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Abstract
Why do people interpret sketches, cartoons, etc. so easily? A theory is
outlined which accounts for the relation between ordinary visual
perception and picture interpretation. Animals and versatile robots
need fast, generally reliable and "gracefully degrading" visual systems.
This can be achieved by a highly-parallel organisation, 1in which
different domains of structure are processed concurrently, and decisions
made on the basis of 1incomplete analysis. Attendant risks are
diminished in a "cognitively friendly world" (CFW). Since high Llevels
of such a system process inherently impoverished and abstract
representations, it is ideally suited to the interpretation of pictures.

1. 1s the study of impoverished pictures relevant to 'real' vision?

Al vision —work concerned with pictures, including digitised photographs,
straight-line drawings and cartoons, etc. has recently been criticised as
irrelevant to visual perception of objects in the environment, Clocksin £19781.
Related themes can be found in Horn [19781. It can be argued that studying
impoverished pictures with great local ambiguity leads to overemphasis on top-
down, knowledge-guided visual processes, as in Shirai [1975] and Minsky [1975],
and on complex control structures, as in POPEYE (%21, tLack of detail 1in
artificial images causes difficulties of interpretation which, it may appear, do
not arise in ordinary perception, where disambiguating detail 1is provided by
colour, stereopsis, optical flow, etc. Admittedly images interpreted by most
A.1. programs lack many features available even 1in monocular perception of
static scenes, from which wuseful information can be extracted with powerful
algorithms and computationaL resources. [Marr 1976, Horn 1978 and papers cited
thereinl, Horn's claim: ‘we may have closed our eyes to the raw image for too
long', is reasonable, and supported by his own excellent work on images. But we
mustn't now close our eyes to all else.

Extraction of low lLevel image and scene features is but a sub-process of the
visual mechanism. That a powerful subsystem is normally used does not imply
that it is essential for vision. Stereopsis certainly occurs, and needs to be
exptained, but our ability to perform everyday tasks with just one eye also
needs explanation. Similarly, we can often recognise things when detail is
missing, or spurious information added, through poor visibility, eye defects,
strong back-tighting, restricted view angle, or intervening  shruberry.
Normally, we use perceived detail to segment the scene into objects, but
sometimes the grouping must go beyond consideration of image continuities and
discontinuities because of occultation of some objects by others, camouflage,
shadows or spurious juxtapositions. ALl this suggests considerable modularity:
various sub-systems produce information, perhaps partly duplicated by other
sub-systems, and less precise information may suffice if the ideal is not
available. This modularity could allow a component which ideally should be
driven by the data, to be driven instead by prior knowledge activated by other
data. This might explain both our facility with impoverished pictures and the
occurrence of misperceptions even in excellent conditions (well-known examples
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are the holliow mazk [Sregory 19703, 2nd the triangle containing "“PARIS 1IN THE
THE SPRING').

How can we function sc well when so much detail is ilost? Recognition of sketchy
drawings can be rapid and effortless [Hochberg 1978, page 193, citing Ryan and
Schwartzl. Perhaps, when we look at pictures, intermediate results of the
interpretation process are similar to some intermediate (sketchy) results of the
processes of normal perception? Perhaps normal perception uses mechanisms with
built-in characteristics designed to cope with abnormal, specially difficult,
situations? Our central idea is that visual systems process many different
domains of structure 1in parallel. So analysis of relatively "high-Level”,
abstract, incomplete, representations, sometimes occurs in parallel with
detaited anatyses of visual data. [*3] Higher level processes would then be
driven in part by prior knowtedge of specific sorts of objects (e.g. generalised
cylinders, humanoid figures), Lower Llevels mainly by very general (implicit)
knowledge about 3~D surfaces, lighting, motion, etc. Occasionally such high-
level processes would reach conclusions which are overturned by more detailed
analysis, e.g. the 'double take". However the different processes would
normally produce compatible results, making possible the modularity referred to
above. How?

A basic assumption dis that the visual system has evolved to work in a
"Cognitively Friendly World", & CfW, (which may be very unfriendly in other
respects). Here are examples of cognitive friendliness:

(A) The optic array is rich in useful information about the environment -- as
noted above. This is due in part to the sorts of surfaces objects have, in
part to a plentiful supply of short wave-length radiation and a transparent
atmosphere. (N.B. the last two conditions are very variable.)

(B) The space of physically possible objects and processes 1is sparsely
instantiated in the actual world (unlike science fiction), i.e. there is
limited independent variation of features and relations: this makes images
redundant . This s dllustrated by planarity, continuity, rigidity, etc.
(Marr [19793) and the fart that no animal has the ear of a 2zebra and the
body of a giraffe.

(C) Confusing coincidences (e.g accidental alignments and juxtapositions) are
rare. This depends both on the kind of environment and on the low
probability of such viewpoints for any given scene.

To make use of (A) a visual system needs good detectors for features of the

optic array. Since these depend on laws of physics they don't vary much from

one part of the world to another and tan be usefully compiled into hardware. If
we have evolved mechanisms to take advantage of (A), might we not also have
evolved mechanisms tc take advantage of (B) and (£)? Using (B) requires using
knowledge of what sorts of objects actually occur, e.g. knowing about cylinders,
about rigidity, and about zebras and their ears. Some of this (e.g. many
objects are Llocally rigid) is useful in nearly all environments, and might be
built into genetically determined mechanisms, whilst some (e.g. what sorts of
plants, animals, or buildings, are common) will vary considerably and must be
left to individual Learning. Making use of (C) 1involves having good process
organisation, to find the 'best' percepts [Hinton 19771.

A consequence of (B) and (C) is that usually any good interpretation of a visual
image will be wunigue, and therefore the best one. (B) and (C) could also
justify higher level processes jumping to knowledge-guided conclusions on the
basis of partial results from lower Levels. This could enable good decisions to
be made in poor viewing conditions, and in good conditions would enable
decisions to be made faster. (ALL of this is demonstrated in a very simple
world, by the Popeye program [*21.) So, assumption (A) is of use in good viewing
conditions where objects are unfamiliar, whilst (B) and (C) are of use where
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tonditions are bad but objects are familiar. A system designed with this
flexibility might acquire a speed advantage where all of (A) (B) and (C) are
satisfied, if different sub-systems work in paratlel. It would still have to be
basically data~driven (bottom-up) if serious mistakes are to be avoided, but it
need not be pass—oriented, with each layer waiting for lower Llevels to
“complete” their analysis (if completion has any meaning).

If higher level systems can operate thus on impoverished data available in
adverse conditions, and on incomplete, partial, results of lower levels in good
conditions, they should also be able to interpret some highly impoverished
artificial data, such as we find in pictures. If so, the interpretation of
pictures is not merely a culturally specific, Llearned, process. If ordinary
perception of objects and relationships requires learning, then interpretation
of pictures of the same objects will not normally require additional Llearning,
on this view: toddlers we have observed respond naturally to cartoon drawings of
familiar situations, without anything Like the struggle which characterises
learning to read. [Cf. Hochberg and Brooks 1962.1 This is not the theory
criticised by Gombrich [1960]1 and Goodman [19691 that realistic paintings and
drawings produce the same visual stimulus as the things depicted.

2. VUnarticulated, semi-articulated, and articulated representations.

We have claimed that vision requires far more than efficient detection of
features of the optic array, and that several different domains of structure are
processed. To explain why, we must ask: what is vision needed for? An animal,
or robot, uses perception to make decisions in pursuit of its goals and to tell
whether they have been achieved. It also needs to detect unexpected dangers and
opportunities. ALt this requires construction of representations which
articulate the envircnment into objects with properties and relationships of
varying sizes and degrees of abstractness. Rarely will the detection of a
particular feature in a particular location on the retina be very significant.
Similarly, huge data-bases of wunarticulated 1information, Llike depth~maps,
surface colour or texture maps, surface orientation maps, primal sketches [Marr
19761, can be of little use without considerable further processing. They are
effectively new, enhanced, images, even though they may contain 3-D information,
Though important for further processing, these unarticulated databases are not
directly useful for decision and action: only generalisations related to global
image statistics can be learned or invoked e.g. 'lots of green', but not 'plum
on tree', might be recognised.

To some extent groupings of fragments of information into larger wholes can be
achieved by parallel "local” computations, e.g. relaxation techniques linking
items subject to constraints [Hinton 1977, Radig 1978, Frisby and Mayhew this
conferencel. If the links exist without explicit description of the properties
and relations of the linked groups, the database is semi-articulated. The
process of growing such Llinks may enable some useful global statistics to be
collected, but represents objects only implicitly. Though providing a useful
intermediate stage, a semi-articulated database does not explicitly represent
one object as above, inside, between, or able to fit idinto, others. Such
information is then not available for deciding, planning and learning. (Compare
Marr's ‘principle of explicit naming' [Marr 1976]. The same point was made in
Minsky [19611.)

Further study of visual articulated representations requires analysis of types
of actions performed by different animals. (Some birds can learn to use a foot
to depress one end of a lever, exposing food behind the other end. This
probably dinvolves articulating the Llever into parts, e.g. ends, capable of
different though causally linked motions.) It seems unlikely that a small number
of mathematically simple structures (e.g. generalised cylinders) with a small
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number of mathematically simple relationships (e.g. equations Llinking co-
ordinates) will suffice for human perception. Besides crumpled newspapers
(despaired of by Marr [19791) we see fields and forests. Similarly, cluttered
scenes made even of "clean”" cylinders will have messy structure at larger
scales, like large sets of axioms in a theorem-prover's database. To discern
significant objects and relations in large and messy collections of image and
scene features we need a much richer descriptive vocabulary than AI vision
programs have hitherto incorporated. This is why multiple domains are
important.

3. Multiple domains

Clowes L1970,7971] and Stanton [19701 stressed that visual perception and
picture 1interpretation do not simply involve description of image structures.
They described "mapping rules” Llinking different non-isomorphic domains. A
domain is a class of structures defined by a "grammar" or set of axioms (e.g.
3-D Euclidean geometry). Scenes have quite different "grammars" from images.
This needs to be generalised (as in Hearsay and Popeye) to allow many domains,
with different though possibly overlapping grammars. Very briefly, this is
because using many different domains allows: (a) ‘'structure sharing' between
processes of recognising different sorts of objects, (b) intermediate results of
processing to be relatively secure even if back-tracking is required at higher
levels, (c) higher levels to recognise important scene features before Lower
level processing is complete (see below) (d) high level recognition despite poor
low~level detail, (e) data derived from an image to be wusefully structured
(compare 'Scripts' and 'Frames'), (f) goal-directed activation or de-activation
of large chunks of knowledge (e.g. 'mental set'), and (g) communication between
different sensory modalities.

A.I. vision work has so far focussed on a small number of mathematically
tractable special cases. A good survey of the different domains of structures
useful in visual perception is still lacking. Likely relevant domains include
2-b arrays of changing colour and intensity, 2-D configurations of lines and
regions and of texture, domains involving patterns of motion in both 2-D and
3-D, overlapping 2-D silhouette shapes [Paul 19761, curved and flat 3-D
surfaces, both 2-D and 3-D stick figures [Palmer, 19751, various domains
involving forces and a variety of cause-effect relations, intentional actions
etc., properties Llike flexibility, rigidity, elasticity, hardness, etc. Besides
plane surfaces, edges, vertices and generalised cylinders for representing
shapes, we probably need generalised spheres, hemispheres, bags, tubes, strings,
etc. In addition we need models for significant parts of such objects and their
surfaces, Llike: hollows, grooves, holes, lumps, ridges, openings, rims, etc.,
and models for relating one to another (the groove runs across the hollow).
Features and relations invariant under non-rigid transformations are
particularly important in our world. We also need a large collection of schemas
for types of motion and action: moving towards, moving away from, moving into,
flattening, twisting, folding. Compare - Hayes on ‘'naive physics' [1979].
Studies of pictures and cartoor movies can yield useful 1dnsights dinto the
structures deployed 1in perception [Draper 1920]. 0f course, it is hard to
specify how such models may be represented, invoked, etc. in a working, system.
Is all this "cognition" relevant to vision? A major feature of visual learning
is linking new domains into the visual system - e.g. Llearning to see the
muscular structure of human bodies, for artistic or medical purposes, learning
to see when it is safe to cross the road. There is no sharp boundary between
practically useful vision and cognition.
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4. The domain of images

The “structure of the 2-D 4image domain 1is important for both picture
interpretation and normal vision: why? Goodman L1969 p.381, rejecting the idea
that pictures and objects produce similar visual input, accounts for the
"realism” of some pictures in terms of familiarity. But this fails to explain
why even a two year old child can learn some pictorial styles, whilst others,
though mathematically equally adequate, seem much harder. The human visual
system does not work with arbitrary combinations of image elements, but, as the
Gestalt psychologists noted, is largely constrained to use continuity,
proximity, smoothness, concurrency, symmetry, containment, and other geometric
and topological relationships, for Linking low-level features into cues which
invoke more abstract or global representations, which may themselves be
similarly treated. A grasp of such relationships is required for interpreting
pictures also. However, much richer image description Languages are required
than existing Al programs can handle: many can only describe the topology, and a
few metrical properties, of networks of straight Llines or picture regions.
Others provide a simple semi-articulated description with no grasp of the
implied structure [e.g. Radig 19781.

Further, articulated 3-D interpretations, required for planning actions, can be
linked to image structures to facilitate processing. For instance, to answer the
question "What is Y going to hit?"”, "Will I pass near A if I go straight towards
B?" one can "traverse" the relevant part of the image to find the relevant bit
of the 3-D interpretation. Moreover, our theory implies that 1in visual
perception and in picture interpretation, descriptions of parts of a complex 3-D
scene are built up in paraltel. The Llinking of dincomplete descriptions of
different parts of the scene to form lLarger structures, will be facilitated if
the 3-D structures are closely related to the network of descriptions of 2-D
image structure - the Llatter providing indexing or addressing routes. [*41.
This applies to both real vision and interpretation of pictures. (More on this
below.)

So, against Goodman we claim that "familiarity"” of pictorial representations is
not a matter of frequency, but depends in part on the way 2-D relationships are
used in normal vision. Of course, mere similarity of domains does not suffice
to explain facility with pictures. Maps also make use of 2-D structures and
relationships, yet learning to use a map to find one's way around is harder than
interpreting pictures. This is partly because our stored knowledge of objects
is addressable by means of the kinds of articulated representations produced by
both retinal 1images and artificial pictures, whereas our 'cognitive maps' of
familiar surroundings are not normally addressable by the kinds of structures
created when we look at maps. Things might be different if we could fly!

5. Reasons for using impoverished articulated representations

There are additional reasons why impoverished picture structures might be
related to normal vision. We have already given a general reason why a visual
system needs to be able to cope with impoverished representations: articulation
of the scene implies reduction of dinformation. Other reasons concern
processing, the purposes of vision and the environment:

5.1. Some details may interfere. Much of the detail available to the eye
arises ~from variable conditions, including Llighting, atmosphere, viewpoint,
non-rigid motion, and changing relations. The use of abstract schemas implies
less memory space, faster matching, smaller searches among stored specifications
and enables recognition of individuals or types (abstracting from individual
details) in novel circumstances. It also provides the basis for forming
generalisations.
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5.2. Some details aren't needed in a "cognitively friendly” world. It may be
possible to distinguish objects on the basis of only a few features. E.g. &
colleague once remarked that he could recognize a zebra with Jjust its ear
visible. In a CFW where the space of possible structures is known to be
sparsely instantiated ((B) zbove), inferences can be made from fragmentary
evidence.

5.3. Details may be missing or spurious. As already noted, poor visibility,
natural” or artificial camouflage, eye defects, rapid motion, or the presence of
visual obstacles, can produce degraded images. Injury can remove stereopsis.
Optical flow 1is not always available. Stereopsis and optical flow don't help
with distant stationary scenes. Extracting global features (e.g. silhouette
descriptions) from such degraded data sometimes enables recognition of useful
cues to overcome the difficulties. Once again, this depends on friendliness:
e.g. important objects having distinctive outlines from most views. This
requires assumptions (A) and (B).

5.4. Shared structure in memory entries. The system may share recognition
processes between different objects by using a discrimination net. As partial
specifications are built up, the set of remaining possibilities narrows. [Birch
1978 describes such an extension to Popeye.l Different recognition processes
thus share significant sub-processes, minimising back-tracking or breadth-first
searching. This uses incomplete descriptions, i.e. intermediate nodes in the
discrimination net.

5.5. The need for speed. Even in a CFW, unfriendly circumstances may demand
rapid decisions. The next section discusses the relevance of incomplete data.

6. Speed and the processing of incomplete representations B

Complex articulated representations cannot be created instantaneously. Fast
paratlel processing at low levels depends on each processor being concerned with
a relatively small well-defined portion of the data, and being able to work
independently or co-operate with a relatively small set of neighbours. Thus,
even data-flow channels can be 'hard-wired'. (Such mechanisms permit certain
non~local interactions, via information propagated through the net.) But
locality and independence do not characterise the process of articulating a mass
of data into objects whose contributory regions change from one image to
another. Portions of images relevant to a triangle or tiger vary in size and
shape, and may be split into separate regions by intervening objects. Hence
data-flow cannot be pre-~determined, and organising data from particular images
will therefore take a significant amount of time, compared with Localised
paratlel computations. Though detectors for all possible edges may be ‘'hard
wired' in advance, detectors for all possible triangle or tiger shapes could not
be similarly pre-determined, partly because of the explosion of connections,
partly because not all environments dinclude them. The task of segmenting,
aggregating, recognising, and building useful scene descriptions 1is therefore
inherently much stower than Llow-level tasks. Thus there are limits to the
speed-up available from hard-wired parallelism, and other mechanisms to speed
things up could be wuseful: milliseconds may matter when life, or food, is at
stake.

Cues invoking previously computed information can speed things up. This old
idea [le.g. Roberts 19651 is now associated with the 'frames' theory [Minsky
19751. Compare the idea of a ‘phrasal lexicon' [Becker 1975]. But the theory
leaves many questions unanswered: on encountering a new scene where should one
start looking for cues in the image? At which Llevel of analysis (in which
domain) will the most useful cues be found? How can cues be recognised rapidly?
The last question is very difficult, and will not be answered here. OQur answer
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to the first two is that as far as possible analysis should proceed
simultaneously in many Locations and at many levels, since the location or
domain of the most useful cues cannot be predicted. This should be concurrent
with general purpose image processing. Analysis of higher-level domains cannot
begin until after some flow of data from lower—levels, but it need not wait for
completion. The structure of such a network of processes will vary from image
to image, so time and resources may be saved if its growth can be constrained,
eliminating or suppressing portions which are not required, and giving priority
to those yielding useful results -— e.g. activating and deactivating whole
domains. This can be achieved if high-level structures (where the networks are
relatively small) can be recognised whilst Llower Llevel networks are still
incomplete. Thus construction of the network of communicating sub-processes
which interpret the image, may itself be controlled by partial interpretations.

If, at any level, there is a lot of partially processed information, things may
be speeded up by treating the partial results as a new image, in which gross
features provide useful higher—level cues: using redundancy in a CFW [Sloman
1978, ch 91. A specific purpose (e.g. finding a tool) might be achieved using
this gross structure, without waiting for details [*5]1., So, in some CFu
environments, allowing many domains of structure to be analysed in parallel,
could speed up actions. Even marginal advantages may influence biological
evolution when resources are scarce, or predators plentiful. There is a kind of
recursion in our argument, and possibly also 1in biological evolution. Where
speed is important, the pressure towards further decomposition into parallel
sub-systems is great, provided images have sufficient redundancy, i.e. provided
it is a CFW.

We have not claimed that higher level processes can influence Llower Llevels,
except perhaps by aborting, or re-directing them. But it may be useful for
partial results to affect some thresholds or even the invocation of specific
forms of analysis, at low levels. Alternatively, cognitive processes may simply
control the direction of attention, without modifying the nature of the
processing. Even if animal physiology permits no direct downward influence on
the processes which generate, say, a primal sketch, there might still be good
reasons for designing artefacts differently. It would be no different in
principle from making high levels influence direction of gaze, dilation of
pupils, convergence of two eyes, etc. atl of which affect the low-level image.

7. Some implications

In a CFW, multi-layered processing can improve flexibility, graceful degradation
and speed. This applies to any kind of activity requiring intelligent analysis
and interpretation of a large amount of data, based on expertise in the field,
e.g. solving a complex mathematical problem, debugging a program, etc. One
consequence is that demands on sub~systems are relaxed. For “instance, if
processing of Llevel P has to be completed before processing at level Q@ can be
begun, then it is important that P terminate. However, if Q@ can get started
early, then it does not matter if P refines its analysis indefinitely! 1In
vision, input is continuous, so lower levels cannot “finish" their analysis.
Thus higher levels must in any case operate in parallel with them.

Moreover, in a CFW, mistakes at lower Levels can be tolerated without disaster.
The system must be conservative about transmitting dtems to higher-level
domains, i.e. only sending well-supported reports. Then occasional mistaken
reports witl not combine usefully with other reports received at that level:
(compare the role of 'impossible fragments' in Birch 1978). If a relatively
large object is recognised on the basis of several different fragments reaching
a high level, then the chances of it being a mistake will be small, assuming
limited independent variation of object features. So the system need not
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guarantee finding the best interpretation of any image, as in Woods [19771],
since any good one will normally be unique, as we noted above. So it will often
pay to accept a high level decision, abandon lower level analysis, and re-direct
attention to the next task [x51.

AlL this depends on knowledge enabling fragmentary evidence to dinvoke specific
larger  structures, i.e. the principle of Llimited independent variation.
General-purpose knowledge about 3-D structures and the principles by which they
map into 2~D images does not constrain the space of possible scene structures so
as to permit the inference that any good interpretation of an image is probably
the best one. E.g. it does not rule out the existence of animals combining
features in bizarre ways. Without specific knowledge of the wortd, detection of
a zebra's ear would not rule out an animal with a trunk, six legs and two tails.
The world would then not be a CFW. (This is Like employing freguently useful
theorems as well as axioms, to controt search for proofs in a theorem-prover.)
OQur argumsnts are not relevant to the design of a machine whose visual system
will never need to act quickly, which will always have perfect viewing
conditions and which will often be transferred to a totally new environment
where only the most general and primitive knowledge of 3-D structure, lighting,
etc. will be of use to it.

0f course, our parallel, schema driven, system will sometimes make mistakes: but
people make mistakes and sometimes Learn from them. How? Decomposition into
sub-systems processing different classes of structures provides opportunities
for learning about new rules for Llinking the different domains, and for
inhibiting the idnvocation of schemas, as well as defining new types of
structures in terms of previously known substructures.

8. Problems of incompleteness

This theory raises many unanswered questions. Frank 0'Gorman has pointed out in
an unpublished manuscript that in a pass-oriented system, where each level of
analysis is completed before the next begins, incompleteness of information at a
certain location and Llevel has a definite meaning: i.e. it represents the
absence of something in the image. We have found it important to distinguish
two sorts of incompleteness. It is not too difficult to cope with a gap in a
known structure, for instance a hypothesised letter "E”, for which the Lower
"ell" junction has not yet emerged from lower levels. We call this explicit
incompleteness: a filler is missing for a slot in a frame. Here there are only
two candidate letters "E" or "F", and the word-recogniser can decide which is
correct on the basis of other letters which have emerged - even if they too are
ambiguous. This depends on Llimited independent variation of letters in the
domain of possible words. Implicit incompleteness occurs when trying to Llink
features together to form cues to drive recognition =- for instance two
previously unattached strokes to form a stroke—junction. Whether such features
should be linked often depends on which other features are present nearby. From
the absence of neighbours it cannot be decided whether this is because there is
no evidence at Llower levels, or because processing in that region has not yet
finished.

In early versions, every level of Popeyel#*2] simply used whatever information
had already emerged, and then relied on context, or later bottom-up processing,
to correct mistakes. Errors were reduced by delaying processing of any one Llevel
until a certain amount of information had been received at that level, using
thresholds determined by image statistitcs. But even this Lleft the garbage~
collection problem of undoing mistakes and their consequences. So higher levels
confronted with this incompleteness were allowed to ensure that everything up to
that Llevel, within a restricted region of the image, had been processed, making
use of image-related addressing routes. This caused the focus of attention to
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jump about, centering on qimportant image features such as junctions between
"bars". A better, more psychologically realistic solution, might be to let each
Level constantly recompute its hypotheses on the basis of the most recent
information from other processes. This would be a generalisation of mechanisms
using local co-operative processes, like relaxation. It could be very expensive
on current computers, and hard to control.

9. Testing the theory experimentally

The Fact that very young children Llearn to interpret cartoons and other
'impoverished' pictures so easily seems to support this theory. More detailed
studies of what they find easy might be helpful. There dis some additional
evidence for our claim that higher level processing begins before lower Level
analysis is complete. People often think they've recognised a person or object,
then spontaneously realise that a mistake has been made, even after the object
has passed from view. Informal experiments with messy pictures of overlapping
capital letters forming a word suggest that people often see the word before
seeing all the letters. More detailed studies could provide clues as to domains
and analyses being processed in parallel, in ordinary vision. Studies of brain
damage might indicate which domains of structure (section 3) can be selectively
disabled. Useful evidence should come from a study of visual errors. Our
theory predicts that even in good visibility, humans and other animals moving
rapidly will make more mistakes in an environment containing unfamiliar sorts of
objects. (Testing this could be difficult, expensive and dangerous!)
Experiments could test whether increasing familjarity improves performance {(of
survivors!), Different mixtures of familiar and unfamiliar features could be
used, to find out if more obvious familiar features lead to errors concerning
the other features. Additional experiments would vary lighting, foggy
atmosphere, etc. as well. 1In poor viewing conditions, our theory would predict
that visual judgements (especially at speed) would be more accurate when the
environment contains familiar objects. Comparative studies might show that only
some animals with visual systems possess the ability to process a variety of
different domains in parallel.

FOOTNOTES

[*1] Acknowledgements:
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Weir, among others. Mike Brady and an anonymous referee made useful comments on
a previous version. Judith Dennison helped with production.

[#2] Preliminary reports on POPEYE can be found 1in Sloman and Hardy [1976],
Sloman et. al. [19781, Birch [1978], and chapter 9 of Stoman [1978], See also
Owen [1980]1. Popeye analyses artificially generated dot pictures representing
words made of overlapping cut-out capital letters. It can recognise words
whilst much of the Lower Level processing is dincomplete. Details will be
reported elsewhere. The 1978 conference paper discusses differences between
Popeye and the Hearsay system [Erman and Lesser, Hayes—Roth and lesserl, which
have much in common. In particular, both process different domains of structure
in paratlel, though Popeye eschews the ‘blackboard' concept. A similar
philosophy has been used in the 'Visions' system (IJCAI-5, pp 642-647).

[%3] Marr makes a similar but different claim in justifying his theory of the
‘primal sketch', Ce.g. Marr 1979]. He postulates a progression, from image to
primal sketch to 2.5D sketch to 3D model, whereas we propose many more domains,
processed in paraltel. In Popeye, the domains mainly form a hierarchy, but
there are two main routes from image data to letter hypotheses and both feed the
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word recogniser. We suspect that real visual systems require a far more
elaborate network of routes through domains.

[*4] In Popeye the need for this arises often, e.g. when two parts of a Lletter
are separated because of occlusion. The two parts can sometimes only be related
by using a combination of <(a) geometrical relationships and (b) partial
recognition of the letter, since there are no image cues for linking, like
'back-to-back' tee junctions. So having recognised what may be, say, an E or an
F, the program works out roughly where in the image evidence of a missing bottom
stroke might be found, and this constrains searching.

[*5] In Popeye, processing can be aborted when the highest level decides it has
recognised the depicted word; lower level analysis will often be incomplete.
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