
Integration and Decomposition in Cognitive Architecture
John Knapman*

*School of Computer Science
The University of Birmingham, UK
J.M.Knapman@cs.bham.ac.uk

Abstract

Given the limitations of human researchers’ minds, it is necessary to decompose systems and then
address the problem of how to integrate at some level of abstraction. Connectionism and numerical
methods need to be combined with symbolic processing, with the emphasis on scaling to large
numbers of competencies and knowledge sources and to large state spaces. A proposal is briefly
outlined that uses overlapping oscillations in a 3-D grid to address disparate problems. Two selected
problems are the use of analogy in commercial software evolution and the analysis of medical im-
ages.

1 Introduction
Debates about cognitive architecture often deal with
choices between rival techniques and modalities. By
contrast, Minsky, Singh and Sloman (2004) empha-
sise the importance of integrating components of
differing kinds.

A standard method in designing complex sys-
tems is to decompose into components and then
connect them, simply because it is impossible for
individual team members to hold all the detail in
their heads. Because of such limitations, there are
those who think that it is not possible for human
beings to design systems that exhibit general intelli-
gence comparable to their own (Rees, 2003). Even
after fifty years of research, such counsels of despair
are premature until we have explored more of the
possibilities. The prizes are great, in part for a better
understanding of ourselves and the enlightenment it
will bring in the tradition of the dazzling human
progress since the Renaissance in many fields, in-
cluding medicine and technology. There are also
strong commercial benefits in being able to build
smarter systems that can undertake dangerous or
unpopular work.

To make substantial progress, there are lessons
to learn from work on the architecture of computer
systems generally (Bass, Clements and Kazman,
2003), which informs us that a key responsibility of
the architect is to define how the components fit
together and interface with each other. This assumes
that there is a degree of uniformity in the style of the
components, so that their interfaces can be defined

in a form that is commonly understood by the peo-
ple working on them. Interfaces are then specified in
terms, firstly of timing and flow of control (serial or
parallel, hierarchical or autonomous, event driven or
scheduled, for example), and secondly in terms of
the format of data flowing between components.

A less well documented but nevertheless well
known experience is that a small team of dedicated
experts can achieve wonders compared with large
teams of people with mixed ability. A small team of
four highly experienced people can often produce
efficient, reliable and timely systems that solve
problems most effectively. By contrast, many re-
search (and development) teams consist of one ex-
perienced person, who is very busy, and several
bright but inexpert assistants. To get an expert team
together to work full time and hands on for a period
of years is expensive and disrupts other activities,
but the results can be very exciting.

Even with such a promising kind of team organi-
sation, interfaces have to be defined. In cognitive
architecture, components will be of differing kinds.
Connectionist methods that emphasise learning and
convergence must somehow be combined effec-
tively with symbolic processing. Sun (2002) shows
how symbolic rules may be inferred from state tran-
sitions in a connectionist network, but that is only
one of several ways in which interactions could take
place. There are other promising numerical meth-
ods, such as KDDA, which has been applied suc-
cessfully to face recognition (Wu, Kittler, Yang,
Messer and Wang, 2004).

The strong emphasis on learning and learnability
in connectionist methods is carried over to symbolic
rules in Sun’s method, but there are other benefits

from connectionism, such as approximate matching
and graceful degradation, that need to be exploited
in a combined system. Benefits like these accrue not
just from connectionism but from other soft com-
puting paradigms (see Barnden (1994) for a good
discussion in the context of the study of analogy).

One method for linking components that use
quite different representations from differing stand-
points is to use numerical factors, whether these are
interpreted as probabilities, fuzzy or other uncer-
tainty values, ad hoc weights, or arrays of affective
measures (e.g., motivation (Coddington and Luck,
2003), duty, elegance). Such techniques can also
help to reduce search spaces and large state spaces,
although they may sometimes smack of heuristics of
the kind favoured by researchers in the 1970s.

2 Abstraction
Many different kinds of abstraction have been iden-
tified. In the field of computer system design, there
are methods with well-defined levels of abstraction,
the most concrete being a set of programs that im-
plements a design. In the B and Z methods (Bert,
Bowen, King and Waldén, 2003) there are formal
proof procedures to show that a more concrete
specification is a refinement of one that is more ab-
stract.

Less formal methods, such as the Unified Soft-
ware Development Method (Jacobson, Booch and
Rumbaugh, 1999), based on the Unified Modeling
Language (UML) still have the idea that a high-level
design (as an object diagram) can be refined pro-
gressively until implementation. Beyond the writing
of the programs, a more complete analysis sees the
programs and their specifications as abstractions of
their actual performance, as recorded in traces while
they execute. The diagrams are found to be better
for communicating between designers and develop-
ers than either formal-language statements or natu-
ral-language descriptions.

Even though there is a clear definition of ab-
straction in these examples, users often feel intui-
tively that the diagrams are less abstract than the
text. Such an intuition throws up the difficulty of
defining abstraction in a general way. It seems to
depend on fitness for purpose as well as brevity and
omission of detail.

In the case of a story told in a natural language, a
synopsis is more abstract in the latter sense. In the
case of scientific papers, the “abstract” is intended
to help readers decide whether to read the main pa-
per. The “management summary” of a business re-
port allows busy senior people to understand enough
to be able to trust and defend their subordinates’
recommendations.

A reference to “the report”, “the story” or “the
paper” is clearly more abstract than having to repeat
the content. Generally, referring to something ver-
bally or symbolically is brief, enables it to be dealt
with in its absence, and permits economy of
thought, i.e., it leaves mental room, as it were, for
other concepts to be introduced and related to it.

Uncertainty representations provide another
form of abstraction, and one that is particularly easy
to formalise (Baldwin, Martin and Pilsworth, 1995).
A fuzzy value can stand for “the hand-written letter
that is probably a k”, or “the car that looked like a
Jaguar”. Such representations are the clearest candi-
date for a form of abstraction that can be used to
enable disparate sources of knowledge to be com-
bined effectively and rapidly. For example, a mov-
ing picture, some sounds, previous experience of
steam trains and expectation that the Flying Scots-
man will pass through the station at 11:00 a.m.
combine so as to interpret the distant approach of
the train while ignoring most other details.

3 Large State Spaces
Problems often entail large numbers of possibilities.
Although both abstractions and numerical methods
can help to reduce the possibilities, there are fre-
quently cases where many possible states must be
carried forward before higher abstractions can be
used to eliminate some. Sometimes called the “AI-
complete” problem, there have been hopes that
quantum information processing could address it.
However, the breakthrough has not so far come.
Apart from special cases where the data has cyclic
properties (as in modal arithmetic for code break-
ing), the main benefit is that large state spaces
(having N states) can be searched in time propor-
tional to √N instead of N/2. This can be worthwhile
in some cases (e.g., reducing 500 billion steps to one
million), but must await the availability of suitable
hardware. The programming skills required are
rather daunting.

Some people have suggested that the unstable
periodic orbits (UPOs) of chaotic oscillators (Crook
and Scheper, 2001) can represent potentially infi-
nitely many things. It has been observed that the
signals in a brain appear to be either random or cha-
otic before settling rapidly to a coherent state (Tsui
and Jones, 1999). In theory, a random signal con-
tains all possible frequencies, but a practical random
signal is limited to the bandwidth of the channel and
takes a long time to distinguish from a sum of many
overlapping signals of different frequencies, an idea
taken up in the Proposal section below. A chaotic
signal is somewhere in between, and is also indis-
tinguishable in practice (Gammaitoni, Hänggi, Jung
and Marchesoni, 1998) from the other two.

4 Requirements
A test bed for the exploration of ideas is needed that
supports the following requirements:

1. Combining modalities, especially connectionist,
symbolic and affective

2. Combining competencies, including (but not
limited to) analogy and structure matching, vi-
sion and formal language interpretation

3. Abstraction, with emphasis on combining
knowledge sources

4. Scaling to large state spaces, particularly ex-
ploring efficient forms of parallelism

5. Scaling to large numbers of knowledge sources

5 Proposal
To explore these issues and requirements, one ap-
proach is to design and simulate a programmable
signal-processing network capable of both symbolic
and connectionist processing, with commitment to
as few preconceptions as possible.

A flexible structure is proposed that will allow
for the interplay of several loose decompositions.
We will allow an element to belong to several
groupings, which can be nested. It must identify
with which grouping any particular communication
is associated. With such a protocol, elements are
not confined to a hierarchical organisation, but hier-
archies are still possible, and communication chan-
nels are more manageable than in a complete free
for all.

E1 E2 E3 E4 E5 E6 E7 E8 E10E9
G1 G2

G3
G4

G5
G6

H1 H2 H3

T

Figure 1: Illustration of Flexible Structuring – con-
tainment is shown by nesting or with arrows

A message between two elements has to con-
form to the representational format of their common
grouping at some level of nesting. Then, if the prime
method of communication is broadcasting, for ex-
ample, broadcasting (both sending and receiving)
would only take place within a grouping and would
follow the representational convention for that
grouping. In the illustration of Figure 1, E1 and E2
can communicate by the conventions of their con-

taining groupings G1, H1 and T. E1 can communicate
with E3, E4, E5 and E6 by the conventions of H1 and
T, because these four are in G3, which is in H1. E1
can only communicate with E10 by the conventions
of T or by some form of relay through intermediate
subordinate groupings.

Within such a general framework, it is proposed
to exploit the parallelism inherent in modulated
overlapping signals of many frequencies embedded
in a 3-D grid. One such model is described by Cow-
ard (2004) as an attempt to emulate aspects of the
architecture of the brain. Uncertainty models, in-
cluding Bayesian nets (Pearl, 1988) and fuzzy logic,
are to be accommodated. It must be suitable for both
learning and programmed behaviour. Programming
provides the flexibility to explore challenging appli-
cations, and it allows certain abilities to be built in.
For other capabilities, there should always be at
least the possibility that the symbols and mappings
defined could be acquired through experience or by
an indirect process such as analogy, deduction or
abstraction.

There must be support for widely differing data
types, particularly for image processing and formal
language processing. The particular problems under
consideration are in two domains:

1. The application of analogical reasoning to
commercial software evolution

2. Analysis of medical images
It must be reasonably clear how the framework

may be extended to other modalities, e.g., move-
ment control for vehicles or robots.

A particularly elegant form of programming is
functional programming, where every program is a
transformation from the input parameters to an out-
put value. A function is defined in mathematics as a
set of ordered pairs of input and output. Most pro-
grammers think of procedures as behaving algo-
rithmically, but the alternative definition sees a
function as a transformation from input to output via
memory lookup. The effect of a procedure giving
multiple results can be achieved by multiple func-
tions that take the same parameters. Functions of
several variables can be decomposed into (single
valued) functions of pairs of variables.

This view of a function is particularly conven-
ient for the parallel processing of overlapping sig-
nals of many frequencies. Such signals can encode
ranges or uncertainty in data but can also represent
patterns of input, such as image intensities or char-
acters in text.

Frequency can be used to encode data values,
with amplitude representing strength. A transforma-
tion converts from an input frequency to an output
frequency and may adjust the weight. Thus it may
transform one pattern to another or may perform
simultaneous logical operations on parallel data. The
transformation of patterns using weight adjustment

can be equivalent to that performed in connectionist
networks, with a natural mechanism for incorporat-
ing learning. Logical operations may not need to
perform weight adjustment, but conjunction and
disjunction between two sets of signals are needed.
Disjunction can be achieved by summing. Conjunc-
tion requires frequency matching.

Some programming models require a global
state, for example the query and subgoals in
PROLOG, whereas object-oriented (OO) program-
ming localises the state information in separate ob-
jects.

A 3-D grid can contain many channels, and the
signals can persist for some time, somewhat in the
manner of objects in OO programming, though with
different dynamics. Together they may encode a
very large state space, even though there is a limit to
the number of signals that can be carried on one
channel because of the constraints of bandwidth.
They are well suited to representing data structures
such as parse trees or image region classifications.

The interactions are different from those in
quantum computing; there, each state is completely
integrated but is processed in isolation from all oth-
ers. In the 3-D grid, a state is distributed, but infor-
mation from many states can be mixed.

6 Conclusion
After half a century’s work, there remain many
ideas that can be explored, particularly in the arena
of integration. It would be most exciting to see what
a dedicated team of four or five experts able to work
full time for a period of years could achieve. How-
ever, the challenge remains of discovering a small
enough set of representations that are general
enough for interfacing between the kinds and styles
of components identified but are nevertheless suc-
cinct enough to be computationally tractable.

Acknowledgements
I’m grateful for valuable discussions with Aaron
Sloman.

References
J.F. Baldwin, T.P. Martin and B.W. Pilsworth. Fril

– Fuzzy and Evidential Reasoning in Artificial
Intelligence, Research Studies Press, Taunton,
UK and Wiley, New York, 1995, p.54

John Barnden. On Using Analogy to Reconcile
Connections and Symbols, in Levine, D.S. and
Aparicio, M. (eds.) Neural Networks for
Knowledge Representation and Inference,
Hillsdale, New Jersey: Erlbaum 27-64, 1994

Didier Bert, Jonathan Bowen, Steve King, Marina
Waldén (eds.) ZB 2003: Formal Specification
and Development in Z and B: Third Interna-
tional Conference of B and Z Users, Turku,
Finland, June 4-6, LNCS 2651, Springer, 2003

Len Bass, Paul Clements and Rick Kazman. Soft-
ware Architecture in Practice (2nd edition),
Addison-Wesley, 2003

Alexandra Coddington and Michael Luck. Towards
Motivation-based Plan Evaluation, in Proceed-
ings of the Sixteenth International FLAIRS Con-
ference (FLAIRS '03), Russell, I. and Haller, S.
(eds.), AAAI Press, 298-302, 2003

L. Andrew Coward. The Recommendation Archi-
tecture Model for Human Cognition. Proceed-
ings of the Conference on Brain Inspired Cogni-
tive Systems, University of Stirling, Scotland,
2004

Nigel Crook and Tjeerd olde Scheper. A Novel
Chaotic Neural Network Architecture,
ESANN'2001 proceedings – European Sympo-
sium on Artificial Neural Networks, Bruges,
Belgium, 25-27 April 2001, D-Facto public.,
ISBN 2-930307-01-3, pp. 295-300, 2001

Luca Gammaitoni, Peter Hänggi, Peter Jung and
Fabio Marchesoni. Stochastic resonance, Re-
views of Modern Physics, 70(1), 270-4, 1998

Ivar Jacobson, Grady Booch and James Rumbaugh.
The Unified Software Development Process,
Addison Wesley Longman, 1999

Marvin Minsky, Push Singh and Aaron Sloman. The
St. Thomas Common Sense Symposium: De-
signing Architectures for Human-Level Intelli-
gence, AI Magazine, 25(2), 113-124, 2004

Judea Pearl. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference,
Morgan Kaufmann, San Mateo, California,
1988

Martin Rees. Our Final Century, William Heine-
mann, London, p.134, 2003

Ron Sun. Duality of the Mind: A Bottom Up Ap-
proach Toward Cognition, Mahwah, New Jer-
sey: Erlbaum, 2002

Alban Pui Man Tsui and Antonia Jones. Periodic
response to external stimulation of a chaotic
neural network with delayed feedback, Inter-
national Journal of Bifurcation and Chaos,
9(4), 713-722, 1999

Wu, X.J., Kittler, J., Yang, J.Y., Messer, K. and
Wang, S.T. A New Kernel Discriminant
Analysis (KDDA) Algorithm for Face Recog-
nition, Proceedings of the British Machine Vi-
sion Conference 2004, Kingston, UK, 517-526

