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Abstract.  Artificial Intelligence (AI) and Animal Cognition  
(AC) share a common goal: to study learning and causal  
understanding.  However, the perspectives are completely  
different: while AC studies intelligent systems present in nature,  
AI tries to to build them almost from scratch.  It is proposed here  
that both visions are complementary and should interact more to  
better achieve their ends.  Nonetheless, before efficient  
collaboration can take place, a greater mutual understanding of  
each field is required, beginning with clarifications of their  
respective terminologies and considering the constraints of the  
research in each field.12

1 INTRODUCTION

A list of advantages and  problems within each field is presented.  
It is proposed that AI and AC can complement each other and  
help in solving issues that have proved hard to tackle separately  
within each discipline. For example, within AI it is known how  
the 'robot brain' was coded and therefore we  know what it does 
and how it does it. In contrast, a wide variety of behaviours can  
be observed in animals, but they are hard to analyse since there  
is  little direct  information  about  the  structures  and  processes  
taking place within their brains.  The implementation of concrete  
structures and processes in a computer model, where the robot's  
behaviour can be compared to an animal's  behaviour,  opens a  
new route to propose models for AC that could not be tested in  
another way.

Before collaboration can take place, a number of  problems  
must  be  addressed.  For  instance,  AC  must  overcome  its  
anthropocentric  view  and  clarifications  must  be  made  where  
similar  terms  are  used  in  AI  and  AC  but  have  different  
meanings.  Scientists  of  both  fields  must  keep  an  open  mind  
towards  new  techniques  and  different,  unfamiliar  views  on  
actually similar questions asked in their own field (Figure 1).
   The poster further presents the study of how an individual  
learns about the deformability of objects as an example to where  
AI and AC can complement each other.  We propose the Three-
stage Theory of Exploration  (Forming, Testing and Extending &  
Refining  hypotheses),  which  can  be  studied  from  opposing  
directions by both AC and AI.  While AC presents hypotheses  
about the behaviour that can be observed in New Zealand red-
fronted parakeets (Cyanoramphus novaezelandiae), AI proposes 
models that are expected to produce analogous observations in  
robots1,  2.  Both views are summarised in parallel boxes where  
similarities and differences are highlighted.
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Figure 1.  A mind map illustrating how different important 
concepts and terms in Artificial Intelligence (blue) and Animal  

Cognition (green) can link to provide a fuller answer to a  
research question posed by both fields (black)

2 COMMON PROBLEMS & THEIR INTER-
DISCIPLINARY ANSWERS

Firstly, both fields are traditionally quite anthropocentric.    It is  
often thought that there is a dichotomy between the cognition of  
humans  and  non-humans  animals.  However,  despite  each 
individual and species having unique mechanisms to cope with  
their  unique  ecological  niche,  it  is  worth  investigating  
competences  developed  by  individuals  other  than  humans.  In  
modelling  cognition  a  single  separated  type  of  model  is  not  
enough and collaboration between different mechanisms may be  
required.

Secondly,  quite frequently the same terms in each field refer  
to  very  different  (although  analogous)  concepts,  or  similar 
concepts are called different names.  For instance, in AC ' neural  
nets' are connections between neurons in the brain.  While in AI  
they  are  numerical  techniques  to  approximate  an  unknown  
function, inspired by biological systems, but they really do not  
do the same function and are a lot simpler.

Both  fields  can  help  each  other  if  researchers  are  open  to  
learning and understanding new ideas and terminology proposed  
by the other field that can seem initially very daunting. While  
traditional  views  are  always  the  foundation  of  any  field,  
techniques, approaches and knowledge are constantly changing  
and evolving.

There is always more than one way to phrase a question and  
considering different angles of the situation can provide a more  
complete  answer.  This  is  why  collaboration  is  fruitful  and  
productive. AI & AC are complementary sides of the same coin.  
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For  instance,  AC often  follows  the  top-down  approach  when 
trying to answer a research question (what are the requirements  
imposed  by  the  environment  that  results  in  this  particular  
behaviour?), while AI follows the  bottom-up approach (let's try  
to build the system from scratch).  At some point, they meet in  
the  middle  and  provide  a  complete  understanding  of  the  
interesting behaviour or learning strategy in question.

3 AN EXAMPLE PROBLEM:  HOW DOES AN 
INDIVIDUAL LEARN ABOUT THE 
DEFORMABILITY OF OBJECTS?

We have combined our  respective expertise  in  AC and AI to  
propose a 'Three-stage Theory of Exploration'  to explain how  
individuals  learn  about  the  physical  properties  of  their  
surrounding environment.  Specifically, we apply it to a frequent  
object affordance or property experienced in everyday life – the  
rigidity or deformability of objects.

Today AI and AC researchers either seem to be focussed on  
how  learning  is  by  simple  associative  trial-and-error,  or  
probablistic and statistical strategies (e.g. Bayes nets) or by more  
complex and abstract causal understanding.  We propose that it is  
in fact by a combination of these strategies depending both on  
the  conditions  of  the  environmental  situation  and  the  
competences of the individual (whatever species). Surprisingly 
little research has looked at how systematic exploration could  
support learning strategies.  

We  believe  that  exploration  is  not  always  random  but 
structured,  selective  and  sensitive  to  particular  features  and  
salient  categorical  stimuli  of  the  environment.  It  typically  
follows  through  three  stages  of  theory  formation  specific  to  
particular affordances and processes, but can be generalised to  
novel  situations.   Firstly,  individuals  form  internal  
representations of  the  world/environment  by acting on  it  in  a 
way that suggests probabilistic reasoning and simple trial -and-
error learning is being used.  Their exploration further reflects  
genetic  predispositions  to  particularly  salient  environmental  
features,  such  as  edges  and  corners.  Moreover,  they  perhaps  
represent and segregate the world into general categories from  
birth.  Secondly, the individual tests these internal hypotheses.  
They progressively use more complex mechanisms like causal  
reasoning, so explorative actions become less repetitive and they  
generally behave more flexibly depending on the situation they  
are presented with in their environment. Tests internal theories  
and  rules  of  object  relations  by  performing  (initially)  certain  
actions on certain objects.  Lastly, individuals extend and refine  
these  hypotheses  by  analysing  their  theories  and  reusing  
knowledge about the world by combining them in similar but 
new environmental situations. The individuals can also now fill  
in  gaps  in  knowledge  abstractly  by  causal  inferences,  so  
hypotheses are extended throughout life.

We realise that at this stage, this theory is very general and  
still has a lot to be expanded upon and considered in more detail.  
However, it is an example of how apparently different forms of  
thinking from different research fields can actually be brought  
together and thus provide plenty more scope for collaboration  
and  further  more  systematic  investigation.   It  is  purposefully  
designed it this way also to provide a more general framework so  
that it can be applied to a wide range of behaviours, species and  
environments.   However,  we do acknowledge that there  are a  

variety  of  contributing  factors  and  thus  different  specific  
strategies and mechanisms for different contexts.  Thus in the  
next section we briefly explore our specific hypotheses for this  
context – learning about the deformability of objects in a robotic  
agentg and parakeets.

4 PROPOSED METHODS & HYPOTHESES

When AC and AI work in parallel the order and priority of their  
respective  hypotheses  often  becomes  altered,  yet  the  methods  
and results are complimentary.  In the case of deformable objects  
the methods for both can be compared as follows.   From the AC 
perspective,  we  plan  to  consecutively  present  individual  
parakeets  with  novel  objects  of  different  shapes  and  
deformabilities.  Then we will record in detail their actions from  
a rigid ethogram specific to this behavioural context, backed up  
by video analysis.
   However, from the AI point of view, we have taken a more  
bottom-up approach and propose a set of candidate mass spring  
models for every material the individual ( i.e. robot) encounters 
(Figure 2).  Subsequently, we will search for the model that best  
fits the data that the robot acquires through selective interactions  
with the material.  Then we will detect when no model can offer  
a 'good' representation and evaluate and characterise the search  
strategies  that  find  the  best  models  and  use  these  results  to  
improve the searching process.  Finally, the system will be tested  
by  consecutively  presenting  the  robot  with  simple  solid  and  
deformable  novel  objects  in  a  similar  task  design  to  the  
parakeets.  The quality of the generated models and the number  
of steps (time) it took to find them will then be evaluated.

It  can  hence  be  observed  that  while  AC  focuses  on  the  
observation of behaviours, AI focuses on the construction of the  
infrastructure  that  would  produce  those  behaviours.   The  
hypothesis  in  each  case  reflects  the  opposing  goals  of  both  
disciplines  and  the  application  of  the  Three-stage  Theory  of  
Exploration.

Firstly, in AC we predict that there will be a higher frequency  
of the parakeets touching the corners and areas of high curvature  
over  the  smooth  surfaces.   Furthermore,  they  will  explore  a 
novel  deformability  more than a  familiar one.   Then between  
trials, the individual begins to explore the most compressible and  
the most rigid objects more than the other levels of intermediate  
deformability,  but  they  progressively  focus  in  more  detail  on  
these intermediate levels.  Lastly, we hypothesise here that the  
parakeets will eventually reach a point where they have so much  
experience  with  the  different  objects'  compressibility  and  
affordances,  that  they can combine their  understanding of  the  
different objects to solve a new task.  However, how this will be  
observed specifically in the behaviour is still to be decided.

On the other hand in AI, we hypothesise that it is possible to 
generate a geometrical internal representation on top of which a  
mass spring physical model can be applied [1][2].  The nodes of the 
mesh will be more likely to be placed at points of high curvature.  
Secondly,  we  believe  that  it  is  possible  to  calibrate  the  
parameters of the model by using a random search algorithm.  
This  algorithm samples  the  space  of  possible  parameters  and  
selects  the  most  suitable  ones.   Finally,  we  predict  that  it  is  
possible to improve learning by providing a clustering algorithm  
that learns to segment and classify the space of parameters of the  
physical model, so that the appropriate models for new materials  
are calibrated faster.



Consequently,  from these two sets of hypotheses we can see 
that in parts they are actually very similar, and where they are  
not  so  similar,  they  can  add  resolution  to  each  other.   For  
instance,  it  can be seen that  while  the first  hypothesis of AC  
looks  for  evidence  of  more  attention  on  places  with  high  
curvature, the first hypothesis of AI directly  establishes that the  
model will use points of high curvature as pivotal points for the  
model and expects that the generated model of the behaviour of  
the deformable object will be good.

Figure 2. In Artificial Intelligence a generic technique from  
physics (mass-spring models) is used to generate an internal  

representation of deformable objects

5 CONCLUSIONS & FUTURE WORK

For  AI,  the  problem  of  interest  is  to  learn  to  predict  the  
behaviour of deformable objects based on experience.  In order  
to  achieve  that,  a  learning  technique  is  proposed,  where  the  
generation and selection of physical models consists of sets of  
masses  connected  by  springs  on  top  of  a  mesh  of  triangles  
superimposed onto the object of interest.  From an AC point of  
view, it is hypothesised that this learning technique will produce  
in  the  robot  a  behaviour  that  is  analogous  (though  perhaps  
simpler)  to  what  can  be  observed  in  the  parakeets  when  
encountering novel deformable objects. Although parakeets may  
not  directly  use  a  mass-spring  model  to  learn  about  the  
deformability  of  their  environment,  they  may  use  a  similar  
frequency-based  strategy  that  can  be  derived  from  the  mass  
spring model.  New hypotheses and experiments could then be  
designed to further test  the applicability of this model and to  
hopefully extend it.
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