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Abstract 

 
We propose a bottom-up computer engineering approach to the Grand Challenge of understanding 
the Architecture of Brain and Mind as a viable complement to top-down modelling and alternative 
approaches informed by the skills and philosophies of other disciplines. Our approach starts from 
the observation that brains are built from spiking neurons and then progresses by looking for a sys-
tematic way to deploy spiking neurons as components from which useful information processing 
functions can be constructed, at all stages being informed (but not constrained) by the neural struc-
tures and microarchitectures observed by neuroscientists as playing a role in biological systems. In 
order to explore the behaviours of large-scale complex systems of spiking neuron components we 
require high-performance computing equipment, and we propose the construction of a machine spe-
cifically for this task – a massively parallel computer designed to be a universal spiking neural net-
work simulation engine. 
 

1   Introduction 

1.1   Neurons 
The basic biological control component is the neu-
ron. A full understanding of the ‘Architecture of 
Brain and Mind’ (Sloman, 2004) must, ultimately, 
involve finding an explanation of the phenomenol-
ogical observations that can be expressed in terms of 
the interactions between the neurons that comprise 
the brain (together with their sensory inputs, actua-
tor outputs, and related biological processes). 

Neurons appear to be very flexible components 
whose utility scales over systems covering a vast 
range of complexities. Very simple creatures find a 
small number of neurons useful, honey bees find it 
economic to support brains comprising around 
850,000 neurons, and humans have evolved to carry 
brains comprising 1011 neurons or so. The compo-
nent neuron used this range of complexities is basi-
cally the same in its principles of operation, so in 
some sense it has a universality similar to that en-
joyed by the basic logic gate in digital engineering. 

There is a further similarity between neurons and 
logic gates: both are multiple-input single-output 
components. However, while the typical fan-in (the 
number of inputs to a component) and fan-out (the 

number of other components the output of a particu-
lar component connects to) of a logic gate is in the 
range 2 to 4, neurons typically have a fan-in and 
fan-out in the range 1,000 to 10,000. (It is easy to 
show that that mean fan-in and fan-out in a system 
are the same – they are just different ways of count-
ing the number of connections between compo-
nents.) 

A more subtle difference between a logic gate 
and a neuron is in the dynamics of their internal 
processes. Whereas a logic gate implements a proc-
ess that is essentially static and defined by Boolean 
logic, so that at any time from a short time after the 
last input change the output is a well-defined stable 
function of the inputs, a neuron has complex dynam-
ics that includes several time constants, and its out-
put is a time series of action potentials or ‘spikes’. 
The information conveyed by the neuron’s output is 
encoded in the timing of the spikes in a way that is 
not yet fully understood, although rate codes, popu-
lation codes and firing-order codes all seem offer 
valid interpretations of certain observations of spik-
ing acitivity. 

Accurate computer models of biological neurons 
exist, but these are very complex. Various simpler 
models have been proposed that capture some of the 
features of the biology but omit others. The diffi-
culty lies in determining which of the features are 



essential to the information processing functions of 
the neuron and which are artefacts resulting from 
the way the cell developed, its need to sustain itself, 
and the complex evolutionary processes that led to 
its current form. 

 
1.2   Neural microarchitecture 
The universality of the neuron as a component is 
also reflected in certain higher-level structures of the 
brain. For example, the cortex displays a 6-layer 
structure and a regularity of interconnect between 
the neurons in the various layers that can reasonably 
deserve the application of the term ‘microarchitec-
ture’. The same regular laminar cortical microarchi-
tecture is in evidence across the cortex in regions 
implementing low-level vision processes such as 
edge-detection and in regions involved in high-level 
functions such as speech and language processing. 
This apparent ‘universality’ (used here to describe 
one structure that can perform any function) of the 
cortical microarchitecture suggests there are princi-
ples being applied here the understanding of which 
could offer a breakthrough in our understanding of 
brain function. 

In contrast to the regularity and uniformity of the 
microarchitecture, the particular connectivity pat-
terns that underpin these structures appear to be ran-
dom, guided by statistical principles rather than spe-
cific connectivity plans. The connectivity is also 
locally adaptive, so the system can be refined 
through tuning to improve its performance. 
 
1.3   Engineering with neurons 
As computer engineers we find the neuron’s univer-
sality across wide ranges of biological complexity to 
be intriguing, and there is a real challenge in under-
standing how this component can be used to build 
useful information processing systems. There is an 
existence proof that this is indeed possible, but few 
pointers to how the resulting systems might work. 

There are other ‘engineering’ aspects of biologi-
cal neurons that are interesting, too. We have al-
ready mentioned the regularity of neural microarchi-
tecture. The power-efficiency of neurons (measured 
as the energy required to perform a given computa-
tion) exceeds that of computer technology, possibly 
because the neuron itself is a very low performance 
component. While computer engineers measure gate 
speeds in picoseconds, neurons have time constants 
of a millisecond or longer. While computer engi-
neers worry about speed-of-light limitations and the 
number of clock cycles it takes to get a signal across 
a chip, neurons communicate at a few metres per 
second. This very relaxed performance at the tech-
nology level is, of course, compensated by the very 
high levels of parallelism and connectivity of the 

biological system. Finally, neural systems display 
levels of fault-tolerance and adaptive learning that 
artificial systems have yet to approach. 

We have therefore decided to take up the chal-
lenge to find ways to build useful systems based 
upon spiking neuron components (for example, Fur-
ber, Bainbridge, Cumpstey and Temple, 2004), and 
we hope that this will lead to mutually-stimulating 
interactions with people from many other disciplines 
whose approach to the same Grand Challenge, of 
understanding the Architecture of Brain and Mind, 
will be quite different from our own. 

 
2   Relevance to GC5 
What has any of this engineering really got to do 
with the Grand Challenge of understanding the Ar-
chitecture of Brain and Mind? 

As this is aimed at a broad audience, not many 
of whom are computer engineers, we will digress 
briefly to consider what computer engineers may 
bring to this Grand Challenge. To begin with, it is 
useful to appreciate the skills and mindset that a 
computer engineer, for better or for worse, pos-
sesses. What can a person whose stock-in-trade con-
sists of logic gates, microchips and printed circuit 
boards contribute to the bio-psycho-philosophical 
quest to understand the workings of the mind? 
 
2.1   A Computer Engineer’s manifesto 
To a computer engineer ‘understand’ has a specific 
meaning that is different from what a scientist 
means by the same word, which is in turn probably 
different from the meanings used by other disci-
plines. To the scientist, understanding is to have a 
repeatably-verifiable explanation of a phenomenon. 
To the engineer, understanding means to be able to 
go away and build another artefact that works in the 
same way. The scientist’s analysis reduces a com-
plex phenomenon into its basic components; this is 
complemented by the engineer’s ability to take those 
components, or components that encapsulate the 
same essential behaviour, and synthesize them back 
into a functioning system. 

Thus, when a computer engineer claims to ‘un-
derstands’ how a mobile phone works, the statement 
can be interpreted as meaning that they can (at least 
in principle) explain when every one of the 100 mil-
lion or so transistors switches, why it switches, what 
will happen if it fails to switch, and so on. OK, we 
might get on less secure ground when describing the 
chemistry of the lithium-ion battery and the details 
of the radio and antenna design or the higher levels 
of the software. And when it comes to explaining 
why the plastic case is pink and the buttons are ar-
ranged in swirling patterns with no obvious ergo-
nomic objective we are completely lost! But back in 



the familiar territory of the digital transistor circuits 
we have a vocabulary comprising baseband proces-
sors, DSPs, maximum likelihood error correctors, 
RAMs, buses, interrupts, and so on, that together 
provide a language of description at multiple levels 
of abstraction from an individual transistor to the 
lower levels of the system software. This enables us 
to describe in very fine detail how the phone works 
and, more particularly, how you might make another 
working phone at lower cost and with better battery 
life. 

This is the approach we bring to understanding 
the Architecture of Brain and Mind. In neuroscience 
we see that there are pretty accurate models of the 
basic component from which brains are built – the 
neuron. There are some rather sketchy and limited 
descriptions of how these components are intercon-
nected and how they behave in natural networks, 
and there is rather better information about their 
macro-level modular organisation and gross activity. 
The weakest part of the neuroscientists’ analysis (for 
very good reason – it is hard to apply reductionist 
principles to systems whose interesting characteris-
tics depend on their organizational complexity) is at 
the intermediate levels between the component neu-
rons (where analysis is applicable) and the macro-
organisation (where mean field statistics work). 

This intermediate level is precisely the level at 
which the computer engineer may have something 
to offer. Assembling basic components into func-
tional units, implementing useful computational 
processes based on networks of dynamical systems, 
these are all second nature to the computer engineer 
once we have come to grips with the spiking neuron 
as a component. As we observed earlier, it even 
looks a bit like a logic gate – several inputs but only 
one output. 

The intrinsic dynamics of a neuron may con-
found the computer engineer who is used to working 
only with digital circuits that are controlled by the 
extrinsic straitjacket of a clock signal, but a small 
minority of us are proficient in building circuits 
whose sequential behaviour is intrinsic – members 
of the class of digital circuit generally described as 
asynchronous or self-timed. The knowledge we hold 
on how to build reliable, highly complex asynchro-
nous digital systems may just provide us with new 
insights into the highly complex asynchronous neu-
ral systems that provide the hardware platform upon 
which the brain and mind are built. 
 
2.2   GC5 methodology 
Our approach to this Grand Challenge is essentially 
bottom-up, which will complement the top-down 
and middle-out approaches that are better-suited to 
those who bring different skills and mindsets from 
other disciplines. 

The bottom-up approach starts from the concept 
of a neuron as a basic component, and then seeks 
useful compositions of neurons to create (and im-
plement) increasingly higher levels of functional 
abstraction. These compositions may be inspired by 
neuroscience; for example, we have an involvement 
in the EPSRC-funded COLAMN project which has 
as its goal the creation of novel computational archi-
tectures based on the laminar microarchitecture of 
the neocortex, with considerable input from the 
‘wet’ neuroscientists in the project. Or they may be 
designed in the abstract; for example our earlier 
work on N-of-M coded sparse distributed memories 
(Furber, Bainbridge, Cumpstey and Temple, 2004) – 
with at best tenuous relevance to biology. 

A feature of this research is that it can yield a 
positive outcome in two distinct ways. It may con-
tribute to the scientific objective of understanding 
the architecture of brain and mind, and/or it may 
contribute to the engineering objective of delivering 
better/different/novel models of computation. Either 
of these outcomes would justify our engagement, 
and with a following wind we might just achieve 
both... 

In order to pursue this research agenda we need 
a sandpit in which we can experiment with neuron 
components on a large scale, hence the massively 
parallel high-performance computer theme that we 
will turn to shortly. This large-scale engineering 
project brings with it additional research aspects 
relating to fault-tolerance, autonomic computing, 
self-healing, networks-on-chip, and so forth, all of 
which add to the engineering challenge but probably 
contribute little to the GC5 agenda. 

 
3   Objectives 

We have set ourselves the objective of simulating a 
billion spiking neurons in real time while making as 
few assumptions as possible about what a neuron is 
and how the neurons are connected. We approach 
this by viewing a neural system as an event-driven 
dynamical system – a hybrid system where a (large) 
set of components, each of which operates in con-
tinuous time (and is characteristically described by a 
set of differential equations), interact through dis-
crete events. 

In order to retain complete flexibility in the in-
ternal neural dynamics we implement the real-time 
differential equation solvers (which will typically 
use discrete-time fixed-point approximations) in 
software, and then exploit the high speeds of elec-
tronic signalling to communicate the discrete inter-
neuron communication events around the system in 
a time which is close to instantaneous on the time-
scales of the neuron dynamics. This allows us to use 
a virtual mapping from the physical structure of the 



biological system we are modelling to the physical 
structure of the electronic system we are running the 
model on. 

 
4   Neural computation 

Any computation system must achieve a balance 
between its processing, storage and communication 
functions. It is useful to consider how these three 
functions are achieved in neural systems. 
 
4.1   Processing 
The neuron itself performs the processing function. 
It produces output events in response to input events 
through a non-linear transfer function, which we 
will model using suitable differential equations 
whose complexity is limited only by the available 
computing power. 

The simplest neuron models process inputs by 
taking a linear sum of the inputs, each weighted by 
the strength of its respective synapse. When the in-
puts are spike events the multiplication implied by 
the weighting process reduces to repeated addition. 
Multiplication by repeated addition is usually ineffi-
cient, but here many inputs are likely to be inactive 
at any time and multiplication by zero by repeated 
addition is supremely efficient! 

The weighted input sum is then used to drive the 
neural dynamics. A leaky-integrate-and-fire (LIF) 
model applies an exponential decay to the effect of 
each input, but if enough inputs fire close together 
in time to push the total activation past a threshold, 
the neuron fires its output and resets. More sophisti-
cated models have more complex dynamics. For 
example, the models by Izhikevich (2004) are based 
on mathematical bifurcation and display a more 
diverse range of biologically-relevant behaviours 
that the LIF model. 
 
4.2   Communication 
Communication in neural systems is predominantly 
through the propagation of spike ‘events’ from one 
neuron to the next. The output from the neuron’s 
body – its soma – passes along its axon which con-
veys the spike to its many target synapses. Each 
synapse use chemical processes to couple the spike 
to the input network – the dendritic tree – of another 
neuron. 

Since the spike carries no information in its 
shape or size, the only information is which neuron 
fired and when it fired. In a real-time simulation the 
timing is implicit (and the communication, being 
effectively instantaneous, preserves the timing), so 
all we need to communicate is the identity of the 

neuron that fired, and we must send that to every 
neuron to which the firing neuron connects. 

In the biological system the identity of a firing 
neuron is spatially encoded – each neuron has its 
own physical axon. In our system we cannot imple-
ment an equivalent level of physical connectivity so 
instead we use logical encoding by sending a packet 
identifying the firing neuron around a network that 
connects all of the components together. 
 
4.3   Storage 
It is in the storage of information that the neuron’s 
story becomes most complex. There are many proc-
esses that can be seen as storing information, some 
operating over short time scales and some very 
long-term. For example: 
• the neural dynamics include multiple time con-

stants, each of which serves to preserve input 
information for some period of time; 

• the dynamical state of the network may pre-
serve information for some time; 

• the axons carry spikes at low speeds and there-
fore act as delay lines, storing information as it 
propagates for up to 20ms; 

• the coupling strength of a synapse is, in many 
cases, adaptive, with different time constants 
applying to different synapses. 

The primary long-term storage mechanism is 
synaptic modification (within which we include the 
growth of new synapses). 

In a real-time modelling system we expect the 
modelling to capture the neural and networks dy-
namics, and hence the contributions these mech-
nisms make to information storage. The axon delay-
line storage does not come so easily as we have de-
liberately exploited the high speeds of electronic 
signalling to make spike communication effectively 
instantaneous in order to support a virtual mapping 
of the physical structures. It is likely that the axon 
delay is functionally important, so we must put these 
delays back in, either by delaying the issue of the 
spike or by delaying its effect at the destination. 
Either solution can be achieved in software, but both 
have drawbacks, and this remains one of the trickier 
aspects of the design to resolve to our complete sat-
isfaction. 

The final storage process is the most fundamen-
tal: synaptic weight adaptivity. Here we require 
long-term stability and support for a range of learn-
ing algorithms. We will exploit the fact that digital 
semiconductor memory is a mass-produced low-cost 
commodity, and the proposed machine is built 
around the use of commodity memory for storing 
synaptic connectivity information. 



Indeed, as we shall see in the next section, the 
major resources in a neural computation system 
revolve around the synapses, not around the neural 
dynamics. 
 
 
5   Computing requirements 

Various estimates have been offered for the compu-
tational power required to run a real-time simulation 
of the human brain based on reasonably realistic 
neuron models. The answer generally comes out in 
the region of 1016 instructions per second, which is 
some way beyond the performance of a desktop PC 
or workstation, but not far beyond the performance 
of the petaFLOP supercomputers currently in de-
sign. 

The route to this performance estimate can be 
summarized as follows: the brain comprises around 
1011 neurons, each with of the order of 1,000 inputs. 
Each input fires at an average rate of 10 Hz, giving 
1015 connections per second, and each connection 
requires perhaps 10 instructions. 

Note that this estimate is based on the computing 
power required to handle the synaptic connections. 
Modelling the neuron dynamics is a smaller part of 
the problem: 1011 neurons each requiring a few 10s 
of instructions to update their dynamics perhaps 103 

times a second, requiring in total an order of magni-
tude less computing power than the connections. 

A similar calculation yields the memory re-
quirements of such a simulation: 1014 synapses each 
require of the order of a few bytes, so around 1014 
bytes of synaptic connection data are required. 

At present the only way a machine of such ca-
pacity can be conceived is to employ a massively 
parallel architecture. This is likely to remain true 
even with future developments in CMOS technol-
ogy as further increases in clock speed and individ-
ual processor throughput are unlikely to be great, as 
evidenced by the recent trend towards multi-core 
processors from all of the leading microprocessor 
vendors. The future of the microprocessor is in chip 
multiprocessors, and the future of high-performance 
computing is in massively parallel systems. 

Fortunately, the problem of simulating very 
large numbers of neurons in real time falls into the 
class of ‘embarrassingly’ parallel applications, 
where the available concurrency allows the trade-off 
of processor performance against the number of 
processors to be totally flexible. The issue, then, is 
to determine how such a system might be optimised. 
What are the relevant metrics against which to make 
decisions on the systems architecture? 

We propose that the primary metrics should be 
performance density (measured in MIPS/mm2 of 
silicon) and power-efficiency (measured in 

MIPS/watt). The former is the primary determinant 
of the capital cost of the machine, while the latter 
influences both the capital cost – in terms of the 
cooling plant – and the running cost – a machine 
such as this demands a significant electrical power 
budget. 

A choice then has to be made between using a 
large number of high-performance processors or an 
even larger number of more power-efficient embed-
ded processors. Here the metrics can be our guide – 
embedded processors win handsomely on power-
efficiency, and to a lesser extent on performance 
density, over their much more complex high-end 
counterparts. 

That, then sets the course for this work. The ob-
jective is to build a machine, based on large num-
bers of small processors, that has the potential to 
scale up to the levels of parallelism and performance 
necessary to model a brain in real time. Admittedly, 
modelling a complete human brain is some way 
beyond our current goals, but we should be able to 
model substantial  parts of the human brain and 
complete brains of less complex species with what 
we propose here, which is a machine capable of 
modelling a billion spiking neurons in real time. 
 
6   SpiNNaker 
A spinnaker is a large foresail that enables a yacht to 
make rapid progress in a following wind (see refer-
ence to ‘following wind’ in Section 2.2 above!). We 
have adopted SpiNNaker as a name for our project 
because it comes close to a contraction of ‘a (uni-

Figure 1:  The system architecture. 



versal) Spiking Neural Network architecture’, pro-
vided you say it quickly enough. Again, this is our 
goal: to build a computer system that is as universal 
as we can make it in its ability to simulate large sys-
tems of spiking neurons, preferably in real time. 

The following description of the system is 
largely extracted from Furber, Temple and Brown 
(2006). 
 
6.1   System architecture 
The system is implemented as a regular 2D array of 
nodes interconnected through bi-directional links in 
a triangular formation as illustrated in Fig. 1. The 
2D mesh is very straightforward to implement on a 
circuit board and also provides many alternative 
routes between any pair of nodes which is useful for 
reconfiguration to isolate faults. (Nothing in the 
communications architecture precludes the use of a 
more complex topology if this proves advanta-
geous.)  

Each node in the network comprises two chips: a 
chip multiprocessor (CMP) and an SDRAM, with 
the integer processing power of a typical PC but at 
much lower power and in a compact physical form. 
The six bidirectional links support a total of 6 Gbit/s 
of bandwidth into and out of the node. A system of 
100 x 100 nodes will deliver a total of 40 teraIPS, 
sufficient to simulate perhaps 200 million spiking 
neurons in real time, and will have a bisection band-
width of 200 Gbit/s. 

6.2   ARM968 processor subsystem 
For the reasons already outlined, we choose to base 
the system around a massively-parallel array of 

power-efficient embedded processors, and have 
chosen the ARM968 as offering the best balance of 
performance, area, power-efficiency and ease of use 
for our purposes. The ARM968 is a synthesizable 
ARM9 processor core with tightly-coupled instruc-
tion and data memories, and an integral on-chip bus 
(ARM Ltd, 2004). Each processor subsystem com-
prises a processor, instruction and data memory, 
timers, interrupt and DMA controllers and a com-
munications NoC interface (Fig. 2). 

We estimate that a 200 MIPS integer embedded 
ARM9 processor should be able to model 1,000 
leaky-integrate-and-fire (or Izhikevich) neurons, 
each with 1,000 inputs firing on average at 10 Hz, in 
real time. The synaptic connectivity information for 
these neurons requires around 4 Mbytes of memory 
and the neuron state requires around 50 Kbytes of 
memory. These estimates have led us to adopt a 
hybrid architecture where the synaptic data is held 
in an off-chip SDRAM while the neural state data is 
held in on-chip memory local to each embedded 
processor. A processing node in our system there-
fore comprises two ICs: a chip multiprocessor 
(CMP) with about twenty 200 MIPS embedded 
ARM9 processors, and an SDRAM chip. The synap-
tic data is accessed in large blocks and this enables 
an SDRAM bandwidth of around 1 GByte/s to pro-
vide this data at the required rate. 

The processors on a CMP share access to the 
SDRAM using a self-timed packet-switched Net-
work-on-Chip (NoC). This fabric will use the 
CHAIN technology (Bainbridge and Furber, 2002), 
developed at the University of Manchester and com-
mercialized by Silistix Ltd, which gives a through-

Figure 2:  Processor subsystem organization. 
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put of around 1 Gbit/s per 6-wire link (Bainbridge, 
Plana and Furber, 2004). The organization of the 
system NoC that connects the processor subsystems 
to the SDRAM is shown in Fig. 3.  

 
6.3   The communications system 

The major challenge in designing a scalable 
multi-chip neural modeling system is to emulate the 
very high connectivity of the biological system. The 
high fan-in and fan-out of neurons suggests that an 
efficient multicast communication system is re-
quired. We propose a communication NoC fabric 
based upon address-event signaling, but carried over 
a second self-timed packet-switched fabric rather 
than the usual bus-based fabric. The self-timed fab-
ric decouples the many different clock domains 
within and across the CMPs. 

The inter-chip communication uses a self-timed 
signalling system on an 8-wire inter-chip link that 
employs a self-timed 2-of-7 non-return-to-zero 
(NRZ) code (Bainbridge, Toms, Edwards and Fur-
ber, 2003) with an NRZ acknowledge. 16 of the 21 
possible 2-of-7 codes are used to carry four bits of 
data, and a 17th code carries end-of-packet (EOP). 
Each 8-wire link has a capacity of around 1 Gbit/s 
when connecting two CMPs on the same circuit 
board, matching the on-chip bandwidth of a CHAIN 
link, and the self-timed protocol guarantees correct 
operation (albeit at a lower data rate) when the 
CMPs are on different circuit boards, automatically 
adapting to the addition delays incurred by any sig-
nal buffering that may be required. 

The complete communications subsystem on a 
CMP is illustrated in Fig. 4. The inter-chip links are 
accessed via input protocol converters (‘Rx i/f’ in 
Fig. 4) that translate the off-chip 2-of-7 NRZ codes 
to the on-chip CHAIN codes, and output protocol 
converters (‘Tx i/f’) that perform the inverse transla-
tion. Each of the on-chip processing subsystems 
(‘fascicle processor’) is also a source of network 
traffic and a potential destination. All of the on- and 
off-chip sources are merged through an asynchro-
nous arbiter into a single stream of packets that 
passes through the multicast router which will, in 
turn, propagate the packet to a subset of its on- and 
off-chip outputs. The monitor processor is identical 
to a fascicle processor but is dedicated to system 
management functions rather than neural modeling. 
It is chosen from among the fascicle processors at 
boot time; the flexibility in its selection removes 
another possible single point of failure on the CMP, 
improving fault tolerance. 

The heart of the communication subsystem is the 
associative multicast router which directs every in-
coming packet to one or more of the local proces-
sors and output links using a routing key based on 
the source ID and a route look-up table. 
 
6.4   Fault-tolerance 
The scale of the proposed machine demands that it 
be designed with a high degree of fault-tolerance. 
Since the neural system we are modelling has intrin-
sic fault-tolerant properties (healthy humans lose 
about one neuron a second throughout their adult 
life; neurodegenerative diseases incur much higher 
loss rates) this capacity will be transferred to the 
simulated system to some degree. However, many 
of the techniques we employ to map the natural sys-
tem onto the electronic model concentrate distrib-
uted biological processes into single points of failure 
in the model: a single microprocessor models a 
thousand neurons; a single inter-chip link carries the 
spikes on perhaps a million axons. Thus we must 
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engineer some additional resilience into the elec-
tronic system. 

The highly regular structure of the machine 
comes to our aid here. If a processor fails we can 
migrate its workload to another, on the same or on a 
different chip. This will almost certainly lead to a 
glitch in the system’s real-time performance, but our 
goal is to minimise the size of this glitch and to 
build a system that is continuously monitoring its 
own performance and migrating its workload to 
minimise congestion, so a major failure just puts a 
higher transient demand on the workload manage-
ment processes. 

An inter-chip link failure (whether permanent or 
transient, perhaps due to local congestion) will be 
handled in the first instance at the hardware level, 
redirecting traffic automatically via an adjacent link, 
before invoking the performance management soft-
ware to carry out a more permanent solution. 

At all stages in the design we are exploring op-
portunities to identify mechanisms that support real-
time fault-tolerance, some of which exploit the in-
trinsic fault-tolerance of neural systems but many of 
which will contribute to a separate research agenda 
in the area of autonomic, self-healing systems. 

 
7   Conclusions 
The Grand Challenge of understanding the Architec-
ture of Brain and Mind is a multidisciplinary quest 
that will require many complementary approaches to 
run concurrently, each feeding off the others as 
sources of inspiration, ideas and sanity checks. The 
system synthesis approach of computer engineers 
such as ourselves may have something to contribute 
as a component of the overall process. An under-
standing of complex asynchronous interactions 
within digital systems seems highly relevant to the 
task of understanding the complex asynchronous 
interactions between neurons. 

In our quest to understand the dynamics of sys-
tems of asynchronous spiking neurons we hope to 
contribute both to providing tools that help under-
stand biological brains and also to the creation of 
novel computational systems that are inspired by 
biology, but whose link to biology may ultimately 
become tenuous. 

To this end we propose to construct a massively-
parallel computer that implements a universal spik-
ing neural network architecture, SpiNNaker. Based 
on a chip multiprocessor incorporating around 
twenty 200 MIPS embedded ARM968 processors, 
and employing a communications infrastructure 
specifically designed to support the multicast rout-
ing required for neural simulation, this system will 
scale to hundreds of thousands of processors model-
ling up to a billion neurons in real time. It will form 

a ‘sandpit’ in which we, and others with similar in-
terests, can experiment with large-scale systems of 
spiking neurons to test our network topologies and 
neural models in order to validate (or disprove) our 
theories of how neurons interact to generate the 
hardware platform that underpins the Architecture 
of Brain and Mind. 
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