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Abstract

One of the key implications of functionalism is that minds can, in principle, be implemented with any physical substra-
tum provided that the right functional relations are preserved. In this paper we present an architecture that implements
neural epigenesis, reinforcement learning, and mental rehearsal, some of the functional building blocks that may enable
us to build an artificial brain. However, we conclude that a new kind of machines, where the learning algorithms would
emerge from the dynamics of the interconnection between the processing elements, are necessary for the implementa-
tion of cognitive abilities that are irreducible to a mechanistic computing algorithm.

1

Based on the hypothesis that the physical matter underly-
ing the mind is not at all special, and that what is special
is how it is organized (Edelman, 1992), one come to the
idea of building or simulating systems with functional ca-
pacities similar to those observed in nervous systems and
brains to try to understand the mind.

From a biological point of view, it has been deter-
mined that the genome contains the formation rules that
specify the outline of the nervous system. Nevertheless,
there is growing evidence that nervous systems follow
an environmentally-guided neural circuit building (neu-
ral epigenesis) (Sipper et al., 1997) that increases their
learning flexibility and eliminates the heavy burden that
nativism places on genetic mechanisms (Quartz and Se-
jnowski, 1997). The seminal work of the Nobel laureates
D.H. Hubel and T.N. Wiesel on the brain’s mechanism
of vision (Hubel and Wiesel, 1979) describes a prime ex-
ample of the role of experience in the formation of the
neuro-ocular pathways.

The nervous system of living organisms thus repre-
sents a mixture of the innate and the acquired: “... the
model of the world emerging during ontogeny is gov-
erned by innate predispositions of the brain to categorize
and integrate the sensory world in certain ways. [How-
ever], the particular computational world model derived
by a given individual is a function of the sensory exposure
he is subjected to...” (LLinas and Pare, 1991).

Categorization, i.e., the process by which distinct en-
tities are treated as equivalent, is considered one of the
most fundamental cognitive activities because categoriza-
tion allows us to understand and make predictions about
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objects and events in our world. This is essential in hu-
mans, for instance, to be able to handle the constantly
changing activation of arounid® photo-receptorsin each
eye. Computational models of adaptive categorization
have been developed and tested with success, and have
been used to explain some sensory and cognitive pro-
cesses in the brain such as perception, recognition, atten-
tion, and working memory (Grossberg, 1998). However,
other types of learning, such as reinforcement learning,
seem to govern spatial and motor skill acquisition (Sut-
ton and Barto, 1998).

While in the former case only resonant states can drive
new learning (i.e., when the current inputs sufficiently
match the system’s expectations) (Grossberg, 1998), in
the latter “learning is driven by changes in the expecta-
tions about future salient events such as rewards and pun-
ishments” (Schultz et al., 1997).

2 Our neurocontroller architecture

We have developed a neurocontroller architecture (Fig. 1
based on the above premises (environmen-tally-guided
neural circuit building for unsupervised adaptive cluster-
ing and trial-and-error learning of behaviors) and tested
it using an autonomous mobile robot in a navigation task.
First, alearning algorithm called FAST for Flexible Adap-
table-Size Topology @#ez-Uribe, 1999) was developed
to handle the problem of dynamic categorization of the
robots’ three 8-bit infra-red “eyes” (which correspond to
24 binary receptors). No external supervisor provides the
desired outputs. Second, a trial-and-error learning pro-
cess coupled with punishment and reward signals (Sutton
and Barto, 1998) was considered to allow the robot gen-
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Figure 1: The neurocontroller architecture.

erate behavioral responses as a function of its sensations.
Third, a model of the environment is dynamically created
to improve the interaction with the actual environment
(Sutton and Barto, 1998). The system alternately oper-
ates on the environment and on the learned model of the
environment by a process of “mental rehearsal”.

Finally, we have combined the capabilities of the in-
cremental learning FAST neural architecture with rein-
forcement learning techniques and planning to learn an
obstacle avoidance task with an autonomous mobile robot
(Pérez-Uribe and Sanchez, 199®rez-Uribe, 1999).

3 Concluding remarks

We have presented a neural architecture that implements
neural epigenesis, reinforcement learning, and mental re-
hearsal. This architecture may be viewed as a first step to-
wards the development of more complex neurocontrollers
implementing many diverse cooperating brain-like struc-
tures. Indeed, the implementation of the learning para-
digms presented above should enable us to think of a
new kind of machines, where, effectively, learning by
examples and interaction replace programming (without
needing to emulate such principles using a programmable
computing machine). In this kind of machines, the learn-
ing algorithms would emerge from the dynamics of the
interconnection of the processing elements, which may
be the key to realize a mind-like system endowed with
“semantics” (i.e., a system that is capable of associating
a meaning to the symbols it uses for computing) (Searle,
1980, 1990), and not merely with “syntax”, as it is the
case of our current computing machines.
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