
Computational Epistemology
Aaron Sloman

This paper was written in 1982 (revising an earlier version) when I was at Sussex
University. It was based on an invited talk at a workshop on Artificial Intelligence
and Genetic Epistemology, held in Geneva in 1980. It was published in

Cahiers De La Fondation Archives Jean Piaget, No 2-3 Geneva June 1982

Proceedings of the 2nd and 3rd Advanced Courses in Genetic Epistemology,
organised by the Fondation Archives Jean Piaget in 1980 and 1981.
Geneva: Fondation Archives Jean Piaget, 1982. - P. 49-93.
http://ael.archivespiaget.ch/dyn/portal/index.seam?page=alo&aloId=16338&fonds=&menu=&cid=28

Also made available as a Cognitive Science departmental report at Sussex Univer-
sity.

I was pleased to find that the Sussex PDF version had been scanned by someone
at CMU and is now available at
http://shelf2.library.cmu.edu/Tech/50304386.pdf
with a copyright warning, which I have removed.

The OCR mechanism has produced some errors in the figures.

I think the figures are legible anyway, but as precaution I’ll later provide an im-
proved version.

Aaron Sloman
Now at School of Computer Science, University of Birmingham, UK
http://www.cs.bham.ac.uk/ axs

UN,

COMPUTATIONAL EPISTEM0L06Y

Aaron Stoman

1982

Cognitive Science Research Paper

Serial No: CSRP 011

The University of Sussex
Cognitive Studies Programme
School of Social Sciences
Falmer
Brighton BN1 9QN

Aaron SLoman
Cognitive Studies Programme
School of Social Sciences
University of Sussex

COMPUTATIONAL EPISTEMOLOGY

To appear in proceedings of the Seminar on Genetic Epistemology
and Cognitive Science, Fondations Archives Jean Piaget,
University of Geneva, 1980.

This is an edited transcript of an unscripted lecture presented
at the seminar on Genetic Epistemology and Artificial
Intelligence, Geneva July 1980. I am grateful to staff at the
Piaget Archive and to Judith Dennison for help with production
of this version. I apologize to readers for the remnants of oral
presentation. Some parts of the lecture made heavy use of
overlaid transparencies. Since this was not possible in a
manuscript, the discussions of learning about numbers and vision
have been truncated. For further details see chapters 8 and 9 of
Sloman C1978D.

I believe that recent developments in Computing and Artificial
Intelligence constitute the biggest breakthrough there has ever been in
Psychology. This is because computing concepts and formalisms at last
make it possible to formulate testable theories about internal processes
which have real explanatory power. That is to say, they are not mere
re-descriptions of phenomena, and they are precise, clear, and rich in
generative power. These features make it much easier than ever before
to expose the inadequacies of poor theories. Moreover, the attempt to
make working programs do things previously done only by humans and other
animals gives us a deeper insight into the nature of what has to be
explained. In particular, abilities which previously seemed simple are
found to be extremely complex and hard to explain - like the ability to
improve with practice.

The aim of this "tutorial" lecture is to define some very general
features of computation and indicate its relevance to the study of the
human mind. The lecture is necessarily sketchy and superficial, given
the time available. For people who are new to the field, Boden C19773
and Winston C1977D. The two books complement each other very usefully.
Boden is more sophisticated philosophically. Winston gives more
technical detail.

I speak primarily as a philosopher, with a long-standing interest
in accounting for the relation between mind and body. Philosophical
analysis and a study of work in AI have together led me to adopt the
following neo-dualist slogan:

Inside every intelligent ghost there has to be^ £ machine.

According to the old idea of dualism the human body is a machine and
inside it there is some kind of spiritual extra, scornfully referred to
by Gilbert Ryle as "the ghost in the machine". The new dualism turns

Aaron Sloman -1- May 13, 1983

GEAI Page 2

this on its head. But what sort of machine are we saying must be in
every intelligent ghost? My answer is: a computational machine. Most of
this talk is an attempt to explain the meaning of the claim, and to
sketch some of the implications and problems arising from it.

What is computation? It is rule-governed structure manipulation
(sometimes referred to as symbol manipulation). That raises two
questions, Mwhat is a structure11, and "what is rule-governed
manipulation?11 I shall try to give a sketch of an answer to each, but I
think it is very important to stress that we do not know the answers. We
have some examples, but I feel we are on the beginning of a long road
with much to explore. There are very many sorts of structures and many
sorts of manipulations of structures, but we have begun to understand
only a small subset. All I can do now is gesture toward some of that
sub-set. (Mathematically minded logicians and computer scientists study
an even smaller subset.) Part of the aim is to reveal how inadequate is
the conception /of computation of most people, including many who use
computers as a tool for processing experimental data.

What are structures? The most general answer is that anything is a
structure which has parts with properties and relationships. To give
some flesh to this idea I shall start by giving some examples of
structures and I hope you will find most of them familiar. Since almost
anything can be a structure, there is something very weak about saying
computation is the manipulation of structures. What gives content to the
claim is the detailed work on various sorts of structures, exhibiting
varied forms of computation.

Examples of structures

We start with a familiar example from modern linguistics. A string of
words can be interpreted as a meaningful sentence in more than one way.

sentence
/ \

/ \
/ \

/ \
np vp
/ A
/ / \

they / \
/ \

watched np

the man with a telescope

Aaron Sloman -2- May 13, 1983

GEAI Page 3

sentence
/ \

/ \
/ \

/ \
np vp
/ / | \

/ / | \
they v | adv

/ I I
watched np with a telescope

i
the man

The different interpretations may be represented by two tree structures.
The sentence "they watched the man with a telescope11 is syntactically
and semantically ambiguous. There are two interpretations, in which we
grasp the sentence as having two distinct structures, represented
approximately by the diagrams above. On the first interpretation the man
watched has the telescope, on the second the watchers.

These are fairly obvious and familiar examples of structures. There
exist computer programs which can take English sentences and build
structures like those above, in the computer. The computers don't
necessarily produce diagrams on two-dimensional surfaces (although some
do print out diagrams). Rather, they build internal symbolic structures
which in some sensfe reflect what we see in the diagram. For example,
here is a small example of an interaction with a demonstration program
used for teaching students at Sussex University (on a PDP11/40 mini
computer). Lines beginning with a colon are typed by the user, the rest
by the computer.

: parse(Cthey watched the man with the telescope]);
** Cs Cnp Cpn they]]

Cvp Cvnp watched]
Cnp Csnp Cdet the] Cqn [noun man]]]

Cpp Cprep with]
Cnp Csnp Cdet the] Cqn Cnoun telescope]]]]]]]]

: parse(Cthey took the telescope from the man]);
** Cs Cnp Cpn they]]

Cvp Cvnpfromnp took]
Cppnpfromnp Cnp Csnp Cdet the] Cqn Cnoun telescope]]]]

from
Cnp Csnp Cdet the] Cqn Cnoun man]]]]]]]

The two-dimensional symbols printed out on paper are here
isomorphic with labelled tree diagrams. The structure inside the
computer is something different again: a tree or network structure is
imposed on an essential linear memory by allowing some of the contents
of the memory to be symbols (usually bit-patterns) interpreted by the
computer as representing other locations. Of course, there is no reason
why computers have to be designed with such linear memories. In fact,
the linear structure is itself an abstraction resulting from the way a
network of physical connections is interpreted by the computer.

Aaron Sloman -3- May 13, 1983

GEAI Page 4

The processes of understanding a sentence are far more complex than
the processes which merely build a structural description. Computer
programs which are capable of making sense of a piece of coherent
narrative must be able to build elaborate internal structures
representing the system's cumulative grasp of the total situation
described by sentences already interpreted.

Another, more familiar, example of a structure is a bit-pattern,
for example:

ABABBAABBBBAAABA
1010011000011101

Each of these is a bit pattern, an ordered set of "binary11 symbols.
Each element of the sequence is a member of a set of two possible
alternatives, often 1 or 0. It could just as well be a square and a
circle. In computers such bit patterns are used, for example, to
represent numbers, to represent instructions and to represent locations
in the memory of the computer. As we shall see, the same patterns can be
given different interpretations, depending on the operations performed
on them.

Here is rather more complicated example which you will also find in
Winston's and Boden's books. It is based on Winston's Ph.D thesis,
reprinted in his collection The Psychology of Computer Vision. Consider
an arch with two supports and a pedestal across the top. Winston
suggests that if a program or person is to be able to develop new
concepts from being presented with examples of instances and non-
instances, it will be necessary for the program to build internal

| AI is a > | Arch |

|Block|

is a

part | part
/ part \

/ | \
/ \

supports \

_
-<-|B|-< right of

- \
\ left of >-/

C|

structures something like this: This is meant to be a network which is
made of nodes linked to other nodes by arcs, and the arcs have "Labels11

which indicate what sort of relationship is intended. Each node
represents some kind of entity, abstract or concrete, and the arcs carry
information about their properties and relations. The node A -
representing the arch - is linked to three nodes, B, C and D by arcs
which are Labelled "has part", so the thing A is represented as having
three parts. This captures some of the gross structure of the arch. The
parts themselves are linked to the concept of a block, a generic block.

Aaron Sloman -4- May 13, 1983

by nodes Labelled lfis a11, so B is a block, C is a block, and so on. They
are linked to each other by arcs which may have labels like "supports11

so B supports D and C also supports D. Clearly the same method of
representation in a network can be used to express many other properties
and relationships, provided that we already have symbolic names for
them.

Winston talks about building very rich networks of that kind and
shows, at least in outline, how to make a computer do it, when presented
with a certain class of line-drawings. The network would be a structure,
and construction and use of the network in recognising objects would be
examples of manipulation of structures, i.e. computation. It is perhaps
worth noting that in order to do this the program has to treat the input
image, i.e. the picture of an arch, as a structure. Analysis of the
image to find substructures such as lines, junctions, regions, etc. is
also computation. The original object in the world (e.g. the arch made
of bricks) is also a structure. Manipulation of such 'external1 objects
can also be regarded as computation. For instance, moving bricks around
on a table might be part of a computation deisgned to find the best
arrangement of the furniture in the room: the bricks are taken to
represent larger objects.

Notice that although writing the programs is a non-trivial
exercise, there is nothing essentially mysterious about the process of
constructing such abstract network representations within a mind or
computer. There exist programs already which, when presented with
pictures of three dimensional objects will do an analysis, that is will
decompose the image into parts, will categorize the parts, test for the
relationships between the parts and build inside the computer networks
like that above and then store them in some larger network. The program
may even interpret the 2-D image in terms of a quite different set of
3-D structures. That is, given a 2-D configuration it creates within
itself a structure representing a 3-D object, a cube, for example. Such
a system will not just find the name fcube', but might, for example,
build a network representing each of the visible faces, edges and
corners, and their relationships. It might even represent some of the
'inferred1 invisible parts.

There are many unsolved problems about how such stored structures
will later be retrieved, what kinds of indexing mechanisms are needed,
problems about how to match a stored network against the network
constructed from a new image, and many problems about how exactly new
experiences should cause modifications to stored representations.
Winston talks about a matcher which, the next time it sees something a
bit like the original picture but slightly different, say an arch with a
triangular block on the top, builds a network, tries to match the two
networks and finds that they are partly the same and partly different.
So the program has to build a third network representing the
similarities and the differences between the first two. So structure-
manipulation includes building structures which represent properties and
relations of other structures.

Here is another little example which is meant to be not a structure
that represents another static structure like a sentence or an arch but
a structure that represents a type of action.

Aaron Sloman -5- May 13, 1983

GEAI ' Page 6

PROCEDURECCGRASP ?XD)
PRECONDITION: CLEARTOP X
PRECONDITION: EMPTY HAND
MOVETO X
GRASP

END
This structure is a piece of program that might be part of a goal-
directed system using a suitable programming language. It defines a
strategy for grasping some unspecified object, represented by the
variable X. There are two pre-conditions, defining sub-goals which may
have to be achieved: (a) clear the top of X to make sure that your hand
can come down from above in order to grasp it and (b) make sure that the
hand is empty. When those pre-condition are satisfied, perform the
action of moving the hand to X and then grasp.

This is not meant to be taken seriously as a theory about what goes
on in a child (or robot) able to grasp bricks of many shapes from
different angles and so on, but just to illustrate a structure, a
symbolic structure which may play a role in the computation involved in
forming a plan or performing an action. The same structure may have two
\/ery different roles: in one role it functions as a program. This means
some °*her program or machine (usually called an interpreter) examines
portions of it and performs actions as a result. In another role,
instead of being a program, the set of symbols can function as a
structure created by or modified by other programs, like Winston's nets.
For instance, G.J. Sussman A Computational Model of Skill Acquisition
describes how such programs could be synthesized and later executed by a
learning and planning program which initially has only a simpler set of
action plans. While the program is being synthesised, or when it is
being modified because something has gone wrong, it is treated as a
structure manipulated by other programs.

This duality of program and structure is quite common in computing.
A structure which is built up and compared with other things and looked
at as an object with parts and relationships may itself have another
role where it generates behaviour because it is treated as a program.
For example a compiler is usually a program which takes a program
written in some language convenient for people to use, analyses it, and
builds a machine-language program executable by the computer. The
'compiled' program thus starts life as a manipulated structure. Later,
when run, it generates behaviour. I will return to this
structure/procedure duality later. It is one of several examples of how
computational ideas upset our ordinary ways of categorising things. I
have tried elsewhere to show how they also upset traditional ways of
thinking about mind and body, about what a machine is, and the
traditional distinction between a free agent and a deterministic
machine.

The idea of manipulation of symbolic structures is wery old. It is
explicit in the aristotelian conception of logical inference as making
use of valid schemas, such as:

ALL A ARE B
ALL B ARE C
THEREFORE: ALL A ARE C

More modern logic replaces such symbols with new notation involving
quantifiers and functions applied to arguments (following Frege), but

Aaron Sloman -6- May 13, 1983

GEAI Page 7

these are no less manipulable structures. In fact some have claimed that
there is nothing more to computation than deduction, though it is clear
from our present standpoint that deduction, that is logical manipulation
of logical symbols, constitutes a special case of computation.

Chemistry also provides old and familiar examples of symbolic
structures which may be manipulated in reasoning about events in the
world. For instance symbols representing the structures of molecules are
often used to help us understand chemical transformations, e.g.

<H-H> + (H-H) + (0=0) — > (H-O-H) + (H-O-H)

Visual perception starts from one or two 2-D array-like structures,
namely retinal images consisting of a manifold of measures of features
like intensity, colour and perhaps optical flow. Much simpler array-like
structures can also be treated as if they were visual images. Here is a
very simple example of a two dimensional array type of structure with
cells which may have one of two properties: occupied or empty.

*•***••*•**••••

*

*

*

* * * * * * * * * * * * * * *

*

*

*

*

•

*

*

*

*

*

*
*

*
* •

* * * * * * * * * * * * * * *

• *
* * * * * * * * * * *

* * * *
* * * * * * * * * *

* * *

* * *

* * * * * * * *
*

*
*

•

*

Work has also been done on much richer visual arrays. The information
may be quite complicated, including colour, intensity, intensity
gradient, velocity flow measures, or the stereo discrepancy between left
and right images. So there can be quite a lot of information at each
location and it is part of the task of a visual system to build up some
kind of meaningful interpretation of that information in terms of an
external world containing objects and events, with properties and
relationships. Philosophical sceptics have argued that there is no
rational way of doing this. The design of intelligent robots will prove
them wrong — or at least reveal a conception of rationality which they
had not grasped.

The information produced by a visual system needs to be represented
in a structure which can be used in guiding actions, planning, and
various kinds of learning. Perhaps networks of the type described by
Winston would be useful. But many alternative structures need to be
explored. My own work on image interpretation (reported briefly in
chapter 9 of my book) indicates that in a visual mechanism able to
perform the tasks performed by human and many animal visual systems, it
is necessary to construct many different sorts of structures in
parallel, concerned with different aspects of images and scenes. That is
visual perception involves simultaneous but co-operative computations
concerned with different domains of structures. The co-operation is

Aaron Sloman -7- May 13, 1983

GEAI Page 8

achieved through 'message-transmission1. That is structures representing
partial results of analysis, or queries, are created by one sub-process
and made accessible to another, possibly by interrupting it, possibly
just leaving it to examine the new structure when it reaches appropriate
instructions in its own program.

So far I have been presenting a more or less arbitrarily selected
subset of examples of types of structures which may be involved in
computation of one sort or another. I have been mainly concerned to
demonstrate that there is a \/ery rich variety of types of computations.
What is essential to all the structures we have discussed is that they
are composed of parts, with properties and relationships. Computation
involves addressing those parts, and checking or changing the properties
and relationships, possibly by deleting or adding parts. In some cases
these parts properties and relationships are taken to have a meaning,
i.e. they are interpreted as representing parts, properties and
relationships of something else. But fundamental to their role in
computation is the fact that independently of any such interpretation
the structures themselves can be manipulated. In the course of giving
examples, I have indicated briefly some of the kinds of things which may
be done with structures, illustrating what I mean by 'manipulation1.
Here is a reminder of some types of manipulation of structures included
under the concept of 'computation1 (some elements of the list overlap
with others):

MATCHING (testing similarity and/or building a representation of
similarities and differences)

CONSTRUCTION or EXTENSION
COPYING
MODIFICATION (replacing a part, or changing a relationship)
STORING (inserting one structure in a larger one)
SEARCHING (examining a large structure to find a part)
SORTING (reordering components according to some criterion)
SUBSTITUTION (systematically replace all parts of a certain type

with some other structure - e.g. binding variables)
INDEXING (building a new structure to facilitate searches for old

ones)
OBEYING (e.g. treating a structure as an instruction or program)
PARSING (distinguishing parts and building a new structure to

represent their properties and relationships)
INTERPRETING (i.e. using analysis of one structure to build a

representation of something else)
TRANSLATING (building a new structure with the same interpretation)
MONITORING (e.g. waiting for a change to occur, then taking some

action)
GEOMETRICAL TRANSFORMATIONS (e.g. rotation, permutation, stretching)
SENDING MESSAGES BETWEEN SUB-PROCESSES

It has been conjectured that all forms of symbol manipulation can
be mapped into a relatively small sub-set, of the kind studied in
recursive function theory or mathematical logic. I am not sure how
important that conjecture is. The differences between different sorts
of computation may be more important than their common underlying
ability to be represented in a certain way. If the conjecture is true,
then any kind of computation that can be done at all can be performed on
a modern digital computer, provided it is made big enough and fast
enough. But even if the conjecture is false, e.g. because some kinds of
structures and their manipulation (e.g. continuous deformations of
geometrical shapes) cannot be so represented, this may not undermine the

Aaron Sloman -8- May 13, 1983

GEAI Page 9

universality of the general notion of structure manipulation as a basis
for understanding mental processes. We need to retain an open mind on
these issues.

"Manipulation" may not be the best word for what I have been
discussing. We think of manipulation as changing a structure but I have
been using the word as a blanket term to cover many more processes
including searching matching and describing. It might be better to say
manipulation is a sub-species of something more general but I do not
know any suitably general term except for •computation1 itself!
Suggestions would be welcome.

Meaning

I have already alluded to the difference between purely •syntactic1

operations like comparing and describing structures on the one hand and
the 'semantic1 notion of interpreting a structure, that is treating it
as representing something else. I now want to say a little about the
pre-conditions for treating structures from a certain class as
representing something, partly because I feel that some of the
discussions, at this conference, of whether a machine could use symbols
with a meaning have been unsatisfactory. What I have to say is also
unsatisfactory: I feel it is just a beginning of a more adequate
analysis, and I would be grateful for help.

The main idea is that in order to treat something as a certain sort
of representation you have to have a class of operations which you can
perform on it, and what sort of interpretation you are giving it will be
determined by which sorts of operations you can perform on it. (You need
not actually perform them.) The same goes for a machine. I will now
begin to illustrate the way in which a class of operations performable
on a set of structures is relevant to the way the structures can be
interpreted. In this sense semantic processes rest on syntactic ones.

First a very simple example: I mentioned bit patterns earlier. They
are structures which can be manipulated in different ways, giving them
different interpretations. A very common class of operations on bit
patterns is the set of boolean transformations, often used in computers.
For instance, the two patterns 11001 and 10011 can be 'ANDed' together,
yielding the pattern '10001', or they can be fORedf together, yielding
'11011', or they can each be 'negated1, yielding '00110' and '01100',
respectively. These operations may be used as a basis for interpreting a
bit pattern as a representation of a set of things. For instance, a
string of two hundred bits can represent a set of integers in the range
1 up to 200, the N'th bit being 1 if the integer N is in the set,
otherwise 0. Thus, if the string begins '1101001', then the integers
1,2,4 and 6 will be members of the set. The operation of 'ANDing' then
represents the formation of the intersection of two sets, while 'ORing'
represents the union and 'Negating' a bit pattern represents finding the
complement of the set.

Notice that it is not essential that the symbols 1 and 0 be used
with the roles illustrated. Their roles could be reversed, so that, for
example, the AND of '11001' and '10011' would then be '11011'. In this
case 0 would represent membership of the set, and 1 not. The intrinsic
character of the symbols used is unimportant: it is the role they play

Aaron Sloman -9- May 13, 1983

GEAI Page 10

in the various operations that matters.

There are many other operations on bit-patterns used in computers,
including shifting a certain number of steps to the right or left,
removing a specified subset of bits, and binary arithmetic operations,
which play a particularly important role in the use of computers for
doing calculations with integers. For example the 'successor1 operation
starts with a bit pattern, and if the right-hand element is a 0 replaces
it with a 1, otherwise it replaces the 1 with a 0 and starts again on
the remaining pattern to the left. Similarly addition and subtraction
of two numbers can be represented simply by 'syntactic1 operations on
these structures. It is because the computer has such operations
programmed in to it that we can say that it interprets bit patterns as
numbers. But we have seen that other sorts of operations on bit patterns
enable computers to give them different interpretations.

There are still more operations which digital computers perform on
bit patterns some of which involve using a bit pattern as a
representation of on the one hand a machine instruction and on the other
hand a location in the computer.

This illustrates my general point that how something is interpreted
by X, what meaning is assigned to it by X, depends on the class of
operations (manipulations) that X can perform on it. It does not matter
whether X is a person or a machine: the principle is the same. And in
general, for any sort of structure there will be infinitely many
different sorts of interpretations corresponding to different classes of
manipulations. This is as true of pictures as of sentences or
mathematical formulae.

The interpretation of symbols found in logic text books provides
another example. If a system which is given the formula "P -> QM, and
later the formula "P", then constructs and stores the formula "Q" then
we have reason to believe it is interpreting the first formula, roughly,
as "If P then QM. Similar remarks can be made about the following
inference rule:

P -> Q; not-Q; Therefore not-P.
Or, in English,

If P then Q. Not Q. Therefore not P.
In fact, somewhat more than this is required if we are to say that the
machine gives the formulas their ordinary Logical interpretation: the
system must make use of formulas in controlling its actions, making
choices, interpreting sensory stimulation, and so on. Otherwise there is
no basis for saying that it accepts the conclusions as true, and
therefore no reason to say that it is making logical inferences.

Once you get into formulas which express generality you are in a
whole new world of power and glory and headaches. Here is a formula
using the universal quantifier:

Ax (Px & Qx) -> Rx

Or, in English:
For Any x, if x is P and x is Q then x is R

A possible example:
If x is in Geneva and x studies Psychology then x admires Piaget

From the above formula, using the rule of 'universal instantiation1, the

Aaron Sloman -10- May 13, 1983

6EAI Page 11

following can be inferred, where ja is any particular individual:
If a is P and a is Q then a is R

Predicate logic provides a rather more complex set of operations on
symbolic structures than some of the other operations, such as the
manipulation of bit patterns. But the more complex operations can be
just as precisely defined. You can check given two formulas whether one
is actually a substitution instance of the other according to the rules,
though this is not as easy as you might think. Anyway, here is a
somewhat more complex example of the syntactic operations involved in
logical inference. The third formula is obtained from the first two by
'resolving1 them:

AxAy(Px & Qy) -> Rxy

Pa v Sa

Ay (Qy -> Ray) v Sa

In English:

For all x and for all y, if Px and Qy then the relation R holds
between x and y.
Either a is P or a is S.
Then, either for all y if y is Q then the relation R holds between a
and y, or a is S.

(Once you are familiar with this sort of formalism, English seems to be
much less clear, unambiguous and elegant.) Here we have a quite complex
and abstract operation which involves doing a sort of match between two
or more symbols, finding one is a part of another and then generating
some new symbol using a precisely defined algorithm for manipulating
symbols without any regard for their meaning. One can treat this logical
matching operation as just a game with symbols, but because it has some
very important properties (which I admit I do not fully understand and
will not try to summarize) it is possible to say that if you do that
kind of operation on these symbols then you are treating these symbols
as belonging to a language of predicates and relations in which you can
assert things that may be true or false. Of course, as natural languages
show, using just this set of operations is not a necessary condition for
treating symbols as expressing true or false propositions.

Logic provides another example of the point that manipulation of
one class of structure may involve treating it as representing something
else, as having a meaning, a significance, if that manipulation involves
a suitable class of operations. The same applies to the use of so-called
•figurative1, or 'analogical1, or 'iconic' representations, which are
often treated as if they are a very special, essentially human
phenonmenon, quite distinct from computations.

Figurative representations

During the conference, there was considerable discussion of 'figurative'
representations and how they compare with propositional or as some
people say 'symbolic' representations. It is easy to get confused about
this, for example thinking that 'figurative' symbols are essentially
continuous while the others are discrete, or that digital computers
cannot handle the former.

Aaron Sloman -11- May 13, 1983

6EAI Page 12

In chapter 7 of my book I discuss this matter at great Length, in
particular distinguishing Fregean representations and analogical
representations. As far as I know, Gottlob Frege was the first logician
to offer the analysis of propositional representations in terms of the
application of functions to arguments, which pervades much of logic and
linguistics nowadays, as well as computing. On this view, a sentence
like

'The left hand of Fred is open1

would have a form something like:
Open(left Jiand(Fred)).

This sort of representation has a structure which has nothing to do with
the structure of the relevant bit of the world. Rather, its structure
represents something more like the structure of the process of arriving
at a decision whether the statement is true: identify the individual
called Fred, and from there use the procedure for finding a left hand,
and then use the procedure for testing whether something is open.

We can contrast Fregean operations on symbols with some of the
manipulations that can be done with geometrical structures. By exploring
such manipulations we can get a much clearer idea of what is involved in
interpreting something as a figurative representation. For example, we
can think about geometrical structures just on a line - i.e. one
dimensional configurations. It is a useful exercise to try classifying
the things you can do with a line or structure. You can compare two
points to find out if they are the same point, or you can ask what is
the distance between them, or if one is to the right of the other. If
there are three points A B and C, you can check whether A is between the
other two or not. You can talk about line segments on the line, and the
relationships between them. You can ask: Do they overlap? Is one
completely contained in another? Does one of them form exactly half of
another? and so on. You can think of processes of change within a line
in which one segment slides along and the configuration changes.

If you go into two dimensions it gets much more complicated.
Everything you find in one dimension can of course occur within two
dimensions because you can have a one dimensional line in a two
dimensional space. But there is much more. In two dimensions, you can
have rotations, you can have all sorts of wiggly complex shapes and many
operations involving comparison of shapes, fitting shapes into other
shapes, rotations, translations, stretching and so on. When you learn to
treat symbols on paper as symbols of predicate calculus, for instance,
you are actually using a sub-set of the kinds of shape comparisons and
manipulations that one can do in two dimensions. When a thing curved
this way "(" is seen as significantly different from one curved this way
M) M , they are treated as a pair of brackets. You have to be able to
perceive the geometrical relationship between them in order to
understand the bracketing conventions or to tell the difference between
a Mp" and a "q11. You have got to be able to decompose that geometrical
structure. So we use geometry in our logical formalisms.

But there is a much larger class of properties and transformations
of spatial structures, and this gives such structures enormous potential
for use in representing other things, not necessarily with exactly the
same structure. For instance visual perception and picture
interpretation involve treating a two-dimensional structure as a
representation of a three-dimensional one. This power of spatial
structures can be exploited no less by a computer than by a person.
There is no evidence that such analogical, even intuitive, thinking is

Aaron Sloman -12- May 13, 1983

6EAI Page 13

anything but a species of the general concept of computation I have been
illustrating.

As an exercise attempt to make lists of kinds of comparisons and
operations you can perform on two dimensional structures. Then ask
yourself, say, which sub-set of the operations is relevant to treating a
two dimensional structure as a map, say of Switzerland. There are some
special classses of maps for instance, maps of transport systems, which
very often do not accurately represent distances and directions, but
rather represent connectivity and order along the lines. Distances and
directions are represented only very approximately. Ask yourself what
kinds of operations you have to be able to do on that sort of structure
to be able to use it as that kind of map?

One of the questions about 'figurative representations' addressed
by artificial intelligence work on vision is: how can you treat a two-
dimensional structure as a representation of a three-dimensional
structure? Right now only a tiny sub-set of the problem has been
explored, mostly to do with objects bounded by straight lines and plain
surfaces — the so-called "block's world11. Work on curved surfaces is
beginning to get off the ground, though there are many unsolved problems
about how curved lines and surfaces should be represented in a mind or
computer. There is considerable progress on the task of interpreting
straight line drawings as representing three-dimensional configurations.
It turns out for instance to be important to be able to distinguish
classes of junctions, for instance, L junctions, T junctions, cross
junctions, arrow junctions and others. The picture above representing
two blocks is an example.

The class of two-dimensional structures and the class of operations
on them are huge. There is an enormous space of possible structures and
it is a very powerful generator of special cases with special uses. For
instance, we use maps, flow-charts, time-tables, graphs, family trees,
histograms, pie-charts, photographs, line-drawings, sketches and many
more types of two-dimensional representations to help us store or
communicate information, solve problems, explore possibilities, etc. The
operations we perform on these structures, whether on paper or in our
minds are all examples of the general concept of computation, defined
above. What makes them seem to be different may in part be the fact that
our visual systems have evolved very powerful procedures for
manipulating spatial structures, so we feel we have some effortless way
of doing this, as compared with, say, logical thinking. But for an
expert logician, who has had a chance to build up suitably powerful
logical procedures, logical inferences can feel just as natural and
intuitive. In both cases as the richness of the complexity of the
examples increases we Can eventually reach computational limits.

For example, family trees are an often discussed example of a
'figurative' representation. More generally relationships form networks
such as I presented earlier. Often two dimensions are not enough if we
want the links in the net to cross over one another, representing a
complex set of relationships. As a network becomes increasingly complex
and tangled, it becomes less intuitively obvious how things are related.
So the fact that a representation is 'figurative', or 'analogical' does
not in itself guarantee that it will be easier for people to use than
some other, more abstract translation.

Aaron Sloman -13- May 13, 1983

6EAI Page 14

We can illustrate the use of spatial representations in connection
with the puzzles described by some of the research students at the
conference. We were told about experiments with children trying to solve
various puzzles involving trains, the missionaries and cannibals puzzle,
the boatman puzzle. It is possible to think of the child as exploring a
"space11 of possible moves. Each action is movement in an abstract space,
to a new location. There are different states you can move to from the
initial state and from each of those states there are still more states
and so on.

It would be very interesting to ask whether a child can be
explicitly taught to make use of that kind of representation, and
whether it would help. I tried in an informal way with one of mine at
the age of about six, to help him think about the problem of choosing a
move in a game like draughts or chess. It was a long process. I think he
got somewhere and it was a useful tool when he played subsequent games.
But it was like learning to play the piano: you cannot teach it in a
week or half-an-hour, so the time-scale for the typical psychological
experiment is too short. (My own 'experiment1 was too informal to be
useful as a source of data.)

The class of two-dimensional spatial structures, and more generally
N-dimensional spatial structures, and operations thereon, is very large
and there are many sub-sets that people have begun to explore, but I
expect there are still more sub-sets that we do not know about. Detailed
formal exploration can take the form of designing computer programs
which analyse or interpret these structures and use them to solve
problems. I believe this is the best way to increase our understanding
of so-called figurative representations — it is more likely to yield
new insights than either laboratory experiments or introspection.

My next example is a program developed at Sussex which interprets
pictures. The attached figure gives examples of the images it works on:
two-dimensional configurations of dots. Sometimes without prompting,
sometimes with prompting, people interpret those images as representing
letters forming a word. In fact, most people seem to 'see1, several
different sorts of structures, not just letters and words, but also
lines, junctions between lines, pairs of parallel Blines, and flat
over-lapping plates. It seems that here, as in much other visual
perception, there are many different classes of structures all being
manipulated in parallel.

Our program, which we call Popeye (since it was written using the
language P0P2), is an attempt to explore the design of mechanisms
capable of performing such computations. For instance, in the program
there is 'knowledge1 of a class of two-dimensional arrays, a class of
possible configurations of lines (which may be parallel, of the same
length, of different lengths, have gaps in them, etc.), a class of two-
and-a-half dimensional configurations of overlapping plates (half
because there is no real depth, just a 'behind1 relation), a rather
abstract class of structures made of strokes which may have simple
relationships like meeting in the middle or at the end, or the end of
one meeting the middle of another, and finally a class of structures at
the Mtop level11 which are the sequences of letters recognized in the
image. A sub-set of the class of letter sequences forms the set of known
words. The Popeye program uses its analysis of all these different
structures in order to 'see' the word.

Aaron Sloman -14- May 13, 1983

rayc iJ

I think that when people are presented with these pictures, there
are quite complex things going on simutaneously in all those different
classes of structures- This parallel processing of different types of
structures enables partial information found in connection with one
structure to help resolve ambiguities in others. This illustrates that
computation as understood here need not be a simple serial process, but
may include a collection of concurrent processes. In fact, the number of
different sub-computations going on in parallel need not be fixed: it
can change according to the demands of the problem.

It can be argued that this computational architecture permits a
perceptual system to cope with ambiguities, noise, messy and complex
configurations, and allows the recognition of large-scale structures to
be completed before all the details have been processed. This seems to
be a characteristic feature of much human vision.

In real visual perception, the situation is much more complex. We
are presented not with a static black and white configuration, but with
colours, continuously varying intensities, constantly changing retinal
configurations. There are not just straight lines but many curved lines
and curved surfaces and explaining how it all works is very difficult.
There is an enormous amount of work to be done describing what might be
going on in relation to each kind of visual structure. We are nowhere
near saying Mwe think it might be this or that, we must do an experiment
to choose." I do not believe people actually know yet what kinds of
questions to ask to set up experiments in this sort of domain. I think
you still have to function as a philosopher and engineer for a little
longer, trying out possibilities.

Vision in new-born animals

We tend to think of new born animals, human and non-human, as very
limited in their cognitive abilities. However, I am amazed when I see
what happens with a new-born calf or lamb or foal: within a few hours of
being born they can stagger to their feet and look around. They can see
the mother and then they head for the her without falling over, mostly.
They find their way to the nipple and start sucking and it seems that in
order to be able to do this from a wide variety of different angles they
must have enormously powerful computational systems, which can decompose
a three-dimensional world into structures relevant to achieving the goal
of getting milk.

At first I thought that maybe they were just guided by the smell or
something like the density of milk molecules in the air, but I have seen
them go the wrong end of the mother, which suggests that they are going
for a kind of three-dimensional structure where the two legs meet the
trunk, rather than doing something much simpler and more mechanical like
water flowing down a hill to get the lowest part, i.e. following
chemical gradients. If that kind of power is there in a new-born lamb,
what are we to think might be going on in a newborn human being which
has a longer gestation period? Maybe infants are much cleverer than we
think but they have not yet learnt how to drive the mechanisms to tell
us what is going on?

Aaron Sloman -15- May 13, 1983

6EAI Page 16

Learning about counting

Next comes a Little example which is taken from chapter 8 of my book,
the chapter on numbers. I thought I would bring it in because of the
remarks made by Leo Apostel about work in artificial intelligence being
too static. I am not going to tell you about a learning program that
actually exists because I only half understand what I am talking about
and I certainly do not understand it well enough to design detailed
computational programs.

As a result of watching children when they were learning to count,
between the ages of three and six, and seeing some of the things they
could and could not do, I started wondering what it would be like to
explain what was going on in their heads. I found when I talked to my
psychologist friends who did not come from Geneva that they could not
give me explanations for the phenonmena.

For instance, the kind of thing I observed would be that a child
could at a certain stage count quite fluently, up to ten or eleven or
more. But if I said "what comes after five?11 he could not answer. He
could only start at the beginning and carry on. If some of you have
learnt to play the piano or musical instrument you may have that
experience with a piece of music - you can start at the beginning but
you cannot start at the middle. The same can apply to the reciting a
poem.

Then I found that a bit later the child could answer "what comes
after five?11 "what comes after six?11 but if I said "what comes before
five?" or "Does eight come after three or before?" the answers would be
random or "I do not know". However, I also found at the same stage that
if he looked at the kitchen clock he could tell me the answer, using the
numbers visible on its face.

So he understood the problem, he could work with a representation
outside his head and perform some operations on it using his eyes and
following the sequence to get the answer. But he could not do the same
thing in his head. That suggested that he did not have anything like a
piece of paper or screen in his head and an internal eye scanning it -
it must be a different sort of representation.

In my book I suggested that these and other phenomena might be
explained by the assumption that the child builds flist-structures' in
his mind. List structures are symbolic structions composed of
associative links between two pieces of information. They are
commonplace in AI programs, especially those written in Lisp. A series
of items of information can be built into a chain of links by making
each link associate an item of the series with the next link. From each
link one can then get to the next link and the item of information
stored there, but one cannot find the preceding link. The use of such
associative pairs to construct remembered sequences would explain the
difficulty of going backwards, or answering questions of the form 'what
comes before X?1

Aaron Sloman -16- May 13, 1983

6EAI Page 17

Cone , .3

I
->Ctwo, .3

I
->Cthree,.:i

I
- > etc....

As I've indicated in the book, facility with such tasks might be
acquired either as a result of building new procedures or as a result of
enlarging the network of linked pairs to contain more information in the
form of cross-references and backward references. For example, here is a
possible procedure for answering the question "What comes before five".
Look at the first of the links, store its contents and go to the next
one and say "is that five?" If not, store that and go to the next link,
then start again. If the next link doesn't contain five, repeat the
proces. When you get to five the answer is the last number stored.

Now, it turned out that the children, and I am sure that mine are
not unique, seemed to be able to work out that procedure for themselves
eventually. I could not tell them how to do it, I could not feed
something in through their ears to program them. They were able to work
that out, making use of some general and primitive ability which seems
to be there, namely to remember the last thing that said or done. I
almost got the impression on one occasion that the child discovered
almost by accident (though I had carefully set up the situation) that he
could remember the last thing he had said when going through the number
Series, and having made that discovery consciously used it as a strategy
for answering 'what comes before1. However, I am sure that most self-
re-programming is not done consciously.

Later I noticed another oddity. After a while the child did not
have to think what came before five. He did not have to say "one, two,
three, four, five, oh! it is four." He seemed to be able to go directly
into five and work out the predecessor. So it looks as if he is able to
start building a more elaborate structure that preserves information
about individual numbers at each link in the chain, instead of only
information about where to find the next link.

C . , . 3

I I
V > C . , . 1

(info about one) | I
V — > etc

(info about two)
The 'info1 about a number might include a pointer to its

predecessor, for example. On this model, there is a little database of
information associated with each number. I am now not going into any of
the details of how that would be represented in a computer. One could do
it in a language like LISP or P0P2 very easily.

Perhaps one kind of learning that goes on is that the child in
order to avoid having to do elaborate computations over and over, can
store results for future use by means of additional associative links in
the network. That would be useful provided that another condition is
satisfied, namely that the indexing mechanism associated with this
network enables one, when presented with the name of the number, like

Aaron Sloman -17- May 13, 1983

GEAI Page 18

"three" to go directly into the network at the location concerned in
order to find a "predecessor11 link and say what comes before it is
"two", or the "succesor" link and say what comes after it is "four".

To explain all this we'd,have to start talking about how indexing
works and how you can sometimes get right into the middle of a network
instead of having to chain through a long list. Clearly people do learn
to do this for numbers. Probably you can all answer very rapidly with
numbers up to twenty "what comes after"? or "what comes before?" You
might not be able to do it so easily with the alphabet and even if you
can do it with the alphabet you probably cannot do it with some poem you
have learnt. With some learnt sequences you might be able to go
backwards immediately on request.

There might be additional pointers into the data bases, from
external networks or chains as in rapidly reciting the sequence "two
four six eight..." Building a new chain of links, pointing into
alternate links in the old chain might be more efficient than
recomputing the series every time.

I also felt that the speed with which some people could count
forwards or backwards made it look as if they could not be doing an
operation which said "go to the first thing, find amongst the data base
of information where the successor is, go to it then say two, then
search in that base of information to find where the successor is, and
then say three" and so on. It felt as if that was not the kind of thing
that was happeninga when you quickly say "one, two, three, four, five,
six, seven", or "a,b,c,d,e,f,g". Contrast what happens when you make use
of some knowledge of a structure like a row of houses or a series of
rooms in your house, and you can go from each one to the next thing but
it is a much more slow and painful process where you go through some
elaborate procedure for finding the next thing. The speed of expert
reciters suggested that maybe they use additional chains of links
pointing into the old structure.

However, these new chains are not enough to explain all the
phenomena including the fact that an older child could start anywhere
and apparently count on forwards. I could say "count on from five", and
he would rapidly go "five, six, seven, eight". "Count backwards from
eight", produces rapidly "eight, seven, six, five, four, three" and so
on. You can probably do it rapidly too. The problem is that at this
moment we do not have a link from three into the fast forward chain to
enable you to count fowards onward from three. You could start at the
beginning and keep going until you come to three and then carry on but
if you need to be able to start at any point and go at speed then it
would be useful to have associated with the representation of the number
itself a pointer into the appropriate link into that chain. The idea is
that in the database of information about the number three for example
there might be information about about how to get into the chain of
links for counting forward, and once you have go there you say "three"
and carry on at high speed. The same applies to the fast backwards
chain. Thus adding external chains can both aid speed of recitation or
searching, and provide a way of recording subsets, as with the chains
for "odd" and "even".

Now, what all that was meant to illustrate is that there appear to
be at least three important kinds of learning which involve the further
development of a structure that you have already got. One is new links

Aaron Sloman -18- May 13, 1983

6EAI Page 19

within the structure, new internal structures, illustrated by adding
extra pointers, say backwards from a number to its predecessor in the
original chain of number names. Another kind of learning might involve
adding pointers out of the structure, for instance pointers from
elements of the sequence into,a concept like odd or even. You can
imagine a lot of other external pointers, if you ask yourself all the
things you know about the number six, for example. Thirdly, new
pointers may grow into the network from other networks like the fast
forward network or fast back network. The distinction between these
three kinds of development is very imprecise, since it is not clear how
to decide between a new cross-link in the original network and a pointer
to another external network.

No doubt there are many more things to be said about types of
development of an information network. One of the points I am trying to
make is that there is a trade-off between extending a structure such as
a network, and building new procedures for operating on that network.
How one can describe a system which could make choices about when to
build a new structure, when to build a new program, I do not know but it
seems to me there is a fruitful field for research, here.

I do not know what kind of system could produce the succession of
changes that I have been talking about. I can imagine writing a program
that can do it in special cases. I suspect that in the case of a child
there is something more general which has to do with learning of all
sorts of things and which can be applied to this specific case of
learning sequences of various sorts. This general learning mechanism
can produce the kinds of results that I am talking about with numbers
and with letters and many other sequences of things that we learn.

So there is lots of research to be done on this area. It could also
relate to issues in philosophy which I will not elaborate on in detail,
for instance questions that philosophers ask about the nature of number,
the nature of mathematical discovery. I think these questions take on a
new perspective if you start thinking about number concepts in the way
I've suggested.

This counting example illustrates one of the points I made much
earlier about the duality of programs and data. You can think of
building the networks described previously as not so much the creation
of some static structure, but the creation of a powerful kind of program
with many options built into it. In other words what I am saying is that
the distinction between program and data (or procedure and structure)
can be made to evaporate if you look at it in the right way. Maybe it
is better to say that the distinction is important but is not an
inherent one. It depends on how the structure is used.

I want to make a last remark about that. When this sort of chain is
used as a program, if you look at how we actually use it in conjunction
with other programs for doing things in sequence, we notice some new
computational mechanisms. For instance, in order to answer the question
"how many people are sitting at this table" you have to be able to
generate a sequence of pointing operations and go through that •program1

at the same time as you say, "one, two, three...." etnc. You might think
that is done by following a new special program which says "say the
number, point to an object, say the next number, point to the object"
etc. but if you look at the way a child or even you and I can make
mistakes and get out of phase and then realise you have to start again,

Aaron Sloman -19- May 13, 1983

6EAI Page 20

you see it is not a new program with first one step and then another but
two programs running in parallel with some kind of monitor checking that
one of them is not going too fast or too slow, and keeping them going.

I think that illustrates an important point that people in
artificial intelligence are only just beginning, to address, namely that
we must not think just about a single processor, a single machine
running a program. We may well have to think of intelligent systems as
having many machines working in parallel performing co-operative tasks
and I mean really in parallel, not just a sort of simulated parallel by
having first one thing take a turn and then another takes its turn. You
can always get the effect by simulation provided those conditions are
satisfied. But conceptually they are really parallel programs.

Final remarks

^. The need for a_ computational epistemology
We have begun to illustrate the multifarious ways in which structure can
encode usable information, i.e. knowledge or know-how. Behaviour is
applied knowledge. This is one way of looking at the difference between
animals, which apparently make use of some kind of representation of the
environment and their goals, and plants and purely physical systems,
such as water running down a hill or a thermostat. The water has no
internal representation of its being at the bottom of the hill to drive
the process by which it goes round obstacles. But there isn't a simple
sharp distinction between intelligent and purely mechanical processes,
rather a whole range of cases.

Typically, in an intelligent system, knowledge is stored, accessed
when relevant, modified when incorrect or incomplete, as well as being
applied, in behaviour. These all involve the construction and
manipulation of symbolic structures — i.e. computation.

So acquisition, possession, and use of knowledge involve
computation. Consciousness and overt communication are not required.
Computation (including the use of symbols or representations) is prior
to consciousness and communication. It provides the framework within
which a spectrum of increasingly sophisticated mechanisms can be
explored, only a subset of which are conscious. (What this means is not
as obvious as we may think. I have begun to relate consciousness to
forms of computation in chapter ten of my book.)

In view of all this, any good theory of knowledge must give an
account of the computational mechanisms and processes underlying
observable behaviour.

£• Resources for knowledge
A shallow study of the knowledge of a system merely asks what knowledge
it has, and perhaps which behaviours use which knowledge. Deeper
investigations examine the underlying formal structures and the types of
manipulations thereon, which make it possible to have and use that kind
of knowledge.

Prior to any specific sort of knowledge are the general resources
symbol generating mechanisms, symbol storing and manipulating

mechanisms, information collection and transfer mechanisms (e.g. sensory

Aaron Sloman -20- May 13, 1983

GEAI Page 21

transducers). So a computational epistemology must include a study of
forms of symbolism and methods of reasoning, interpreting, etc. As we
have seen, logical symbolisms and processes are but one case, of limited
use, though they are important, especially as we have a well developed
theory of how they work.

Some computational resources may be quite general, others geared to
the nature of the environment. For instance, a Mcognitively friendly
environment11 (CFE) enables a trade-off between generality and efficiency
or power. An environment is relatively cognitively friendly if the
objects found in it cluster into relatively small subsets of the set of
theoretically possible objects. This enables perceptual mechanisms to
use redundancy in perceptual information, for instance jumping to
conclusions on the basis of partial views. Wide-spread forms of
cognitive friendliness allow genetically determined specialised
mechanisms. For instance, in very many locations on earth there is a
rich supply of electromagnetic radiation in the same range of
wavelengths, a transparent atmosphere, and opaque, mostly rigid objects.
Specialised computational properties of the visual system can evolve to
take advantage of this. This is "compiled" knowledge. Such mechanisms
are often mistaken for knowledge-free systems.

Variable forms of cognitive friendliness necessitate learning, and
therefore more general computations. An open question: what initial
resources are necessary for typically human forms of knowledge to
develop in a few months or years in a CFE? This question cannot be
answered by observation — theoretical analysis and computational
experiments are required, for a neonate, like a computer, need not
reveal in its behaviour the most important internal computations.

3̂ . Computational architecture
The afore-mentioned resources may be organised in an infinite variety of
large-scale systems, composed of communicating subsystems. The
computational architecture of the human mind is largely an open
question. We can easily distinguish sub-functions e.g. perception
(several varieties), self-monitoring, goal selection, plan-formation,
plan-execution, inference, information storage, information recall,
formation and modification of desires and attitudes etc, etc. How far do
sub-functions correspond Jto sub-systems? E.g. can inference be
separated from perception and plan-formation? Can storage of factual
information be separated from the representation of motives? What are
the trade-offs? Can the architecture of an individual change? What kinds
of inter-system communication can occur — e.g. are computer networks a
good model? Do power hierarchies and resource-allocation play a role?
(Mental politics and economics?)

Within specialist subsystems, the need to avoid combinatorial
searches suggests a highly redundant architecture: large numbers of
results of previous computations are stored instead of only basic
principles and general inference mechanisms. For instance, instead of,
or in addition to using a general purpose grammar, which enables us to
generate or recognise an infinitely varied set of sentences, we may
store many sentences, phrases, or sentence schemas which are compatible
with the grammar, and make use of them directly instead of the more
general mechanism, wherever this is possible. This puts a premium on
powerful accessing mechanisms. Recognition can then substitute for
reasoning. For many human abilities the constraints on processing
include very rapid access to a very large store using incomplete or

Aaron Sloman -21- May 13, 1983

GEAI Page 22

possibly distorted "keys11, like a partially distorted image, or a word
partially obscured by background conversation.

Several studies in Artificial Intelligence point to the need for
the same entity (plan, sentence, visual image) to be processed
simultaneously at several levels of abstraction, with different
structures at different levels. It is possible that there are forms of
computation which are capable of achieving this that we have not yet
begun to think of.

Another important constraint is the need to be able to construct
very complex rapidly changing representations, e.g. in visual
perception. Are list-processing and garbage-collection mechanisms used
by organisms? Compare constant re-writing of an array-like structure.

fLm Conditions for "meaningful" use of_ symbols
How can a machine attach meaning to symbols it manipulates? I have
already indicated that it depends essentially on having a class of
applicable procedures. The lowest level of "procedural" meaning found in
any computer is essentially based on causal relations. The lowest level
machine language is "understood" simply in terms of physical structures
causing physical processes. "Descriptive" meaning and higher-level
procedural meaning (e.g. goals expressed descriptively) can emerge from
procedural capabilities in a manner which depends in part on the ability
to interpret "conditional" instructions, in part on an appropriate
computational architecture, providing an ability to check and correct
mistaken information and a motivational subsystem which uses stored
descriptions for achieving goals ~ i.e. beliefs presuppose motives. It
is not clear how far sensory detection procedures are required to define
descriptive symbols, and how far abstract "axiomatic" systems suffice.

An intelligent system must be able to recognise when it is wrong
and modify its procedures or store of information. Using the concept of
correcting one's mistakes presupposes at least a primitive grasp of a
concept of objective reality: a world beyond self. Any dynamic
knowledgeable system capable of correcting its mistakes or learning
about changes in the world must use representational resources whose
potential extends beyond what is actually represented at any one time.

Generative power is thus one criterion for selecting between
symbolisms. Generative power can be achieved in principled or ad hoc
ways. The human mind seems to make heavy use of the latter — trading
conceptual economy for efficiency, and space for time. Another
requirement is the need to be able to express generalisations, and to
cope with varieties of incomplete information by means of symbolisations
of varying specificity* This is where Fregean representations score
heavily over analogical ones.

£. Conclusion
Investigation of these questions of "computational epistemology"
provides a theoretical framework for philosophical and psychological
studies of knowledge and cognitive processes, including what McCarthy
calls "meta-epistemology" e.g. doing thought experiments involving
simplified agents in simplified worlds, to discover the powers and
limitations of various representational systems and strategies. Existing
formal systems (e.g. logic, formal grammars) may turn out to be
mathematical abstractions not closely related to what goes on in minds
or brains, and incapable of supporting the computations required "in

Aaron Sloman -22- May 13, 1983

Page 23

real life11, where constraints of time in particular can rule out
otherwise mathematically adequate procedures. Equally, all the forms of
computer programs which we now use in designing intelligent systems
might turn out to be grossly inadequate to the task of accounting for
the full power of human and animal intelligence. My own guess is that a
subset of known forms of computation will be theoretically important for
a long time. But it may not include what we now find easiest to program:
manipulations of numbers.

References

Boden, Margaret Artificial Intelligence and Natural Man, Harvester Press
and Basic Books, 1977.

Sloman, Aaron The Computer Revolution jm Philosophy; Philosophy Science
and Models of Mind, Harvester Press and Humanities Press, 1975

Sussman, 6.J. A Computational Model of Skill Acquisition,

Winston, Patrick, Artificial Intelligence, Addison Wesley 1977.

Winston, Patrick (ed). The Psychology of Computer Vision, McGraw Hill,
1975.

Aaron Sloman -23- May 13, 1983

