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1 Intr oduction

ThispaperprovidesintroductorydiscussionontheM sys-
tem. M is a studyof an architecturethat supportsinte-
gratedmultiple reasoningprocessesandrepresentations.
This architecturehasbeenappliedandevolvedthrougha
seriesof differentdomainproblems:

1. Wolfgang,a systemthat learnsto composemusic
(Riecken1989,1992a),

2. adaptive user interfaces(Riecken 1991a, 1991b,
1992b),and

3. theM system(Riecken1994),a softwareprogram
thatactsasanassistantto auserby classifyingand
managingdomainobjectsin a multimediaconfer-
encingsystem.

Thegoal of this work is to developa theoryof mind
thatenablescommonsensereasoningto beappliedin M.
M wasdesignedto observe situationsandformulatebe-
liefs aboutthesesituationsregardlessof the truth of the
beliefs. It appearsthathumansobserve andbelieve, and
then over time continueto improve their knowledgeof
their beliefswhile many typesof computerprogramsjust
getstuck!

I take the position that commonsenselearningis a
time variantproblemand that learningis a constantse-
riesof viewing similar situationsfrom differentpointsof
view over time. You cannot learnsomethinguntil you
learnabout“it” from severalpointsof view. Goodcom-
monsensereasoningandlearningresultsfrom theability
to perform reformulationon an idea, concept,or prob-
lem. Reformulationrequiresrich fluid representations,
multiple modalitiesof reasoning,anda rangeof experi-
encesover time. Minsky’s Societyof Mind (SOM) The-
ory (Minsky 1985)is theessenceof thestudyandimple-
mentationof M.

M wasinitially designedandimplementedin mywork
at AT&T Bell Laboratories.M functionedasa software
processthatrecognizedandclassifiedobjectsandactions
performedby humansin amultimediadesktopconferenc-
ing systemwe developedat Bell Labs,calledtheVirtual
MeetingService. In this ComputerSupportedCoopera-
tive Work (CSCW)service,participantsworkedin a Vir-
tual Meeting Room (VMR) on a seriesof tasks. Each

participanthasa personalM programthatwatchesall le-
gal actionsperformedon all legal objectsin theVMR by
all participants.EachpersonalM attemptsto recognize
andclassifywhat all the participantsaredoing andthen
supportits respectiveuserto recall itemsandactionsthat
might relateto theuser’s currenttaskandcontext.

2 VMR asa CSCW envir onment

To designa prototypemodel that can perform CSCW
classifierfunctions, a specificCSCW environmentwas
identified. Basedon my previous work at Bell Labora-
tories in developingAT&T’ s Virtual MeetingService,I
definedthe CSCWenvironmenton the ideaof a virtual
meetingroom (VMR) that supportsmultimediadesktop
conferencing.

In aVMR, participantscollaboratevia computersand
sharedapplicationsthat provide userswith documents,
whiteboards,markers, erasers,staplers,copy machines,
andmany othersuchobjects.TheactualVMR is a com-
plex setof datastructureshostedonaserverplatformthat
maintainsaconsistentstateview of aVMR sessionfor all
legalparticipants.

Conceptually, a VMR is a virtual placewhereoneor
morepersonscanwork togethereventhoughtheindivid-
ualsarephysicallyseparated.An exampleof a VMR is
a computerhostedplacewhereindividualsphysicallylo-
catedin New Jersey andEnglandcanmeetandwork. In
a VMR, theindividualsshareandcreateinformationin a
varietyof mediarangingfrom text to imagesto drawings.

VMRs also supportthe functionality of persistence,
thusVMRs canexist overarbitrarily longperiodsof time.
A VMR is likearealmeetingroomwhereindividualscan
work, leave at the endof a day while leaving behindall
documentsand other objects,and then return at a later
point in time to continuethework at hand.

3 The M system

The M systemis a computermodel (program)that per-
forms classificationtasksin a VMR. M is a systemthat
applies“commonsense”reasoningandknowledgeto for-
mulateclassificationsof VMR domainobjects.M’s rea-
soningdoesnot rely on the contentcontainedin VMR



objects(e.g.,documents),but insteadM observessimple
contextualcuesandfeaturespresentin typicalVMR situ-
ations.Simply put,M reasonsbasedon context, not con-
tent.

Thepower of M’s “commonsense”reasoningresults
from integrating “simple” factsand rules assertedfrom
differentlinesof reasoning.M’s modelis a collectionof
simplefactsandideasaboutusercollaborationin aVMR.

In order to develop a theory of commonsenserea-
soning, I have studiedand designedsystemsthat sup-
port multi-reasoningprocessing.This appearsto be es-
sentialin that thecommonsense“things” we understand
as humansresults from integrating many very simple,
sometimestrivial, piecesof informationaboutthe world
aroundus. A good theoryon commonsensereasoning
might requirethat reasoningintegrateinformationbased
on suchdistinct views as time, space,and function. To
examinesucha theory, we first mustselecta “world” in
which to performcommonsensereasoning.

The VMR world is a much simpler world than our
own physicalworld. So, in order to betterunderstand
how to make useof many very simplefacts,somewhich
weuseall thetimewithoutrealizing,I havecontinuedmy
studyvia theVMR world. TheVMR world is anexplicit
finite problemspacein which a formal representationof
theusefulinformationmightprovideabetterunderstand-
ing on how a system,biological or in silicon, might be
ableto reasonaboutobjectsandactionswithin a VMR.

TheM systemis a multi-strategy classifiersystemar-
chitecturecontainsthefollowing:

� semanticnetfunctions
� rule-basesystem
� scriptingsystem
� multi-rankedblackboardsystembasedon Minsky’s

Trans-Framesin SOM

Thedesignof M mustenableM to functionasauseful
assistantto a humanuser. This implies thatM’s classifi-
cationandknowledgeof usersworking in a VMR must
appearto a userto make sensefrom the user’s point of
view. ThusM must reasonin a mannerconsistentwith
theuser.

4 Function of M

In a VMR, eachuseris supportedby a personalizedM
assistantand the VMR world is composedof domain
objects(e.g., electronicdocuments,electronicink, im-
ages,markers, white boards,copy machines,staplers,
etc.) uponwhich usersapplyactions.TheM assistant(s)
attemptto recognizeanddefinerelationshipsbetweenob-
jectsbasedontheactionsappliedby theusersto theVMR
world andtheresultingnew statesof thatworld. For ex-
ample,in a VMR world, theremayexist a setof domain
objects– suchasseveral documents.Further, the VMR
participantsmay apply actionsto thesedocumentssuch
asannotatingoverthemcollectively or joining/appending

them together. M attemptsto identify all domain ob-
jectsandclassifyrelationshipsbetweensubsetsof objects
basedon their physicalpropertiesand userappliedac-
tions.

5 Simpleexample

A simpleexamplewould be2 adjacentdocumentswhich
a userthenannotatesby drawing a circle to enclosethem
together. Thusbasedcollectively on (1) spatialreason-
ing of thenearnessof the2 documentsandthecircle, (2)
structuralandfunctionalreasoningof thecircleenclosing
the2 documents,and(3) casualreasoningof thesemantic
actionof enclosingobjects– M can infer andexplain a
plausiblerelationshipbetweenthe2 documents.

6 Organizing the VMR workspace

Considera typical groupof designersworking in a brain-
stormingsessionheld within a real physicalroom. By
theendof suchaworkingsession,thedesignerswill have
createdandusedmany documents,bullet lists, diagrams,
notes,post-its,andothersuchitems. Basedon theprop-
ertiesof a physicalroom,theparticipantscouldorganize
themselvesandtheobjectsin theroomusingtables,walls,
andwhiteboards.Documentsandotherobjectscouldbe
spatiallyorganizedandlocatedfor easeof accessby the
meetingparticipants.Typically, the designerswould be
ableto view, engage,review, andreformulatevariouscon-
ceptualrelationshipsover all the physicalmaterialsand
informationgeneratedasthemeetingprogressed.

Whenweport thedesigner’sbrainstormingsessionto
a VMR, their view of the work environment is signif-
icantly constrainedto the physicalsize of their respec-
tive computerscreens(e.g.,˜ 1000x1000pixelsat best).
What if M took on theresponsibilityto organizetheout-
put and interactionsof all the participants?In essence,
M assistsa userto accessandmanipulatemany different
materialscreatedandusedduringameeting,independent
of wherethematerialsarelocatedwithin aVMR or when
thematerialswerelastusedor created.

M can generateand presentvarious classifications
representingconceptualviews of VMR objectscreated
andusedby the participants.Thus,eachparticipantcan
ask,via dialog boxesor direct manipulationtechniques,
their respectiveM assistantto presentorganizedviewsof
thevariousrelatedmaterialsusedduringameeting.

Functionally, M observes the actionsperformedby
VMR participantsand attemptsto reasonhow the cur-
rentactionsappliedto VMR objectsrelateto otherVMR
objectsand previous actions. As a participantinteracts
with an object, suchasa document,M canprovide the
userwith contextual hyperlinksto relatedobjects,such
asdocuments,drawings,notes,lists,post-its,andpenan-
notations.Oneof M’s fundamentalresponsibilitiesis to



assista userto (RE)formulaterelationshipsbetweenall
objectsin aVMR.

Specifically, M attemptsto maintain simultaneous
theoriesof how objectsin a VMR might relate.This en-
ablesM to provideparticipantswith multipleviewsor ac-
cessof relatedmaterials– thus,M anda usercanrefor-
mulatetherelationshipsbetweenVMR objects.

While M maintainsanextensive schemafor organiz-
ing andrepresentingaVMR, it mustalsoallow theuserto
(RE)defineexistingandnew relationshipsandhyperlinks
within this schema.This safe-guardsthatM never takes
controlaway from theuser.

A usefulideain building a mind is theapplicationof
set theoryandpartial orderingsasclever tricks to think
about.Minsky’sK-linesin SOM(Minsky 1980,1985)are
extensive setsof partialorderingsof theenormousnum-
berof “f actsandrules” thatworkedin previoussituations
and life experiences.The trick in thesevariouslearned
ASSOCIATIONSis thatthey aremembersof varioussets
representingsomelearnedidea,fact,concept,or process.
Marvin hasa wonderfulplay with wordsto remindusof
thispowerful idea.In Societyof Mind, hewritestheword
rememberasRE-MEMBER.WeRE-MEMBERby using
somemembersof a setof membersthatworkedin some
previoussituation.

7 Designof M

Thedesignof theM systemrequireda formal world rep-
resentationof a VMR. The world definition contained
knowledgeaboutall domainobjectsandthelegalactions
which canbe appliedwithin the world; the legal set of
VMR situations.

Thedesigngoalof theM systemwasto recognizeand
classifyactionsandobjectsin a VMR world basedon a
“commonsense”reasoningapproach,insteadof relying
on “understanding”the contentof the VMR objectsvia
someform of natural languageprocessing. In defining
the ontologyof M’s knowledge-base,the following two
taskswererequired:

� developatheoryof theVMR recognitionandclassi-
ficationprocess

� formulatea representationof the problemdomain
for all domainobjectsandactions

AI researchhasidentified problemsolving methods
for ill-structuredproblems(Newell 1969, Simon 1973)
werea setof heuristicprocessesgeneratea solutionover
adefinedproblemspace.M’s “commonsense”reasoning
relies on heuristicsas it observesthe world andapplies
contextual, not contentual,informationabouttheobjects
andactionsrelatingto a VMR situation.Thedesignthe-
ory of M requiredamulti-strategy reasoningapproach.

In aVMR situation,therearemany simpleandsome-
times obvious cueswhich whencombinedtogetherfor-
mulatea plausibletheory of how objectsrelate. M in-
tegratesdifferent reasoningprocesseswhich assertvery

simple factsinto shareddatastructuresrepresentingthe
generationof a classificationtheoryfor a VMR situation.
Presently, theM systemis designedwith five modalrea-
soningprocesseswhich collaborateto developclassifica-
tion theories.Themodalitiesof reasoningare:structural,
functional,spatial,temporal,andcausal.

8 M’ s recognitionand classification
process

M examinesaVMR situationvia thecollaborationof dis-
tinct reasoningprocesses.The designtheoryfor M par-
titions the problemsolving process,the classificationof
VMR situations,into the following orderedsequenceof
functionaltasks:

� representa VMR situationconsistingof an action,
the pre VMR stateprior to the action,andthe post
VMR stateresultingfrom theaction

� identify andcharacterizetheobject(s)involvedin an
action– this requiresenumeratingall known proper-
tiesof theobject(s)

� propagatetheconstraintsrelatingto theobject(s)and
actionto all reasoningprocessesresponsibleto clas-
sify theVMR situation

� have thereasoningprocessescollaborateto develop
potentialclassificationtheoriesof theVMR situation

� restrict the rangeof plausibletheoriesin order to
avoid combinatoricgrowth

9 Ms’ architecture

M’s architectureconsistsof the following five key com-
ponentsrepresentingknowledgeof domainobjects,legal
actions,and legal situations: (1) a semanticnet system,
(2) a rule-basedsystem,(3) a scripting system,(4) five
distinctreasoningprocesses(inferenceengines)and(5) a
blackboardsystemconsistingof anorderedsetof black-
boards.

10 SEMANTIC NET SYSTEM

The semanticnet systemis implementedasa spreading
activationnetwork oversetsof qualifiers(e.g.,size,posi-
tion, color, etc.) which collectively representdomainob-
jectcharacteristics.Thesequalifiersrepresentthefactsas-
sociatedwith anappliedactiondenotedin aninputrecord.
Eachqualifieractsasastatemachinerepresentingthecur-
rent legal propertyvalueof a VMR object. For example,
the color qualifier canenterinto a staterepresentingthe
colorof anobjector ashapequalifiercanenterinto astate
representingsuchshapesassquare,circle,etc. Thebasic
ideais this – whenanobjectis identifiedvia theI/O sys-
tem,thecorrespondingqualifierswithin thesemanticnet



collectively becomeactive representingthecorrectprop-
ertystatesof therespectiveobject.As thesequalifiersbe-
comeactive in a specificstate,they becomefactswhich
areassertedto M’s rule-basedsystem.

11 RULE-BASED SYSTEM

M’s rule-basedsystemperformsseveral importantfunc-
tions. As facts(in thesemanticnet)areasserted,they in
turn satisfy specificpre-conditionsexpressedin the an-
tecedentof givenrules. Thus,astheantecedentsof such
rules evaluateas true, this enablesthe consequenceof
eachrespectiverule to beasserted.This canhave thefol-
lowing two results.First, new factsexpressedin a rule’s
consequenceareassertedrespectively to thesemanticnet;
this then can have an iterative effect over the firing of
new rules and the instantiationof other facts. Second,
asnew rulesfire andnew factsareinstantiated,M’s rea-
soningprocessescanin turn apply this new information
to strengthenor weakenor createor purgethevariousthe-
oriesrepresentingaVMR world.

As various factsand rules evaluateas true, this di-
rectly influencesM’sscriptingsystemandreasoningpro-
cessesasthey evaluateandapplyvariousscriptsof partial
plansprovided by the scripting system. In essence,we
canview M’srule-basedsystemasacollectionof domain
conditionsthat whensatisfiedareappliedto biasthe se-
lectionof partialplansfrom M’s scriptingsystemby M’s
reasoningprocessesto createand“explain” relationships
betweenVMR objects.

12 SCRIPTING SYSTEM

M’sscriptingsystemis acorpusof partialplansthathave
demonstratedfrequentsuccessin previous classification
problems.In M, a script is a partialorderingof elements
in aset;thesetrepresentsanintervalof timeduringwhich
aconsistentpatternof factsandruleshavefrequentlybeen
appliedsuccessfullyto predictthestateof someobject(s)
following someaction. M’s designof a script is based
on SchankandAbelson’spresentationof scripts(Schank
1977).

An importantfeatureof M’s scriptingsystementails
theuseof coefficientsto weighteachscript’s potentialto
either initiate or improve upona theorywhich attempts
to classifyandrepresentsomesetof actions,objects,and
relationshipswithin aVMR. Functionally, theseweighted
scriptsbias the variousreasoningprocessesto dynami-
cally rank all coexisting theorieswhere eachtheory is
formulatedon oneof the individual blackboards.These
weightedscriptsserve to minimize combinatoricgrowth
of all possibleclassificationtheories.Thereasoningpro-
cesseswill selectweightedscriptsthat formulateor im-
proveonly thetop sevenrankedtheories.

13 Multi-strategy reasoning

M’s architecturaldesignwasbasedon a theoryof inte-
gratedreasoningprocesses;sometimesreferredto asinte-
grated“agents”or inferenceengines.This multi-strategy
reasoningability of M allowsthesystemto formulatedif-
ferent points of view while performingrecognitionand
classificationtasks.

In the applied domain of the VMR, it was useful
andtypically necessarythatM simultaneouslyderiveand
manageseveraltheoriesrepresentingtheactionsof VMR
participantsandthestateof all VMR objects(e.g.,docu-
ments,files,pens,markers,erasers,etc.).Thiswasdueto
the fact that certainclassificationswerenot immediately
obvious– either(1) they emergedover time or (2) given
contextual situationsenforcedreformulationof existing
classifications.

In my study, oneof thekey researchissuesconcerned
the managementof the different reasoningprocessesas
they collectively formulatedmultiple theoriesto recog-
nizeandclassifya VMR world. This managementfunc-
tion requireda techniquefor the processesto “commu-
nicate” and leveragekey informationrelative to distinct
simultaneousclassificationtheoriesof agivenVMR situ-
ation.

In developinga designtheoryof M asanarchitecture
of integratedreasoners,it wasdesirableto defineaframe-
work in which simultaneoustheoriesof a world couldbe
dynamicallygenerated,ranked,andmodified.For theap-
pliedproblemof theVMR world, fivedifferentreasoning
processeswererequiredandimplementedasdistinct in-
ferenceengines.Thefive typesof reasoningsupportedin
M are:

� structural
� functional
� spatial
� temporal
� causal

The integration and managementof theseinference
engineswasachievedvia a traditionalshareddatastruc-
tureandgoverningprocessesknown asa blackboardsys-
tem. In the M system,eachreasoningprocessserved as
a knowledgesource(KS) which inter-workedwith other
KSsvia theblackboardsystem.

The designand implementationof M’s blackboard
systemresultedin two uniquefeatures.First,M consisted
of a dynamicallyorderedsetof blackboards.Eachblack-
boardhosteda distinct theoryrepresentingM’s recogni-
tion and classificationof a VMR situation. The set of
blackboardswere ranked basedon the strengthof each
theory’s probablecorrectness.Second,the structurefor
representinginformationpostedby KSsto a givenblack-
board was basedon Minsky’s Society of Mind Trans-
frame.



14 Blackboard systems

Blackboardsystemsare a meansof implementingdy-
namic,opportunisticbehavior amongcooperatingreason-
ing processesthat shareintermediateresultsof their ef-
fortsby meansof aglobaldatastructure(theblackboard).
Penny Nii (Nii 1989) describesthe basicstructureof a
blackboardsystemin termsof threecomponents:

� The knowledge sources(KSs). The knowledge
neededto solve the problem is partitioned into
knowledgesources,which arekept as independent
processes.

� Theblackboarddatastructure.Theproblem-solving
statedata(objectsfrom thesolutionspace)arekept
in a globaldatastore,theblackboard.KSsproduce
changesto theblackboardwhich leadincrementally
to a solution to the problem. Communicationand
interactionamongtheKSstakeplacesolelythrough
theblackboard.

� Control.WhatKS(s)to applywhenandto whatpart
of theblackboardareproblemsaddressedin control.
Typically, a schedulingprocessperformsthecontrol
function.

In additionto theorganizationalrequirements,a par-
ticular reasoning(computational)behavior is associated
with blackboardsystems. The solution to a problemis
built incrementallyover time. At eachcontrolcycle,any
reasoningassertion(e.g., datadriven, goal driven, for-
wardchaining,backwardchaining,etc.)canbeused.The
part of the emerging solutionto be attendedto next can
also be selectedat eachcontrol cycle. As a result, the
selectionandthe assertionby KSs aredynamicandop-
portunisticratherthanfixedandpreprogrammed.

15 Ranked blackboards

M’s blackboardsystem consistsof a dynamic set of
rankedblackboardswhichareallocatedandreallocatedas
needed.Themaximumnumberof blackboardsallocated
at any givenmomentis seven. Eachblackboardcontains
anemergingclassificationtheoryoversomesubsetof ac-
tions andobjects. Basically, an emerging theorycanbe
thoughtof asahypothesisto beprovedby M’s reasoners.
M’s reasonersattemptto developa strongtheoryby indi-
vidually applyingaxiomsto a given theory’s hypothesis
on a blackboard.

As M observesactionsbeingperformedby VMR par-
ticipants,M’ssemanticnet,rulebasedsystem,andscript-
ing systemassertnew facts,rules,andscriptsrespectively
via the five KSs. The KSs collaborateby applying this
informationasaxiomsto the respective blackboardof a
given classificationtheory. Further, asM computesthe
weightedscripts for eachblackboard,the theorieswith
the greatestweightedsum are ranked high to low, thus
definingthedynamicorderingof blackboards.

16 Trans-frames

WhenaKS postsanaxiomto ablackboard,this informa-
tion can be viewed eitherassometype of modal infor-
mation reflectinga modality of reasoning(e.g., spatial,
temporal,structure,etc.) and/or someset of “concep-
tualdependency information”representinganaction.The
fundamentaldatastructureof anindividualblackboardis
basedon Minsky’s Trans-frame. The Trans-framepro-
videsa representationof an action,a trajectorybetween
two situations; this information representsthe pre and
poststatesof aVMR situation.

The“conceptualdependency information”depictedin
a Trans-framestructureincludes:

� theactorperformingtheaction
� instrumentusedby actorto performaction
� theactionappliedto someobject(s)
� theobject(s)with prestateproperties
� theobject(s)with poststateproperties
� thedifference(s)betweenthepreandpostproperties
� list of plausiblegoalsaddressedby theaction
� causaleffectof theaction

TheTrans-framestructureprovidesa canonicalform
which enablesM to effectively compare:

� different theoriesor sub-theoriespostedover the
rankedblackboards,

� the various weightedscripts containedwithin the
scripting systemwith a given theory postedon a
blackboard,and

� thepreandpostpropertiesof theobject(s).
Embeddedwithin aTrans-framestructurearetwo ob-

ject property graphsrepresentingthe object(s)pre and
post stateproperties. This graph-basedstructurerepre-
sentsanobject’spropertiesbasedon thedifferentmodal-
ities of reasoning.The applicationof this structurewas
reportedby Winstonet al. (Winston1983)andMitchell
et al. (Mitchell 1986).Theobjectpropertygraphdepicts
propertiesbasedon their functional, structural,spatial,
andtemporalvaluesandenablesinferenceacrossdiffer-
ent modal reasoning. Like the Trans-frame,the object
propertygraphis a canonicalform which enableseffec-
tiveevaluationandcomparisonof multiple objects.
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