FP6: IST priority: IST 2002-2.3.2.4

Cognitive Systems scope and objectives

Information Day Luxembourg, 20.06.2003

Colette Maloney DG Information Society European Commission

Cognitive Systems scope & objectives

<u>2000</u>:

Cognitive Vision Systems - towards machines that 'see'

emphasis on: robust and versatile systems

- from application-specific to generalised solutions
- from constrained to real world environments

approach:

from low-level processing & robustness of individual components to a systems approach where *all* components including high-level cognitive functionalities - have a role to play in assuring robustness

working across areas, combining biological vision, AI, computer vision,...

Some history (2)

<u>2002</u>:

Where to take the field?

Developments in AI and cognitive neuroscience

+

Hardware development

- 1980s: cheap, small processors \Rightarrow ubiquitous computing
- 1990s: cheap, small lasers \Rightarrow ubiquitous communications
- 2000s: cheap, small sensors \Rightarrow **ubiquitous perception** ??

-link interconnected computational world with real physical world

-if these perceptually-enabled systems could understand and act?

Some history (3)

<u>2002</u>:

Cognitive Systems - towards machines that 'understand'

- not just vision, but perception
- systems that can act/interact
- real world environments
- maintain emphasis on interpretation (exclude complex mechanical manipulation, control etc.)
- need for embodiment?
- work across areas computer vision, linguistics, AI, robotics, neuroscience, psychology, philosophy,..

June 17, 2003 Call for proposals

2003: IST Work Programme 2003/2004 (extracts from Strategic Objective IST-2002 2.3.2.4 Cognitive Systems)

- **Objective:** To construct physically instantiated or embodied systems that can perceive, understand ... and interact with their environment, and evolve in order to achieve human-like performance in activities requiring context-(situation and task) specific knowledge.
- **Focus** is on: methodologies and construction of robust and adaptive cognitive systems integrating perception, reasoning, representation and learning, that are capable of interpretation, physical interaction and communication in real-world environments for the purpose of performing goal-directed tasks.
- A main target of this research is interdisciplinarity, *i.e.*, to carefully consider the integration of different disciplines including computer vision, natural language understanding, robotics, artificial intelligence, mathematics and cognitive neuroscience and its impact on overall system design.

What are we talking about?

Cognitive systems - <u>artificial</u> systems combining perception, action, reasoning, learning and communication

- may derive inspiration from biological intelligence
- exhibit generalisation cover diverse set of tasks and domains.
- need for a scientific foundation new concepts & methods, experimental validation, theoretical contributions,
- provide an enabling technology for robotics & automation, natural language understanding, man-machine interaction, etc
- emphasis is on systems and on *interrelation* between functions and not component methods for specialised tasks

Features of cognitive systems

Will require convergence of action, perception and reasoning

- Action: control, communication/interaction, change of internal system state
- Perception: may provide models, lead to selection of behaviours, execution of actions
- Reasoning often required for coordinating perception and action: for selecting transformations, behaviours, plans; adapting plans, generating new plans

And to be general, a cognitive system must learn

• Many types of reasoning & learning; many forms of representation.

Research on Cognitive Systems

should lead to fundamental insights on:

- The nature of cognition requirements, properties,..
- Architectures for cognition what to model, representations, concurrent processes, memory, integration, autonomy,...
- Perception need to distinguish top-down & bottom-up processes
- Learning what modes of learning; learning categories, competences, concepts, affordances; integrating new & old knowledge/skills coherently
- Autonomous Systems varieties, mechanisms, requirements
- Social Interaction communication, cooperation, competition
- Goals specification, learning

Role of Applications

Not about application development!

Applications serve to:

- provide research questions
- demonstrate impact of conceptual/technical innovation

Domains include:

adaptive intelligent environments, robotic assistants, visual surveillance, control of complex processes, non- disruptive personalisation of software,...

Submitting a Proposal

The timetable

- call for proposals published: 17 June 2003
- closing date for submission: 15 October 2003
- evaluation in November 2003
- hearings in December 2003
- negotiations from January 2004 onward
- contract awarding in May/June 2004
- projects due to start in June/July 2004

Instruments

Instruments refer to the different types of project funded in FP6.

- Integrated project (IP) 'new' objective driven research programmes whose primary deliverable is new knowledge
- <u>Network of excellence</u> (NoE) 'new' programmes of joint research & resource sharing which contribute to reinforcing & sustaining scientific excellence
- <u>Specific targeted research project</u> (STReP) well defined and precisely focused research aimed at generating new knowledge
- <u>Coordination action</u> (CA) support networking and coordination of research
- <u>Specific support action</u> (SSA) preparatory activities, dissemination,...

Using the new instruments

- do <u>not</u> artificially create an IP from a STReP!
- an IP should be THE project in the target area
 - an ambitious & progressive endeavor
 - with clearly defined milestones & checkpoints across the whole project lifetime
 - clear management structure
- NoE should be interdisciplinary & integrate critical mass of expertise from the leading research centres
 - act as a "Virtual Centre of Excellence"
 - spread excellence beyond the consortium

Ideal IP

- the "ideal" IP should encompass
 - genuine research work, clearly specifying innovation vs state-of-art and justifying methods proposed
 - "engineering" tasks
 - system integration & validation ("total system" approach)
- along with
 - demonstration & comparative performance evaluation
 - dissemination of results
 - training & awareness
 - cooperation & exchanges with related national and international efforts

Indicative Figures

Room for both old & new instruments ~ 30% of budget earmarked for old instruments

- IPs
 - up to 4 years, 5-15 M€ (EU funding)
- NoEs
 - up to 5 years, 3-6 M€
- STRePs
 - up to 3 years, 1-3 M€
- CAs and SSAs
 - up to 3 years, 0,5-1,5 M€

Outcome of call

- fewer, bigger projects wrt. FP5
- 25+ M€ available
 - 2-4 IPs
 - 1-2 NoEs
 - 4-5 STRPs
 - 0-2 CAs and SSAs
- some 9-10 proposals likely to be retained for funding ... highly selective process!

Partnerships

- consortium
 - **IPs** 6-12 partners, from 3+ countries
 - **NoEs** 4-6 "core" partners min., from 3+ countries
 - STRPs 4-6 partners, from 3+ countries
- cohesive agenda: competent, committed & reliable partners
- complementarity: cover all areas you need
- focus: avoid irrelevant or marginal topics
- duplication of competence
 - necessary for NoEs
 - acceptable for IPs where dictated by project needs
- industry/SME/academia/NAS participation: as dictated by project needs

Financial

- project funding commensurate with expected results & impact
- funding of partners depends on individual role & input
- partners' input: labour, know-how, facilities
- choose reliable (i.e. financially sound) partners
- provide all key data on resources and costs
 - sound costing adds to credibility

Coordination

- project leader(s)
 - proven management skills
 - international project experience
- coordinator's functions
 - interface consortium-EC
 - financial administration
 - contract signatory
- coordinator & partners
 - reporting, against schedule [7-10% of project effort]

Some lessons

from first Call evaluation:

- do <u>not</u> artificially adapt a proposal to a strategic objective theme
- respond to all the evaluation criteria, paying good attention to non-research issues e.g. demonstration, dissemination ...
- pay attention to using the full range of activities allowable for the new instruments, e.g. training
- pay extra attention to co-ordination of large projects; ensure that enough project management expertise is available

- ensure that the proposal brings out key innovations in a concrete way
- depth of participation rather than long list of organisation names
- check relevance of your ideas with EC staff, at an early stage

More info

Call-related Documents:

 http://fp6.cordis.lu/fp6/call_details.cfm?CALL_ID=7 4#

ECVision Web site:

• <u>www.ecvision.info</u>

EC staff:

- <u>Colette.Maloney@cec.eu.int</u>
- <u>Giovanni.Varile@cec.eu.int</u>

