o
le

sG
en

er
a
l
3

2
4

7
10

0%
44

0
10

0%
10

38
62

2
3

10
0%

51
68

0
0

0
h
o
le

sG
en

er
a
l
4

2
4

7
10

0%
60

5
2

10
0%

14
54

12
97

5
10

0%
17

34
74

1
0

h
o
le

sG
en

er
a
l
3

2
4

8
10

0%
32

0
10

0%
12

16
80

1
3

10
0%

63
42

2
1

0
h
o
le

sG
en

er
a
l
4

2
4

8
10

0%
62

0
40

%
14

03
85

5
4

10
0%

20
67

68
1

0
h
o
le

sG
en

er
a
l
3

2
4

9
10

0%
52

0
10

0%
99

1
72

2
4

10
0%

65
11

6
0

0
h
o
le

sG
en

er
a
l
4

2
4

9
10

0%
73

0
10

0%
11

36
89

9
4

10
0%

21
35

25
1

0
h
o
le

sG
en

er
a
l
3

2
4

1
0

10
0%

71
0

10
0%

91
2

54
4

3
10

0%
95

18
3

0
0

h
o
le

sG
en

er
a
l
4

2
4

1
0

10
0%

86
0

10
0%

15
10

92
6

4
10

0%
13

36
26

0
0

h
o
le

sG
en

er
a
l
3

3
3

1
10

0%
31

4
1

10
0%

13
25

69
6

3
10

0%
12

18
3

1
0

h
o
le

sG
en

er
a
l
4

3
3

1
10

0%
47

0
2

10
0%

18
88

13
67

4
10

0%
93

86
7

3
0

h
o
le

sG
en

er
a
l
3

3
3

2
10

0%
43

2
2

10
0%

12
86

87
1

3
10

0%
26

00
5

3
0

h
o
le

sG
en

er
a
l
4

3
3

2
10

0%
42

9
1

10
0%

14
49

85
0

4
10

0%
58

16
1

1
0

h
o
le

sG
en

er
a
l
3

3
3

3
10

0%
29

0
1

10
0%

12
44

61
2

3
10

0%
13

28
4

1
0

h
o
le

sG
en

er
a
l
4

3
3

3
10

0%
46

3
1

10
0%

17
66

11
36

4
10

0%
56

48
7

1
0

h
o
le

sG
en

er
a
l
3

3
3

4
10

0%
32

4
1

10
0%

89
6

49
6

3
10

0%
14

55
6

2
0

h
o
le

sG
en

er
a
l
4

3
3

4
10

0%
31

0
1

10
0%

15
28

10
42

5
10

0%
56

28
6

1
0

h
o
le

sG
en

er
a
l
3

3
3

5
10

0%
30

6
1

10
0%

10
60

70
0

3
10

0%
12

01
5

1
0

h
o
le

sG
en

er
a
l
4

3
3

5
10

0%
29

5
1

10
0%

13
88

89
8

4
10

0%
56

45
1

1
0

h
o
le

sG
en

er
a
l
3

3
3

6
10

0%
54

0
40

%
10

07
61

5
3

10
0%

98
58

1
0

h
o
le

sG
en

er
a
l
4

3
3

6
10

0%
41

8
1

10
0%

14
06

93
6

4
10

0%
60

51
5

1
0

h
o
le

sG
en

er
a
l
3

3
3

7
10

0%
31

6
1

10
0%

10
71

54
4

3
10

0%
12

93
1

1
0

h
o
le

sG
en

er
a
l
4

3
3

7
10

0%
29

5
1

10
0%

14
40

99
5

4
10

0%
55

10
4

1
0

h
o
le

sG
en

er
a
l
3

3
3

8
10

0%
29

2
1

10
0%

12
54

74
6

4
10

0%
14

10
7

1
0

h
o
le

sG
en

er
a
l
4

3
3

8
10

0%
29

9
1

10
0%

12
80

83
2

4
10

0%
60

93
8

1
0

h
o
le

sG
en

er
a
l
3

3
3

9
10

0%
55

0
10

0%
80

6
50

2
3

10
0%

11
88

0
1

0
h
o
le

sG
en

er
a
l
4

3
3

9
10

0%
80

5
4

10
0%

21
50

17
14

4
t/o

ut
(p

)
h
o
le

sG
en

er
a
l
3

3
3

1
0

10
0%

41
4

2
10

0%
12

60
96

1
3

10
0%

24
79

1
3

0
h
o
le

sG
en

er
a
l
4

3
3

1
0

10
0%

59
0

10
0%

15
69

11
44

5
10

0%
65

51
5

2
0

h
o
le

sG
en

er
a
l
3

3
4

1
10

0%
31

7
1

10
0%

10
96

70
1

3
10

0%
16

23
0

1
0

h
o
le

sG
en

er
a
l
4

3
4

1
10

0%
47

1
1

40
%

13
35

84
1

4
10

0%
37

07
6

2
0

h
o
le

sG
en

er
a
l
3

3
4

2
10

0%
31

3
1

40
%

12
02

73
8

4
10

0%
15

59
2

1
0

h
o
le

sG
en

er
a
l
4

3
4

2
10

0%
51

3
1

10
0%

13
17

86
2

4
10

0%
36

89
7

2
0

h
o
le

sG
en

er
a
l
3

3
4

3
10

0%
31

2
1

40
%

13
54

61
7

3
10

0%
14

85
9

1
0

h
o
le

sG
en

er
a
l
4

3
4

3
10

0%
45

1
1

t/o
ut

(m
)

10
0%

37
15

9
2

0
h
o
le

sG
en

er
a
l
3

3
4

4
10

0%
29

7
1

10
0%

10
74

63
2

3
10

0%
14

03
9

1
0

h
o
le

sG
en

er
a
l
4

3
4

4
10

0%
49

1
1

10
0%

13
26

90
5

4
10

0%
53

86
4

3
0

h
o
le

sG
en

er
a
l
3

3
4

5
10

0%
32

0
1

10
0%

13
66

67
2

4
10

0%
14

44
5

1
0

h
o
le

sG
en

er
a
l
4

3
4

5
10

0%
44

2
1

10
0%

14
79

93
4

4
10

0%
38

40
3

2
0

h
o
le

sG
en

er
a
l
3

3
4

6
10

0%
31

1
1

10
0%

13
76

72
8

4
10

0%
16

82
8

1
0

h
o
le

sG
en

er
a
l
4

3
4

6
10

0%
43

7
1

40
%

17
78

10
74

5
10

0%
42

81
2

2
0

h
o
le

sG
en

er
a
l
3

3
4

7
10

0%
33

9
1

10
0%

11
91

63
2

3
10

0%
15

60
9

1
0

h
o
le

sG
en

er
a
l
4

3
4

7
10

0%
51

1
1

t/o
ut

(m
)

10
0%

36
56

3
2

0
h
o
le

sG
en

er
a
l
3

3
4

8
10

0%
29

1
1

10
0%

13
68

66
1

3
10

0%
14

83
2

1
0

h
o
le

sG
en

er
a
l
4

3
4

8
10

0%
51

2
1

10
0%

13
78

85
8

4
10

0%
37

28
4

2
0

h
o
le

sG
en

er
a
l
3

3
4

9
10

0%
30

1
1

10
0%

96
4

66
4

3
10

0%
15

06
7

1
0

h
o
le

sG
en

er
a
l
4

3
4

9
10

0%
50

5
1

10
0%

13
65

93
1

4
10

0%
34

09
3

1
0

h
o
le

sG
en

er
a
l
3

3
4

1
0

10
0%

29
2

1
10

0%
11

92
64

9
3

10
0%

14
85

9
1

0
h
o
le

sG
en

er
a
l
4

3
4

1
0

10
0%

46
0

1
10

0%
29

28
19

75
9

10
0%

36
79

0
2

0

Ta
bl

e
C

.8
:C

om
pl

et
e

ex
pe

ri
m

en
ta

ld
at

a
fo

rh
o
le

sS
pe

ci
a
l

pr
ob

le
m

s.

Pr
ob

le
m

c
m

3
d3

Pr
ob

le
m

c
m

3
d3

h
o
le

sS
pe

ci
a
l
3

1
3

1
10

0%
26

36
9

18
10

0%
62

28
1

19
62

16
20

%
43

30
49

24
5

h
o
le

sS
pe

ci
a
l
4

1
3

1
10

0%
16

25
39

24
10

0%
25

10
61

39
34

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
3

2
10

0%
26

13
5

20
10

0%
63

78
8

19
99

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
3

2
10

0%
14

87
04

28
10

0%
30

03
34

38
92

32
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
3

3
10

0%
29

20
0

21
10

0%
85

63
9

21
84

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
3

3
10

0%
12

55
78

24
10

0%
18

63
81

36
32

24
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
3

4
10

0%
25

41
4

18
10

0%
64

35
8

19
07

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
3

4
10

0%
17

34
86

62
10

0%
37

15
94

35
44

34
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
3

5
10

0%
28

00
9

21
10

0%
73

50
6

19
60

15
20

%
46

21
89

22
4

h
o
le

sS
pe

ci
a
l
4

1
3

5
t/o

ut
(p

)
10

0%
38

46
71

36
06

31
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
3

6
10

0%
28

86
0

21
10

0%
85

69
7

22
37

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
3

6
10

0%
14

97
12

24
10

0%
18

63
51

36
86

30
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
3

7
10

0%
24

22
0

20
10

0%
56

45
7

18
63

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
3

7
10

0%
12

92
65

28
10

0%
18

95
34

36
31

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
3

8
10

0%
28

40
5

47
10

0%
41

43
4

18
90

16
20

%
56

06
48

20
5

h
o
le

sS
pe

ci
a
l
4

1
3

8
10

0%
14

68
76

38
10

0%
26

90
78

39
22

32
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
3

9
10

0%
24

06
3

26
10

0%
51

71
0

18
48

16
20

%
54

38
02

23
4

h
o
le

sS
pe

ci
a
l
4

1
3

9
t/o

ut
(p

)
10

0%
45

55
50

42
13

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
3

1
0

10
0%

32
69

7
18

10
0%

12
10

52
21

41
16

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
4

1
3

1
0

10
0%

12
70

09
24

10
0%

25
30

72
36

69
35

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
3

1
4

1
10

0%
35

30
9

21
10

0%
72

79
6

22
58

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
4

1
10

0%
20

82
00

24
10

0%
11

94
76

43
69

27
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
4

2
10

0%
33

16
4

20
10

0%
62

34
4

22
34

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
4

2
10

0%
16

24
55

24
10

0%
72

78
8

37
20

35
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
4

3
10

0%
33

04
4

30
10

0%
48

64
7

19
49

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
4

3
10

0%
17

47
17

28
10

0%
62

29
7

41
96

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
4

4
10

0%
33

69
8

21
10

0%
64

17
0

22
49

15
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
4

4
10

0%
16

73
42

28
10

0%
56

07
5

37
00

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
4

5
10

0%
29

74
0

21
10

0%
47

58
8

19
77

15
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
4

5
10

0%
18

86
06

51
10

0%
66

94
4

35
62

41
t/o

ut
(p

)

226

Appendix C. Experimental data

Pr
ob

le
m

c
m

3
d3

Pr
ob

le
m

c
m

3
d3

h
o
le

sS
pe

ci
a
l
3

1
4

6
10

0%
33

65
7

21
10

0%
61

37
7

22
42

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
4

6
10

0%
18

02
84

24
10

0%
71

59
3

40
92

25
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
4

7
10

0%
39

33
3

30
10

0%
72

09
4

22
79

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
4

7
10

0%
17

12
45

24
10

0%
66

32
8

37
62

27
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
4

8
10

0%
30

23
2

18
10

0%
48

51
8

19
51

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
4

8
10

0%
26

72
21

12
7

10
0%

59
22

5
36

05
36

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
3

1
4

9
10

0%
33

42
6

18
10

0%
64

10
9

22
70

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

1
4

9
10

0%
17

95
62

28
10

0%
69

24
8

37
73

30
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

1
4

1
0

10
0%

32
40

9
18

10
0%

63
05

4
22

68
18

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
4

1
4

1
0

10
0%

16
27

43
24

10
0%

59
31

3
39

94
24

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
3

2
3

1
10

0%
44

93
8

45
10

0%
51

08
0

18
46

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
3

1
10

0%
13

68
18

61
10

0%
17

01
71

34
70

34
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
3

2
10

0%
35

08
8

20
10

0%
51

77
8

18
46

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
3

2
10

0%
12

67
93

26
10

0%
21

69
82

37
00

25
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
3

3
10

0%
43

32
0

30
10

0%
66

14
7

19
78

15
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
3

3
10

0%
14

18
00

69
10

0%
19

49
64

36
80

27
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
3

4
10

0%
35

36
2

20
10

0%
52

23
1

18
50

15
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
3

4
10

0%
15

72
48

74
10

0%
19

03
01

36
67

27
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
3

5
10

0%
37

44
4

21
10

0%
54

54
3

19
41

15
40

%
65

11
86

26
2

h
o
le

sS
pe

ci
a
l
4

2
3

5
10

0%
14

82
18

62
10

0%
22

99
27

37
38

29
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
3

6
10

0%
36

24
8

21
10

0%
51

05
0

18
96

15
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
3

6
10

0%
18

63
10

11
5

10
0%

16
97

50
35

42
29

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
3

2
3

7
10

0%
36

02
4

20
10

0%
51

85
8

19
25

15
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
3

7
10

0%
14

96
59

52
10

0%
24

88
37

39
18

31
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
3

8
10

0%
41

08
0

21
10

0%
62

36
6

19
74

15
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
3

8
10

0%
14

36
45

69
10

0%
23

40
80

38
18

28
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
3

9
10

0%
38

24
0

20
10

0%
66

30
5

19
37

17
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
3

9
10

0%
10

50
78

24
10

0%
10

20
62

32
94

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
3

1
0

10
0%

32
59

8
20

10
0%

38
35

9
18

68
16

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
4

2
3

1
0

10
0%

16
08

95
77

10
0%

18
74

19
36

92
30

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
3

2
4

1
10

0%
42

33
4

32
10

0%
34

26
4

19
50

17
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
4

1
10

0%
19

91
20

10
3

10
0%

41
06

2
36

68
30

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
3

2
4

2
10

0%
46

91
4

30
10

0%
46

48
5

19
21

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
4

2
10

0%
14

97
48

39
10

0%
91

77
8

36
02

38
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
4

3
10

0%
43

39
8

20
10

0%
48

76
2

19
66

17
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
4

3
10

0%
17

60
25

62
10

0%
58

22
6

36
42

33
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
4

4
10

0%
41

26
4

21
10

0%
33

21
2

19
72

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
4

4
10

0%
14

45
78

28
10

0%
75

97
6

35
78

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
4

5
10

0%
41

50
0

20
10

0%
37

70
0

21
48

15
40

%
60

69
90

25
4

h
o
le

sS
pe

ci
a
l
4

2
4

5
10

0%
15

39
38

24
10

0%
49

19
8

36
84

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
4

6
10

0%
47

32
8

30
10

0%
47

83
8

19
12

16
40

%
52

69
49

19
2

h
o
le

sS
pe

ci
a
l
4

2
4

6
10

0%
15

89
59

54
10

0%
68

95
4

34
02

35
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
4

7
10

0%
36

70
2

20
10

0%
30

62
4

18
59

16
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
4

7
10

0%
15

70
38

50
10

0%
67

94
1

35
34

27
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
4

8
10

0%
41

27
4

32
10

0%
31

59
0

19
98

18
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
4

8
10

0%
17

42
02

50
10

0%
49

98
9

36
96

25
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
4

9
10

0%
41

60
2

21
10

0%
37

20
8

19
64

18
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

2
4

9
10

0%
20

47
94

75
10

0%
49

10
4

36
74

32
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

2
4

1
0

10
0%

49
01

2
30

10
0%

48
70

0
21

95
15

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
4

2
4

1
0

10
0%

18
57

48
75

10
0%

79
20

8
36

78
29

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
3

3
3

1
10

0%
20

16
5

18
10

0%
33

14
6

18
74

15
10

0%
51

27
93

55
12

h
o
le

sS
pe

ci
a
l
4

3
3

1
10

0%
70

13
3

28
10

0%
11

02
66

31
62

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
3

2
10

0%
20

54
6

19
10

0%
33

83
8

19
29

15
60

%
57

67
00

66
12

h
o
le

sS
pe

ci
a
l
4

3
3

2
10

0%
69

31
6

27
10

0%
11

00
33

29
80

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
3

3
10

0%
20

93
7

19
10

0%
33

45
4

19
30

15
20

%
12

13
12

11
1

h
o
le

sS
pe

ci
a
l
4

3
3

3
10

0%
68

89
6

24
10

0%
11

26
26

30
80

20
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
3

4
10

0%
20

56
4

20
10

0%
33

25
0

18
46

15
20

%
16

77
44

15
3

h
o
le

sS
pe

ci
a
l
4

3
3

4
10

0%
69

52
0

24
10

0%
11

04
64

31
30

20
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
3

5
10

0%
20

30
6

19
10

0%
32

87
8

18
46

15
40

%
24

20
38

26
5

h
o
le

sS
pe

ci
a
l
4

3
3

5
10

0%
69

34
0

27
10

0%
11

01
36

29
96

19
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
3

6
10

0%
20

36
5

18
10

0%
33

15
6

19
04

15
80

%
31

08
40

32
8

h
o
le

sS
pe

ci
a
l
4

3
3

6
10

0%
68

44
6

27
10

0%
11

10
82

30
43

20
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
3

7
10

0%
20

29
7

18
10

0%
32

91
8

19
00

15
20

%
19

20
04

20
4

h
o
le

sS
pe

ci
a
l
4

3
3

7
10

0%
69

69
3

26
10

0%
11

16
80

30
59

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
3

8
10

0%
20

50
7

19
10

0%
33

58
4

18
50

15
80

%
40

69
02

44
8

h
o
le

sS
pe

ci
a
l
4

3
3

8
10

0%
69

48
3

26
10

0%
11

24
35

32
58

20
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
3

9
10

0%
20

44
5

19
10

0%
33

12
9

18
12

15
10

0%
21

35
97

20
1

h
o
le

sS
pe

ci
a
l
4

3
3

9
10

0%
71

90
8

27
10

0%
11

01
28

30
06

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
3

1
0

10
0%

20
84

5
19

10
0%

33
43

5
19

33
15

20
%

91
16

5
8

0
h
o
le

sS
pe

ci
a
l
4

3
3

1
0

10
0%

69
68

9
27

10
0%

11
12

64
30

58
20

t/o
ut

(p
)

h
o
le

sS
pe

ci
a
l
3

3
4

1
10

0%
23

76
7

19
10

0%
26

63
5

18
86

15
80

%
34

93
16

43
5

h
o
le

sS
pe

ci
a
l
4

3
4

1
10

0%
89

79
7

26
10

0%
45

85
6

28
26

21
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
4

2
10

0%
23

95
8

18
10

0%
26

80
2

18
71

15
60

%
29

56
44

36
6

h
o
le

sS
pe

ci
a
l
4

3
4

2
10

0%
90

61
1

26
10

0%
46

95
4

33
60

20
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
4

3
10

0%
23

83
2

19
10

0%
26

56
4

18
88

15
60

%
38

49
41

51
9

h
o
le

sS
pe

ci
a
l
4

3
4

3
10

0%
90

65
9

26
10

0%
47

66
2

34
18

19
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
4

4
10

0%
23

68
1

19
10

0%
26

46
4

18
88

14
10

0%
29

85
68

40
8

h
o
le

sS
pe

ci
a
l
4

3
4

4
10

0%
89

92
7

27
10

0%
45

84
6

33
20

20
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
4

5
10

0%
23

80
7

19
10

0%
26

60
2

18
98

15
20

%
36

69
23

48
10

h
o
le

sS
pe

ci
a
l
4

3
4

5
10

0%
91

42
1

26
10

0%
47

20
2

32
66

20
20

%
54

81
70

18
0

h
o
le

sS
pe

ci
a
l
3

3
4

6
10

0%
23

73
9

19
10

0%
26

29
1

19
08

15
80

%
32

49
11

42
7

h
o
le

sS
pe

ci
a
l
4

3
4

6
10

0%
90

26
3

28
10

0%
42

26
1

33
86

20
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
4

7
10

0%
23

74
1

19
10

0%
25

75
3

18
98

15
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
4

3
4

7
10

0%
91

69
5

27
10

0%
43

80
4

33
78

20
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
4

8
10

0%
23

99
2

18
10

0%
26

45
4

18
88

15
10

0%
14

53
97

15
0

h
o
le

sS
pe

ci
a
l
4

3
4

8
10

0%
90

68
7

26
10

0%
46

98
7

33
36

19
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
4

9
10

0%
23

91
2

19
10

0%
26

12
0

18
97

14
10

0%
36

37
71

48
8

h
o
le

sS
pe

ci
a
l
4

3
4

9
10

0%
89

46
3

25
10

0%
46

88
8

32
68

20
t/o

ut
(p

)
h
o
le

sS
pe

ci
a
l
3

3
4

1
0

10
0%

23
64

0
18

10
0%

26
26

4
18

79
14

10
0%

20
84

53
25

3
h
o
le

sS
pe

ci
a
l
4

3
4

1
0

10
0%

88
83

4
25

10
0%

93
10

3
68

00
39

40
%

43
07

43
16

2

227

Bibliography

Rachid Alami, Sara Fleury, Matthieu Herrb, Félix Ingrand, and Frédéric Robert. Multi robot

cooperation in the Martha Project. IEEE Robotics and Automation Magazine: special issue

entitled “Robotics and Automation in Europe: Projects funded by the Commission of the

European Union”, 1997. URL ftp://ftp.laas.fr/pub/Publications/1996/

96392.ps.

Rachid Alami, Félix Ingrand, and Samer Qutub. A scheme for coordinating multi-robot plan-

ning activities and plans execution. In Proceedings of the Thirteenth European Conference

on Artificial Intelligence, Brighton, UK, 1998. URL ftp://ftp.laas.fr/pub/ria/

felix/publis/ecai98.ps.gz.

Marco Alberti, Marco Gavanelli, Evelina Lamma, Federico Chesani, Paola Mello, and Paolo

Torroni. A logic based approach to interaction design in open multi-agent systems, September

2004. URL http://citeseer.ist.psu.edu/alberti04logic.html.

James Allen, James Hendler, and Austin Tate, editors. Readings in Planning. Morgan Kauff-

man, 1990.

James F. Allen. Maintaining knowledge about temporal intervals. Communications of the

ACM, 26(11):832–843, 1983.

Fahiem Bacchus and Froduald Kabanza. Using temporal logics to express search control knowl-

edge for planning. Artificial Intelligence, 116:123–191, 2000. URL http://www.cs.

toronto.edu/∼fbacchus/tlplan.html.

Luc Beaudoin. Goal Selection for Autonomous Agents. PhD thesis, University of Birming-

228

Bibliography

ham, Edgbaston, Birmingham, UK, August 1994. URL http://www.cs.bham.ac.

uk/research/cogaff/Luc.Beaudoin thesis.pdf.

Keith Biggers and Thomas Ioerger. Automatic generation of communication and teamwork

within multi-agent teams. Applied Artificial Intelligence, 15:875–916, 2001.

Avrim L. Blum and Merrick L. Furst. Fast planning through planning graph analysis.

Artificial Intelligence, 90:281–300, 1997. URL http://citeseer.nj.nec.com/

blum95fast.html.

Alan H. Bond and Les Gasser, editors. Readings in Distributed Artificial Intelligence. Morgan

Kaufmann, San Mateo, CA, 1988.

Blai Bonet and Hector Geffner. HSP: Heuristic Search Planner. In Proceedings of the

Planning Competition at the Fourth International Conference on Artificial Intelligence

Planning Systems Planning Competition, 1998. URL http://citeseer.ist.psu.

edu/137014.html.

Ronen I. Brafman and Holger H. Hoos. To encode or not to encode - i: Linear planning. In

Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence, 1999.

Michael Brenner. Multiagent planning with partially ordered temporal plans. In

Proceedings of the Doctorial Consortium of the International Conferenence on AI Planning

and Scheduling, 2003. URL http://icaps03.itc.it/satellite events/

doctoral consortium.htm.

Will Briggs and Diane J. Cook. Modularity and Communication in Multi-Agent Planning. PhD

thesis, University of Texas at Arlington, 1996. URL http://citeseer.nj.nec.com/

briggs96modularity.html.

Rodney A. Brooks. How to build complete creatures rather than isolated cognitive simulators.

In Kurt VanLehn, editor, Architectures for Intelligence, pages 225–239. Lawrence Erlbaum

Assosiates, Hillsdale, NJ, 1991. URL http://ai.eecs.umich.edu/cogarch3/

Brooks/Brooks.html.

229

Bibliography

Michael Browning, Brett Browning, and Manuela Veloso. Plays as effective multiagent plans

enabling opponent-adaptive play selection. In Proceedings of the Fourteenth International

Conference on Automated Planning and Scheduling, Vancouver, June 2004. URL http:

//www-2.cs.cmu.edu/∼mmv/pubs04.html.

David Chapman. Planning for conjunctive goals. Artificial Intelligence, 32:333–377, 1987.

Reprinted in Allen et al. (1990).

Steve Chien, Russell Knight, André Stechert, Rob Sherwood, and Gregg Rabideau. Using

iterative repair to increase the responsiveness of planning and scheduling for autonomous

spacecraft. In Proceedings of the Sixteenth International Joint Conference on Artificial

Intelligence Workshop: Scheduling and Planning Meet Real-Time Monitoring in a Dynamic

and Uncertain World, 1999.

Bradley J. Clement. Abstract Reasoning for Multiagent Coordination and Planning. PhD

thesis, Department of Electrical Engineering and Computer Science, The University of

Michigan, 2002. URL http://www-personal.umich.edu/∼bradc/papers/

clement-diss.pdf.

Bradley J. Clement and Edmund H. Durfee. Identifying and resolving conflicts among

agents with hierarchical plans. In AAAI Workshop on Negotiation: Settling Conflicts and

Identifying Opportunities, number WS-99-12 in AAAI Technical Report, pages 6–11, 1999a.

Bradley J. Clement and Edmund H. Durfee. Theory for coordinating concurrent hierarchi-

cal planning agents using summary information. In Proceedings of the Sixteenth National

Conference on Artificial Intelligence, pages 495–502, 1999b.

Bradley J. Clement and Edmund H. Durfee. Top-down search for coordinating the hierarchical

plans or multiple agents. In Oren Etzioni, Jörg P. Müller, and Jeffrey M. Bradshaw, edi-

tors, Proceedings of the Third International Conference on Autonomous Agents (Agents’99),

pages 252–259, Seattle, WA, USA, 1999c. ACM Press. URL http://citeseer.nj.

nec.com/clement99topdown.html.

Mathijs M. de Weerdt. Plan Merging in Multi-Agent Systems. PhD thesis, Delft Technical Uni-

versity, Delft, The Netherlands, 2003. URL www.pds.twi.tudelft.nl/∼mathijs/.

230

Bibliography

Mathijs M. de Weerdt and Roman P.J. van der Krogt. A method to integrate planning and coor-

dination. In Michael Brenner and Marie desJardins, editors, Planning with and for Multiagent

Systems, number WS-02-12 in AAAI Technical Report, pages 83–88, Menlo Park, CA, 2002.

AAAI Press.

Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint networks. Artif. Intell., 49(1-3):

61–95, 1991. ISSN 0004-3702. doi: http://dx.doi.org/10.1016/0004-3702(91)90006-6.

Keith S. Decker and Victor R. Lesser. Generalizing the Partial Global Planning algorithm.

International Journal of Intelligent and Cooperative Information Systems, 1(2):319–346,

1992. URL http://citeseer.nj.nec.com/decker92generalizing.html.

Keith S. Decker and Victor R. Lesser. Designing a family of coordination algorithms. Technical

Report 94-I4, Department of Computer Science, University of Massachussetts, 1995. URL

http://citeseer.nj.nec.com/decker95designing.html.

Marie E. desJardins, Edmund H. Durfee, Charles L. Oritz Jr., and Michael J. Wolverton. A

survey of research in Distributed, Continual Planning. AI Magazine, 2000.

Minh B. Do and Subbarao Kambhampati. SAPA: A domain-independent heuristic metric tem-

poral planner. In Proceedings of the Sixth European Conference on Planning (ECP-01), pages

109–120, 2001.

Jim E. Doran, Stan Franklin, Nicholas R. Jennings, and Tim J. Norman. On cooperation in

Multi-Agent Systems. The Knowledge Engineering Review, 12(3), 1997. URL http:

//www.csd.abdn.ac.uk/∼tnorman/publications/fomas.html.

Edmund H. Durfee and Victor R. Lesser. Partial Global Planning: A coordination framework

for distributed hypothesis formation. IEEE Transactions on Systems Man and Cybernetics,

21(1):63–83, 1991. URL http://citeseer.nj.nec.com/durfee91partial.

html.

Eithan Ephrati and Jeffrey S. Rosenschein. Divide and conquer in multi-agent planning. In

Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pages

375–380, Menlo Park, CA, 1994. AAAI Press.

231

Bibliography

Kutlahan Erol. Hierarchical Task Network planning: formalization, analysis, and

implementation. PhD thesis, Computer Science Department, University of Maryland,

1996. URL http://techreports.isr.umd.edu/TechReports/ISR/1996/

PhD 96-4/PhD 96-4.pdf.

Richard E. Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 5(2):189–208, 1971.

Maria Fox and Derek Long. Pddl2.1: An extension of pddl for expressing temporal planning

domains. Journal of AI Research, 20:61–124, 2003. URL http://www.jair.org.

Jeremy Frank, Ari K. Jónsson, and Paul Morris. On reformulating planning as dynamic con-

straint satisfaction. In Proceedings of the Symposium on Abstraction, Reformulation and

Abstraction. Springer Verlag, July 2000. URL http://ic.arc.nasa.gov/people/

jonsson/Papers/sara2000.ps.

Stan Franklin and Art Graesser. Is it an agent, or just a program?: A taxonomy for

autonomous agents. In Proceedings of the Third International Workshop on Agent

Theories, Architectures, and Languages. Springer-Verlag, 1996. URL http://www.

msci.memphis.edu/∼franklin/AgentProg.html.

Michael P. Georgeff. Communication and interaction in multi-agent planning. In Proceedings of

the Third National Conference on Artificial Intelligence (AAAI-83), pages 125–129, Menlo

Park, CA, 1983. AAAI Press. Reprinted in (Bond and Gasser, 1988).

Malik Ghallab, Dana Nau, and Paolo Traverso. Automated Planning: Theory and Practice.

Morgan Kaufmann, 2004.

Keith Golden and Daniel S. Weld. Representing sensing actions: The middle ground revisited.

In Luigia Carlucci Aiello, Jon Doyle, and Stuart Shapiro, editors, Proceedings of the Fifth

International Conference on Principles of Knowledge Representation and Reasoning (KR

’96), pages 174–185. Morgan Kaufmann, San Francisco, California, 1996. URL http:

//citeseer.ist.psu.edu/article/golden96representing.html.

232

Bibliography

Elizabeth Gordon and Brian Logan. A goal processing architecture for game agents. Techni-

cal Report NOTTCS-WP-2003-1, School of Computer Science and Information Technology,

University of Nottingham, 2002.

Dave Gurnell. Adaptive coordination for multi agent planning. In Proceedings of the Twenty

Second Workshop of the UK Planning and Scheduling Special Interest Group, 2003.

Dave Gurnell. Distributed planning with summary information in recursive HTN domains.

In Proceedings of the Fourteenth International Conference on Automated Planning and

Scheduling. AAAI Press, June 2004.

Nick Hawes. Anytime Deliberation for Computer Game Agents. PhD thesis, University of

Birmingham, November 2003.

Jörg Hoffmann and Bernhard Nebel. The FF planning system: Fast plan generation through

heuristic search. Journal of AI Research, 14:253–302, 2001. URL http://www.

informatik.uni-freiburg.de/∼hoffmann/publications.html.

Tad Hogg, Bernardo A. Huberman, and Colin Williams. Phase transitions and the

search problem. Aritificial Intelligence: special issue entitield “Frontiers in Problem

Solving: Phase Transitions and Complexity”, 81(1-2):1–15, March 1996. URL

http://www.hpl.hp.com/research/idl/projects/constraints/

specialAIJ/specialAIJ.html.

Bryan Horling, Victor Lesser, Regis Vincent, Tom Wagner, Anita Raja, Shelley Zhang, Keith

Decker, and Alan Garvey. The TAEMS white paper, January 1999. URL http://mas.

cs.umass.edu/paper/182.

Nicholas R. Jennings. Commitments and conventions: The foundation of coordination in multi-

agent systems. The Knowledge Engineering Review, 8(3):223–250, 1993. URL http:

//citeseer.nj.nec.com/jennings93commitments.html.

Subbarao Kambhampati. Refinement planning as a unifying framework for plan synthesis. AI

Magazine, 18(2):67–97, 1997. URL http://rakaposhi.eas.asu.edu/papers.

html.

233

Bibliography

Henry A. Kautz and Bart Selman. Planning as satisfiability. In Bernd Neumann, edi-

tor, Proceedings of the Tenth European Conference on Artificial Intelligence, pages 359–

363, 1992. URL http://www.cs.washington.edu/homes/kautz/papers/

satplan.ps.

Richard Korf. Planning as search: A quantitative approach. Artificial Intelligence, 33(1):65–88,

1987. Republished in Allen et al. (1990).

David Marr David Marr. Vision. Freeman Publishers, 1982.

David McAllester and David Rosenblitt. Systematic nonlinear planning. In Proceedings of the

Ninth National Conference on Artificial Intelligence, volume 2, pages 634–639, Anaheim,

CA, 1991. AAAI Press/MIT Press. ISBN 0-262-51059-6. URL http://citeseer.

ist.psu.edu/mcallester91systematic.html.

T. Lee McCluskey, Donghong Liu, and Ron M. Simpson. Using knowledge en-

gineering and state space planning techniques to optimise an HTN planner. In

Proceedings of the Twenty First Workshop of the UK Planning and Scheduling

Special Interest Group, 2002. URL http://pds.twi.tudelft.nl/activities/

PLANSIG2002/Programme.htm.

Drew McDermott. PDDL – the planning domain definition language. Technical Report TR-98-

003, Yale Center for Computational Vision and Control, 1998. URL http://www.cs.

yale.edu/homes/dvm/.

Erica Melis and Andreas Meier. Proof planning with multiple strategies. In Proceedings of

the First International Conference on Computational Logic, London, 2000. URL http:

//www.ags.uni-sb.de/∼ameier/publications/2000/cl00.ps.gz.

Alexander Narayek. EXCALIBUR: Adaptive constraint-based agents in artificial environ-

ments: Online documentation. Web page, 2002. URL http://www.ai-center.com/

projects/excalibur/documentation/.

Dana Nau, Yue Cao, Amnon Lotem, and Héctor Mu noz Avila. SHOP: A Simple Hierarchical

Ordered Planner. In Proceedings of the Sixteenth International Joint Conference on Artificial

Intelligence, 1999.

234

Bibliography

Dana Nau, Tsz-Chiu Au, Okhtay Ilghami, Ugur Kuter, J. William Murdock, Dan Wu, and Fusun

Yaman. SHOP2: An HTN planning system. Journal of Artificial Intelligence Research, 20:

379–404, March 2003.

Allen Newell and Herbert A. Simon. GPS, a program that simulates human thought. In Ed-

ward A. Feigenbaum and Julian Feldman, editors, Computers and Thought, pages 279–293,

1969. Reprinted in Allen et al. (1990).

XuanLong Nguyen, Subbarao Kambhampati, and Romeo Sanchez Nigenda. Planning graph as

the basis for deriving heuristics for plan synthesis by state space and csp search. Artificial

Intelligence, March 2002.

Nils J. Nilsson. Teleo-reactive programs for agent control. Journal of Artificial Intelligence

Research, 1:139–158, 1994.

Edwin P. D. Pednault. Formulating multi-agent dynamic-world problems in the classical plan-

ning framework. In Michael P. Georgeff and Amy L. Lansky, editors, Reasoning About

Actions and Plans: Proceedings of the 1986 Workshop, pages 47–82, San Mateo, CA, 1987.

Morgan Kaufmann Publishers. Reprinted in Allen et al. (1990).

J. Scott Penberthy and Daniel S. Weld. UCPOP: A sound, complete, partial order planner for

ADL. In Proceedings of the Third International Conference on Knowledge Representation

and Reasoning (KR&R-92), pages 103–114. Morgan Kaufmann Publishers, October 1992.

J. Scott Penberthy and Daniel S. Weld. Temporal planning with continuous change. In

Proceedings of the Twelfth National Conference on Artificial Intelligence (AAAI-94), pages

1010–1015, Menlo Park, CA, 1994. AAAI Press. URL http://www.cs.washington.

edu/homes/weld/pubs.html.

Gregg Rabideau, Russell Knight, Steve Chien, Alex Fukunaga, and Anita Govindjee. Iterative

repair planning for spacecraft operations in the ASPEN system. In Proceedings of the Fifth

International Symposium on Artificial Intelligence Robotics and Automation in Space, pages

99–106, Noordwijk, the Netherlands, 1999. ESA Publications Division.

Craig W. Reynolds. Steering behaviours for autonomous characters. In Proceedings of the

235

Bibliography

Game Developers Conference 1999, pages 763–782, San Francisco, California, 1999. Miller

Freeman Game Group.

Jussi Rintanen. Phase transitions in classical planning: an experimental study. In Proceedings

of the Fourteenth International Conference on Automated Planning and Scheduling. AAAI

Press, June 2004.

Jeffrey S. Rosenschein. Synchronization of multi-agent plans. In Proceedings of the Second

National Conference on Artificial Intelligence (AAAI-82), pages 115–119, Menlo Park, CA,

1982. AAAI Press. Reprinted in (Bond and Gasser, 1988).

Jeffrey S. Rosenschein and Gilad Zlotkin. Rules of Encounter: Designing Conventions for

Automated Negotiation Among Computers. MIT Press, 1994.

Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall,

1995. ISBN 0-13-360124-2.

Earl D. Sacerdoti. The nonlinear nature of plans. In Proceedings of the Fourth International

Joint Conference on Artificial Intelligence, pages 206–214, 1975.

Eddie Schwalb and Lluı́s Vila. Temporal constraints: A survey. Constraints: An International

Journal, 3(2/3):129–149, June 1998. URL http://www.lsi.upc.es/∼vila/vila/

tcs/tcs.ps.gz.

Yoav Shoham and Moshe Tennenholtz. On social laws for artificial agent societies: Off-line

design. Artificial Intelligence, 73(1–2):231–252, 1995. URL http://citeseer.nj.

nec.com/shoham95social.html.

Aaron Sloman. Interacting trajectories in design space and niche space: A philosopher specu-

lates about evolution. In Marc Schoenauer, Kalyanmoy Deb, Gun̈ter Rudolph, Xin Yao, Eve-

lyne Lutton, Juan Julian Merelo, and Hans-Paul Schwefel, editors, Parallel Problem Solving

from Nature — PPSN VI 6th International Conference, number 1917 in Lecture Notes in

Computer Science, pages 3–16, Paris, France, September 2000.

Aaron Sloman. Beyond shallow models of emotion. Cognitive Processing, 2(1):178–

198, 2001. URL http://www.cs.bham.ac.uk/research/cogaff/sloman.

iqcs01.pdf.

236

Bibliography

Aaron Sloman. Architecture-based conceptions of mind. In Peter Gärdenfors, Katarzyna

Kijania-Placek, and Jan Woleński, editors, In the Scope of Logic, Methodology, and

Philosophy of Science (Vol II), volume 316 of Synthese Library, pages 403–427. Springer,

2002.

David E. Smith and Daniel S. Weld. Temporal planning with mutual exclusion reasoning.

In Proceedings of the Sixteenth International Joint Conference on Artificial Intelligence

(IJCAI-99), San Mateo, CA, 1999. Morgan Kaufmann Publishers. URL http://ic.arc.

nasa.gov/ic/people/de2smith/publications/publications.html.

Reid G. Smith. The Contract Net Protocol: High level communication and control in a dis-

tributed problem solver. IEEE Transactions on Computers, C-29(2):1104–1113, 1980.

Biplav Srivastava, Subbarao Kambhampati, and Minh B. Do. Planning the project management

way: Efficient planning by effective integration of causal and resource reasoning in RealPlan.

Artificial Intelligence, 131(1-2):73–134, September 2001.

Austin Tate. Generating project networks. In Proceedings of the Fifth International Joint

Conference on Artificial Intelligence, pages 888–893, 1977.

Ioannis Tsamardinos, Martha E. Pollack, and John F. Horty. Merging plans with quantitative

temporal constraints, temporally extended actions, and conditional branches. In Proceedings

of the Fifth International Conference on Artificial Intelligence Planning Systems (AIPS-00),

pages 264–272, Menlo Park, CA, 2000. AAAI Press.

Reiko Tsuneto, James A. Hendler, and Dana S. Nau. Analyzing external conditions to improve

the efficiency of HTN planning. In Proceedings of the Fifteenth National Conference on

Artificial Intelligence (AAAI-98), Menlo Park, CA, 1998. AAAI Press. URL http://

www.cs.umd.edu/users/reiko.

Jeroen M. Valk, Mathijs M. de Weerdt, and Cees Witteveen. Algorithms for coordination

in multi-agent planning. In Ioannis Vlahavas and Dimitris Vrakas, editors, Intelligent

Techniques for Planning, pages 194–224, London, 2005. Idea Group Publishing.

Daniel S. Weld. An introduction to least-commitment planning. AI Magazine, 15(4):27–61,

237

Bibliography

Winter 1994. URL http://citeseer.ist.psu.edu/weld94introduction.

html.

Daniel S. Weld. Recent advances in AI planning. AI Magazine, 20(2):93–123, Summer 1999.

URL http://www.cs.washington.edu/homes/weld/weld.html.

Daniel S. Weld, Corin R. Anderson, and David E. Smith. Extending graphplan to handle uncer-

tainty and sensing actions. In Proceedings of the Fifteenth National Conference on Artificial

Intelligence (AAAI ’98), 1998.

David E. Wilkins and Karen L. Myers. A Multiagent Planning Architecture. In Proceedings of

the Fourth International Conference on Artificial Intelligence Planning Systems (AIPS-98),

pages 154–162, Menlo Park, CA, 1998. AAAI Press. URL http://www.ai.sri.com/

∼wilkins/bib.html. Also available as a technical report.

Michael Wooldridge. Reasoning about Rational Agents. Intelligent robotics and autonomous

agents. MIT Press, Cambridge, Massachussetts/London, England, June 2000. URL http:

//www.csc.liv.ac.uk/∼mjw/pubs/rara/.

Michael Wooldridge and Nicholas R. Jennings. Intelligent agents: Theory and practice.

Knowledge Engineering Review, 10(2):115–152, 1994. URL http://citeseer.ist.

psu.edu/article/wooldridge95intelligent.html. Revised and republished

on the Web in 1995.

Qiang Yang. Intelligent Planning: A Decomposition and Abstraction Based Approach. Springer

Verlag, New York, 1997. ISBN 3-540-61901-1.

Qiang Yang, Dana S. Nau, and James Hendler. Merging separately generated plans with

restricted interactions. Computational Intelligence, 8(4):648–676, 1992. URL http:

//www.cs.sfu.ca/∼isa/pubs/index.html.

Makoto Yokoo and Katsutoshi Hirayama. Algorithms for distributed constraint satisfaction:

A review of ”plans and situated actions” by Lucy Suchman. Autonomous Agents and

Multi-Agent Systems, 2000.

Gilad Zlotkin and Jeffrey S. Rosenschein. Mechanisms for automated negotiation in state ori-

ented domains. Journal of Artificial Intelligence Research, 5:163–238, 1996.

238

