

High-Performance Computing
for Systems of Spiking Neurons

Steve Furber and Steve Temple* Andrew Brown†

 *The University of Manchester †The University of Southampton
 School of Computer Science Department of Electronics and Computer Science

 Oxford Road, Manchester M13 9PL, UK Southampton, Hampshire, SO17 1BJ, UK
 steve.furber,steven.temple@manchester.ac.uk adb@ecs.soton.ac.uk

Abstract

We propose a bottom-up computer engineering approach to the Grand Challenge of understanding
the Architecture of Brain and Mind as a viable complement to top-down modelling and alternative
approaches informed by the skills and philosophies of other disciplines. Our approach starts from
the observation that brains are built from spiking neurons and then progresses by looking for a sys-
tematic way to deploy spiking neurons as components from which useful information processing
functions can be constructed, at all stages being informed (but not constrained) by the neural struc-
tures and microarchitectures observed by neuroscientists as playing a role in biological systems. In
order to explore the behaviours of large-scale complex systems of spiking neuron components we
require high-performance computing equipment, and we propose the construction of a machine spe-
cifically for this task – a massively parallel computer designed to be a universal spiking neural net-
work simulation engine.

1 Introduction

1.1 Neurons
The basic biological control component is the neu-
ron. A full understanding of the ‘Architecture of
Brain and Mind’ (Sloman, 2004) must, ultimately,
involve finding an explanation of the phenomenol-
ogical observations that can be expressed in terms of
the interactions between the neurons that comprise
the brain (together with their sensory inputs, actua-
tor outputs, and related biological processes).

Neurons appear to be very flexible components
whose utility scales over systems covering a vast
range of complexities. Very simple creatures find a
small number of neurons useful, honey bees find it
economic to support brains comprising around
850,000 neurons, and humans have evolved to carry
brains comprising 1011 neurons or so. The compo-
nent neuron used this range of complexities is basi-
cally the same in its principles of operation, so in
some sense it has a universality similar to that en-
joyed by the basic logic gate in digital engineering.

There is a further similarity between neurons and
logic gates: both are multiple-input single-output
components. However, while the typical fan-in (the
number of inputs to a component) and fan-out (the

number of other components the output of a particu-
lar component connects to) of a logic gate is in the
range 2 to 4, neurons typically have a fan-in and
fan-out in the range 1,000 to 10,000. (It is easy to
show that that mean fan-in and fan-out in a system
are the same – they are just different ways of count-
ing the number of connections between compo-
nents.)

A more subtle difference between a logic gate
and a neuron is in the dynamics of their internal
processes. Whereas a logic gate implements a proc-
ess that is essentially static and defined by Boolean
logic, so that at any time from a short time after the
last input change the output is a well-defined stable
function of the inputs, a neuron has complex dynam-
ics that includes several time constants, and its out-
put is a time series of action potentials or ‘spikes’.
The information conveyed by the neuron’s output is
encoded in the timing of the spikes in a way that is
not yet fully understood, although rate codes, popu-
lation codes and firing-order codes all seem offer
valid interpretations of certain observations of spik-
ing acitivity.

Accurate computer models of biological neurons
exist, but these are very complex. Various simpler
models have been proposed that capture some of the
features of the biology but omit others. The diffi-
culty lies in determining which of the features are

essential to the information processing functions of
the neuron and which are artefacts resulting from
the way the cell developed, its need to sustain itself,
and the complex evolutionary processes that led to
its current form.

1.2 Neural microarchitecture
The universality of the neuron as a component is
also reflected in certain higher-level structures of the
brain. For example, the cortex displays a 6-layer
structure and a regularity of interconnect between
the neurons in the various layers that can reasonably
deserve the application of the term ‘microarchitec-
ture’. The same regular laminar cortical microarchi-
tecture is in evidence across the cortex in regions
implementing low-level vision processes such as
edge-detection and in regions involved in high-level
functions such as speech and language processing.
This apparent ‘universality’ (used here to describe
one structure that can perform any function) of the
cortical microarchitecture suggests there are princi-
ples being applied here the understanding of which
could offer a breakthrough in our understanding of
brain function.

In contrast to the regularity and uniformity of the
microarchitecture, the particular connectivity pat-
terns that underpin these structures appear to be ran-
dom, guided by statistical principles rather than spe-
cific connectivity plans. The connectivity is also
locally adaptive, so the system can be refined
through tuning to improve its performance.

1.3 Engineering with neurons
As computer engineers we find the neuron’s univer-
sality across wide ranges of biological complexity to
be intriguing, and there is a real challenge in under-
standing how this component can be used to build
useful information processing systems. There is an
existence proof that this is indeed possible, but few
pointers to how the resulting systems might work.

There are other ‘engineering’ aspects of biologi-
cal neurons that are interesting, too. We have al-
ready mentioned the regularity of neural microarchi-
tecture. The power-efficiency of neurons (measured
as the energy required to perform a given computa-
tion) exceeds that of computer technology, possibly
because the neuron itself is a very low performance
component. While computer engineers measure gate
speeds in picoseconds, neurons have time constants
of a millisecond or longer. While computer engi-
neers worry about speed-of-light limitations and the
number of clock cycles it takes to get a signal across
a chip, neurons communicate at a few metres per
second. This very relaxed performance at the tech-
nology level is, of course, compensated by the very
high levels of parallelism and connectivity of the

biological system. Finally, neural systems display
levels of fault-tolerance and adaptive learning that
artificial systems have yet to approach.

We have therefore decided to take up the chal-
lenge to find ways to build useful systems based
upon spiking neuron components (for example, Fur-
ber, Bainbridge, Cumpstey and Temple, 2004), and
we hope that this will lead to mutually-stimulating
interactions with people from many other disciplines
whose approach to the same Grand Challenge, of
understanding the Architecture of Brain and Mind,
will be quite different from our own.

2 Relevance to GC5
What has any of this engineering really got to do
with the Grand Challenge of understanding the Ar-
chitecture of Brain and Mind?

As this is aimed at a broad audience, not many
of whom are computer engineers, we will digress
briefly to consider what computer engineers may
bring to this Grand Challenge. To begin with, it is
useful to appreciate the skills and mindset that a
computer engineer, for better or for worse, pos-
sesses. What can a person whose stock-in-trade con-
sists of logic gates, microchips and printed circuit
boards contribute to the bio-psycho-philosophical
quest to understand the workings of the mind?

2.1 A Computer Engineer’s manifesto
To a computer engineer ‘understand’ has a specific
meaning that is different from what a scientist
means by the same word, which is in turn probably
different from the meanings used by other disci-
plines. To the scientist, understanding is to have a
repeatably-verifiable explanation of a phenomenon.
To the engineer, understanding means to be able to
go away and build another artefact that works in the
same way. The scientist’s analysis reduces a com-
plex phenomenon into its basic components; this is
complemented by the engineer’s ability to take those
components, or components that encapsulate the
same essential behaviour, and synthesize them back
into a functioning system.

Thus, when a computer engineer claims to ‘un-
derstands’ how a mobile phone works, the statement
can be interpreted as meaning that they can (at least
in principle) explain when every one of the 100 mil-
lion or so transistors switches, why it switches, what
will happen if it fails to switch, and so on. OK, we
might get on less secure ground when describing the
chemistry of the lithium-ion battery and the details
of the radio and antenna design or the higher levels
of the software. And when it comes to explaining
why the plastic case is pink and the buttons are ar-
ranged in swirling patterns with no obvious ergo-
nomic objective we are completely lost! But back in

the familiar territory of the digital transistor circuits
we have a vocabulary comprising baseband proces-
sors, DSPs, maximum likelihood error correctors,
RAMs, buses, interrupts, and so on, that together
provide a language of description at multiple levels
of abstraction from an individual transistor to the
lower levels of the system software. This enables us
to describe in very fine detail how the phone works
and, more particularly, how you might make another
working phone at lower cost and with better battery
life.

This is the approach we bring to understanding
the Architecture of Brain and Mind. In neuroscience
we see that there are pretty accurate models of the
basic component from which brains are built – the
neuron. There are some rather sketchy and limited
descriptions of how these components are intercon-
nected and how they behave in natural networks,
and there is rather better information about their
macro-level modular organisation and gross activity.
The weakest part of the neuroscientists’ analysis (for
very good reason – it is hard to apply reductionist
principles to systems whose interesting characteris-
tics depend on their organizational complexity) is at
the intermediate levels between the component neu-
rons (where analysis is applicable) and the macro-
organisation (where mean field statistics work).

This intermediate level is precisely the level at
which the computer engineer may have something
to offer. Assembling basic components into func-
tional units, implementing useful computational
processes based on networks of dynamical systems,
these are all second nature to the computer engineer
once we have come to grips with the spiking neuron
as a component. As we observed earlier, it even
looks a bit like a logic gate – several inputs but only
one output.

The intrinsic dynamics of a neuron may con-
found the computer engineer who is used to working
only with digital circuits that are controlled by the
extrinsic straitjacket of a clock signal, but a small
minority of us are proficient in building circuits
whose sequential behaviour is intrinsic – members
of the class of digital circuit generally described as
asynchronous or self-timed. The knowledge we hold
on how to build reliable, highly complex asynchro-
nous digital systems may just provide us with new
insights into the highly complex asynchronous neu-
ral systems that provide the hardware platform upon
which the brain and mind are built.

2.2 GC5 methodology
Our approach to this Grand Challenge is essentially
bottom-up, which will complement the top-down
and middle-out approaches that are better-suited to
those who bring different skills and mindsets from
other disciplines.

The bottom-up approach starts from the concept
of a neuron as a basic component, and then seeks
useful compositions of neurons to create (and im-
plement) increasingly higher levels of functional
abstraction. These compositions may be inspired by
neuroscience; for example, we have an involvement
in the EPSRC-funded COLAMN project which has
as its goal the creation of novel computational archi-
tectures based on the laminar microarchitecture of
the neocortex, with considerable input from the
‘wet’ neuroscientists in the project. Or they may be
designed in the abstract; for example our earlier
work on N-of-M coded sparse distributed memories
(Furber, Bainbridge, Cumpstey and Temple, 2004) –
with at best tenuous relevance to biology.

A feature of this research is that it can yield a
positive outcome in two distinct ways. It may con-
tribute to the scientific objective of understanding
the architecture of brain and mind, and/or it may
contribute to the engineering objective of delivering
better/different/novel models of computation. Either
of these outcomes would justify our engagement,
and with a following wind we might just achieve
both...

In order to pursue this research agenda we need
a sandpit in which we can experiment with neuron
components on a large scale, hence the massively
parallel high-performance computer theme that we
will turn to shortly. This large-scale engineering
project brings with it additional research aspects
relating to fault-tolerance, autonomic computing,
self-healing, networks-on-chip, and so forth, all of
which add to the engineering challenge but probably
contribute little to the GC5 agenda.

3 Objectives

We have set ourselves the objective of simulating a
billion spiking neurons in real time while making as
few assumptions as possible about what a neuron is
and how the neurons are connected. We approach
this by viewing a neural system as an event-driven
dynamical system – a hybrid system where a (large)
set of components, each of which operates in con-
tinuous time (and is characteristically described by a
set of differential equations), interact through dis-
crete events.

In order to retain complete flexibility in the in-
ternal neural dynamics we implement the real-time
differential equation solvers (which will typically
use discrete-time fixed-point approximations) in
software, and then exploit the high speeds of elec-
tronic signalling to communicate the discrete inter-
neuron communication events around the system in
a time which is close to instantaneous on the time-
scales of the neuron dynamics. This allows us to use
a virtual mapping from the physical structure of the

biological system we are modelling to the physical
structure of the electronic system we are running the
model on.

4 Neural computation

Any computation system must achieve a balance
between its processing, storage and communication
functions. It is useful to consider how these three
functions are achieved in neural systems.

4.1 Processing
The neuron itself performs the processing function.
It produces output events in response to input events
through a non-linear transfer function, which we
will model using suitable differential equations
whose complexity is limited only by the available
computing power.

The simplest neuron models process inputs by
taking a linear sum of the inputs, each weighted by
the strength of its respective synapse. When the in-
puts are spike events the multiplication implied by
the weighting process reduces to repeated addition.
Multiplication by repeated addition is usually ineffi-
cient, but here many inputs are likely to be inactive
at any time and multiplication by zero by repeated
addition is supremely efficient!

The weighted input sum is then used to drive the
neural dynamics. A leaky-integrate-and-fire (LIF)
model applies an exponential decay to the effect of
each input, but if enough inputs fire close together
in time to push the total activation past a threshold,
the neuron fires its output and resets. More sophisti-
cated models have more complex dynamics. For
example, the models by Izhikevich (2004) are based
on mathematical bifurcation and display a more
diverse range of biologically-relevant behaviours
that the LIF model.

4.2 Communication
Communication in neural systems is predominantly
through the propagation of spike ‘events’ from one
neuron to the next. The output from the neuron’s
body – its soma – passes along its axon which con-
veys the spike to its many target synapses. Each
synapse use chemical processes to couple the spike
to the input network – the dendritic tree – of another
neuron.

Since the spike carries no information in its
shape or size, the only information is which neuron
fired and when it fired. In a real-time simulation the
timing is implicit (and the communication, being
effectively instantaneous, preserves the timing), so
all we need to communicate is the identity of the

neuron that fired, and we must send that to every
neuron to which the firing neuron connects.

In the biological system the identity of a firing
neuron is spatially encoded – each neuron has its
own physical axon. In our system we cannot imple-
ment an equivalent level of physical connectivity so
instead we use logical encoding by sending a packet
identifying the firing neuron around a network that
connects all of the components together.

4.3 Storage
It is in the storage of information that the neuron’s
story becomes most complex. There are many proc-
esses that can be seen as storing information, some
operating over short time scales and some very
long-term. For example:
• the neural dynamics include multiple time con-

stants, each of which serves to preserve input
information for some period of time;

• the dynamical state of the network may pre-
serve information for some time;

• the axons carry spikes at low speeds and there-
fore act as delay lines, storing information as it
propagates for up to 20ms;

• the coupling strength of a synapse is, in many
cases, adaptive, with different time constants
applying to different synapses.

The primary long-term storage mechanism is
synaptic modification (within which we include the
growth of new synapses).

In a real-time modelling system we expect the
modelling to capture the neural and networks dy-
namics, and hence the contributions these mech-
nisms make to information storage. The axon delay-
line storage does not come so easily as we have de-
liberately exploited the high speeds of electronic
signalling to make spike communication effectively
instantaneous in order to support a virtual mapping
of the physical structures. It is likely that the axon
delay is functionally important, so we must put these
delays back in, either by delaying the issue of the
spike or by delaying its effect at the destination.
Either solution can be achieved in software, but both
have drawbacks, and this remains one of the trickier
aspects of the design to resolve to our complete sat-
isfaction.

The final storage process is the most fundamen-
tal: synaptic weight adaptivity. Here we require
long-term stability and support for a range of learn-
ing algorithms. We will exploit the fact that digital
semiconductor memory is a mass-produced low-cost
commodity, and the proposed machine is built
around the use of commodity memory for storing
synaptic connectivity information.

Indeed, as we shall see in the next section, the
major resources in a neural computation system
revolve around the synapses, not around the neural
dynamics.

5 Computing requirements

Various estimates have been offered for the compu-
tational power required to run a real-time simulation
of the human brain based on reasonably realistic
neuron models. The answer generally comes out in
the region of 1016 instructions per second, which is
some way beyond the performance of a desktop PC
or workstation, but not far beyond the performance
of the petaFLOP supercomputers currently in de-
sign.

The route to this performance estimate can be
summarized as follows: the brain comprises around
1011 neurons, each with of the order of 1,000 inputs.
Each input fires at an average rate of 10 Hz, giving
1015 connections per second, and each connection
requires perhaps 10 instructions.

Note that this estimate is based on the computing
power required to handle the synaptic connections.
Modelling the neuron dynamics is a smaller part of
the problem: 1011 neurons each requiring a few 10s
of instructions to update their dynamics perhaps 103

times a second, requiring in total an order of magni-
tude less computing power than the connections.

A similar calculation yields the memory re-
quirements of such a simulation: 1014 synapses each
require of the order of a few bytes, so around 1014
bytes of synaptic connection data are required.

At present the only way a machine of such ca-
pacity can be conceived is to employ a massively
parallel architecture. This is likely to remain true
even with future developments in CMOS technol-
ogy as further increases in clock speed and individ-
ual processor throughput are unlikely to be great, as
evidenced by the recent trend towards multi-core
processors from all of the leading microprocessor
vendors. The future of the microprocessor is in chip
multiprocessors, and the future of high-performance
computing is in massively parallel systems.

Fortunately, the problem of simulating very
large numbers of neurons in real time falls into the
class of ‘embarrassingly’ parallel applications,
where the available concurrency allows the trade-off
of processor performance against the number of
processors to be totally flexible. The issue, then, is
to determine how such a system might be optimised.
What are the relevant metrics against which to make
decisions on the systems architecture?

We propose that the primary metrics should be
performance density (measured in MIPS/mm2 of
silicon) and power-efficiency (measured in

MIPS/watt). The former is the primary determinant
of the capital cost of the machine, while the latter
influences both the capital cost – in terms of the
cooling plant – and the running cost – a machine
such as this demands a significant electrical power
budget.

A choice then has to be made between using a
large number of high-performance processors or an
even larger number of more power-efficient embed-
ded processors. Here the metrics can be our guide –
embedded processors win handsomely on power-
efficiency, and to a lesser extent on performance
density, over their much more complex high-end
counterparts.

That, then sets the course for this work. The ob-
jective is to build a machine, based on large num-
bers of small processors, that has the potential to
scale up to the levels of parallelism and performance
necessary to model a brain in real time. Admittedly,
modelling a complete human brain is some way
beyond our current goals, but we should be able to
model substantial parts of the human brain and
complete brains of less complex species with what
we propose here, which is a machine capable of
modelling a billion spiking neurons in real time.

6 SpiNNaker
A spinnaker is a large foresail that enables a yacht to
make rapid progress in a following wind (see refer-
ence to ‘following wind’ in Section 2.2 above!). We
have adopted SpiNNaker as a name for our project
because it comes close to a contraction of ‘a (uni-

Figure 1: The system architecture.

versal) Spiking Neural Network architecture’, pro-
vided you say it quickly enough. Again, this is our
goal: to build a computer system that is as universal
as we can make it in its ability to simulate large sys-
tems of spiking neurons, preferably in real time.

The following description of the system is
largely extracted from Furber, Temple and Brown
(2006).

6.1 System architecture
The system is implemented as a regular 2D array of
nodes interconnected through bi-directional links in
a triangular formation as illustrated in Fig. 1. The
2D mesh is very straightforward to implement on a
circuit board and also provides many alternative
routes between any pair of nodes which is useful for
reconfiguration to isolate faults. (Nothing in the
communications architecture precludes the use of a
more complex topology if this proves advanta-
geous.)

Each node in the network comprises two chips: a
chip multiprocessor (CMP) and an SDRAM, with
the integer processing power of a typical PC but at
much lower power and in a compact physical form.
The six bidirectional links support a total of 6 Gbit/s
of bandwidth into and out of the node. A system of
100 x 100 nodes will deliver a total of 40 teraIPS,
sufficient to simulate perhaps 200 million spiking
neurons in real time, and will have a bisection band-
width of 200 Gbit/s.

6.2 ARM968 processor subsystem
For the reasons already outlined, we choose to base
the system around a massively-parallel array of

power-efficient embedded processors, and have
chosen the ARM968 as offering the best balance of
performance, area, power-efficiency and ease of use
for our purposes. The ARM968 is a synthesizable
ARM9 processor core with tightly-coupled instruc-
tion and data memories, and an integral on-chip bus
(ARM Ltd, 2004). Each processor subsystem com-
prises a processor, instruction and data memory,
timers, interrupt and DMA controllers and a com-
munications NoC interface (Fig. 2).

We estimate that a 200 MIPS integer embedded
ARM9 processor should be able to model 1,000
leaky-integrate-and-fire (or Izhikevich) neurons,
each with 1,000 inputs firing on average at 10 Hz, in
real time. The synaptic connectivity information for
these neurons requires around 4 Mbytes of memory
and the neuron state requires around 50 Kbytes of
memory. These estimates have led us to adopt a
hybrid architecture where the synaptic data is held
in an off-chip SDRAM while the neural state data is
held in on-chip memory local to each embedded
processor. A processing node in our system there-
fore comprises two ICs: a chip multiprocessor
(CMP) with about twenty 200 MIPS embedded
ARM9 processors, and an SDRAM chip. The synap-
tic data is accessed in large blocks and this enables
an SDRAM bandwidth of around 1 GByte/s to pro-
vide this data at the required rate.

The processors on a CMP share access to the
SDRAM using a self-timed packet-switched Net-
work-on-Chip (NoC). This fabric will use the
CHAIN technology (Bainbridge and Furber, 2002),
developed at the University of Manchester and com-
mercialized by Silistix Ltd, which gives a through-

Figure 2: Processor subsystem organization.

ARM9 core

32kB
Instruction
RAM

Comm
i/f

64kB
Data
RAM

NoC
i/f

Timer/
counter

DMA Interr.
control

ARM968

Figure 3: The CMP system NoC.

Processor Processor Processor

SDRAM i/f

SDRAM
(off chip)

NoC

to communications system

put of around 1 Gbit/s per 6-wire link (Bainbridge,
Plana and Furber, 2004). The organization of the
system NoC that connects the processor subsystems
to the SDRAM is shown in Fig. 3.

6.3 The communications system

The major challenge in designing a scalable
multi-chip neural modeling system is to emulate the
very high connectivity of the biological system. The
high fan-in and fan-out of neurons suggests that an
efficient multicast communication system is re-
quired. We propose a communication NoC fabric
based upon address-event signaling, but carried over
a second self-timed packet-switched fabric rather
than the usual bus-based fabric. The self-timed fab-
ric decouples the many different clock domains
within and across the CMPs.

The inter-chip communication uses a self-timed
signalling system on an 8-wire inter-chip link that
employs a self-timed 2-of-7 non-return-to-zero
(NRZ) code (Bainbridge, Toms, Edwards and Fur-
ber, 2003) with an NRZ acknowledge. 16 of the 21
possible 2-of-7 codes are used to carry four bits of
data, and a 17th code carries end-of-packet (EOP).
Each 8-wire link has a capacity of around 1 Gbit/s
when connecting two CMPs on the same circuit
board, matching the on-chip bandwidth of a CHAIN
link, and the self-timed protocol guarantees correct
operation (albeit at a lower data rate) when the
CMPs are on different circuit boards, automatically
adapting to the addition delays incurred by any sig-
nal buffering that may be required.

The complete communications subsystem on a
CMP is illustrated in Fig. 4. The inter-chip links are
accessed via input protocol converters (‘Rx i/f’ in
Fig. 4) that translate the off-chip 2-of-7 NRZ codes
to the on-chip CHAIN codes, and output protocol
converters (‘Tx i/f’) that perform the inverse transla-
tion. Each of the on-chip processing subsystems
(‘fascicle processor’) is also a source of network
traffic and a potential destination. All of the on- and
off-chip sources are merged through an asynchro-
nous arbiter into a single stream of packets that
passes through the multicast router which will, in
turn, propagate the packet to a subset of its on- and
off-chip outputs. The monitor processor is identical
to a fascicle processor but is dedicated to system
management functions rather than neural modeling.
It is chosen from among the fascicle processors at
boot time; the flexibility in its selection removes
another possible single point of failure on the CMP,
improving fault tolerance.

The heart of the communication subsystem is the
associative multicast router which directs every in-
coming packet to one or more of the local proces-
sors and output links using a routing key based on
the source ID and a route look-up table.

6.4 Fault-tolerance
The scale of the proposed machine demands that it
be designed with a high degree of fault-tolerance.
Since the neural system we are modelling has intrin-
sic fault-tolerant properties (healthy humans lose
about one neuron a second throughout their adult
life; neurodegenerative diseases incur much higher
loss rates) this capacity will be transferred to the
simulated system to some degree. However, many
of the techniques we employ to map the natural sys-
tem onto the electronic model concentrate distrib-
uted biological processes into single points of failure
in the model: a single microprocessor models a
thousand neurons; a single inter-chip link carries the
spikes on perhaps a million axons. Thus we must

fascicle
processor

fascicle
processor

fascicle
processor

fascicle
processor

Rx i/f

Rx i/f

Tx i/f

Tx i/f

monitor
processor

Rx i/f

Rx i/f

Tx i/f

Tx i/f

Figure 4: The communications NoC.

system
NoC

arbiter

router

engineer some additional resilience into the elec-
tronic system.

The highly regular structure of the machine
comes to our aid here. If a processor fails we can
migrate its workload to another, on the same or on a
different chip. This will almost certainly lead to a
glitch in the system’s real-time performance, but our
goal is to minimise the size of this glitch and to
build a system that is continuously monitoring its
own performance and migrating its workload to
minimise congestion, so a major failure just puts a
higher transient demand on the workload manage-
ment processes.

An inter-chip link failure (whether permanent or
transient, perhaps due to local congestion) will be
handled in the first instance at the hardware level,
redirecting traffic automatically via an adjacent link,
before invoking the performance management soft-
ware to carry out a more permanent solution.

At all stages in the design we are exploring op-
portunities to identify mechanisms that support real-
time fault-tolerance, some of which exploit the in-
trinsic fault-tolerance of neural systems but many of
which will contribute to a separate research agenda
in the area of autonomic, self-healing systems.

7 Conclusions
The Grand Challenge of understanding the Architec-
ture of Brain and Mind is a multidisciplinary quest
that will require many complementary approaches to
run concurrently, each feeding off the others as
sources of inspiration, ideas and sanity checks. The
system synthesis approach of computer engineers
such as ourselves may have something to contribute
as a component of the overall process. An under-
standing of complex asynchronous interactions
within digital systems seems highly relevant to the
task of understanding the complex asynchronous
interactions between neurons.

In our quest to understand the dynamics of sys-
tems of asynchronous spiking neurons we hope to
contribute both to providing tools that help under-
stand biological brains and also to the creation of
novel computational systems that are inspired by
biology, but whose link to biology may ultimately
become tenuous.

To this end we propose to construct a massively-
parallel computer that implements a universal spik-
ing neural network architecture, SpiNNaker. Based
on a chip multiprocessor incorporating around
twenty 200 MIPS embedded ARM968 processors,
and employing a communications infrastructure
specifically designed to support the multicast rout-
ing required for neural simulation, this system will
scale to hundreds of thousands of processors model-
ling up to a billion neurons in real time. It will form

a ‘sandpit’ in which we, and others with similar in-
terests, can experiment with large-scale systems of
spiking neurons to test our network topologies and
neural models in order to validate (or disprove) our
theories of how neurons interact to generate the
hardware platform that underpins the Architecture
of Brain and Mind.
Acknowledgements
This work is supported by the EPSRC Advanced
Processor Technologies Portfolio Partnership
Award. Steve Furber holds a Royal Society-Wolfson
Research Merit Award. The support of ARM Ltd
and Silistix Ltd for the proposed work is gratefully
acknowledged.

References
ARM Ltd. ARM968E-S Technical Reference

Manual. DDI 0311C, 2004.
http://www.arm.com/products/CPUs/ARM968E-S.html

W. J. Bainbridge and S. B. Furber. CHAIN: A
Delay-Insensitive Chip Area Interconnect. IEEE
Micro, 22(5):16-23, 2002.

W. J. Bainbridge, L. A. Plana and S. B. Furber. The
Design and Test of a Smartcard Chip Using a
CHAIN Self-timed Network-on-Chip. Proc.
DATE'04, 3:274, Paris, Feb 2004.

W. J. Bainbridge, W. B. Toms, D. A. Edwards and
S. B. Furber. Delay-Insensitive, Point-to-Point
Interconnect using m-of-n codes. Proc. Async
:132-140, Vancouver, May 2003.

S. B. Furber, W. J. Bainbridge, J. M. Cumpstey and
S. Temple. A Sparse Distributed Memory based
upon N-of-M Codes. Neural Networks
17(10):1437-1451, 2004.

S. B. Furber, S. Temple and A. D. Brown. On-chip
and Inter-Chip Networks for Modelling Large-
Scale Neural Systems. Proc. ISCAS’06, Kos,
May 2006 (to appear).

E. M. Izhikevich. Which Model to Use for Cortical
Spiking Neurons? IEEE Trans. Neural
Networks, 15:1063-1070, 2004.

A. Sloman (ed.). The Architecture of Brain and
Mind. UKCRC Grand Challenge 5 report, 2004.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

