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Abstract. A simple approach to route following is to scan the envi-

ronment and move in the direction that appears most famifidghis
paper we investigate whether an approach such as this caitle
a model of visually guided route learning in ants. As a proay f
familiarity we use the learning algorithm Adaboost [6] witimple
Haar-like features to classify views as either part of arledrroute
or not. We show the feasibility of our approach as a model tfika
route acquisition by learning a non-trivial route througteal-world
environment using a large gantry robot equipped with a @anar
camera.

1 Introduction

Individual ant foragers show remarkable navigational grenfance,
rapidly learning long idiosyncratic routes through clutenviron-
ments [2], guided by learnt visual landmark information,[16, 4,
14, 5]. Studies of such visual navigation have revealed hs&dts
combine simple strategies to produce robust behaviour agect
navigation is now an established model system for investigs. of
the sensory, cognitive and behavioural strategies thadilersanall-
brained animals to learn and utilise complex sequenceshaiviaur
in the real world.

One elegant use of visual landmark information that is pbthe
insect’s navigational toolkit is view-based homing. Bebaval ex-
periments with ants [15, 5] and bees [1] have shown that iddats
store 2D retinotopic views of the world as seen from theirl doa
cation. Subsequent search for that goal location can berdby a
comparison of their current view of the world and the viewrstb
from the goal location. As this is an efficient and economieay of
pin-pointing a location, itisn't a great leap to imaginettkmowledge
of the world over larger scales, such as routes, could benalised
as a series of stored views that are linked together as a rsegjue
Route behaviour in this framework would entail homing fromeo
stored view to another. However, recent studies with anggest
that guidance along routes might not be best served by cludins
snapshots. Behavioural experiments suggest that routebecaer-
formed using simpler procedural rules where the rule gomgra
path segment can be associated with the appropriate wisdatti-
fied location [3]. Moreover, attempts to model route beharsaising
linked view-based homing have shown it to be a non-triviabjem
which requires the agent to robustly determine at whichtmimay-
point should be set during route construction, and decidihgn a
waypoint has been reached during navigation [11]. Esdbntiar
robust route navigation, an agent therefore needs placgmémon
to determine where along the route it is [12]. In conjunctieith
environmental noise, these problems make robust routgatien a
non-trivial aim.
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We begin our study of visually guided routes by drawing a line
under previous modelling which defines routes in terms dfrdie
waypoints. Instead, we define a minimal route learning peda
which the route is learnt more holistically. Rather tharrmézg and
homing to a set of positions, the agent instead learns a nane g
eral mapping which associates the current vimiwith a particular
place but instead with a particular action. For an ant or rabat
can only translate in one direction relative to its body axid has a
fixed viewing direction, the direction of movement is detered by
the viewing direction and visa versa. Thus, if the curretihotopic
view is similar to a remembered view, it is likely that the mant
viewing direction is the also the correct direction to moneHlav-
ing constraints on movement direction and viewing diractieans
that a single view can define not only a location but a directimt
should be taken at that place. Crucially however, we do rietrgit
to learn every view along the route, but instead use thematmla
classifier that can be applied to any view to determine hoalyik
is that it is part of the route. We suggest this approach isnefal
platform for investigating efficient encoding of route gaite infor-
mation and how this depends on the visual ecology within Wwhic
agent navigates.

This tight coupling of sensation and action allows us toawefe
the problem of navigation in terms of a search for the vieves e
associated with a route. By visually scanning the enviramtnaed
moving in the direction that is most similar to the views amnt@red
during learning an ant or robot should be able to reliablyas a
given route. Both desert ants and wood ants perform scariréng
haviours that would support this approach. When released im-
expected but familiar place the desert ant melophorus bagah
the environment by turning rapidly on the spot. More than sten
maybe performed with short straight runs of a few centinsetepa-
rating them before the ant finally sets off in a seemingly pagful
manner. Wood ants exhibit a second form of scanning behaviou
stead of walking in a straight line, wood ants instead tendd¢ave a
somewhat sinuous path. This has the effect of producingssuiathe
world centred on the overall direction of movement.

We propose that if ants are able to somehow recognise familia
views, then they can recapitulate routes by simply scanttiagen-
vironment and moving in the direction that is deemed mosi-sim
lar to the views experienced during learning. Ants could amirse
simply remember the complete set of views that were expegtn
during learning, however this approach would result in aneemely
high memory load. Instead we propose an approach that iesolv
implicitly modelling the distribution of the views expeneed dur-
ing learning by using a classifier to determine whether argixew
comes from part of the learned route or not. Using a clasgfier
vides us with a more compact way of storing the informatiauneed
to recognise familiar views. Crucially, the approach we Emyalso
provides a measure of the expected uncertainty of the filzsin



(as will be explained later). Here we test the idea of usirgfth case this means collecting views that are part of the roudesews
miliarity of views as a means of navigation by training a slfier that are not part of the route. The positive examples are Igimp
to determine whether a given view is part of the route or nat an the forward facing views experienced along the route. Thgane
then using the learned classifier to dictate the direction@fement  tive views consisted of views from the route taken facinghe left
during route following. and right of the direction of movement at an angletef5° relative
Our results implemented on a real robot indicate that this-is  to the route heading. A small amount of normally distributedse
deed a feasible navigational strategy allowing the legrmihcom- (s.d. = 0.1radians) was added to each of the sampling directions.

plex routes through cluttered environments such as migkiperi-  This approach is inspired by the observation that ants tertidm
enced by a navigating ant. move in a straight line on a route but instead proceed in ausino

manner that results in some views that do not relate to theatbve
2  Methods direction of travel and some that do [see Figure 3].
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Figure 3. By weaving back and forth during locomotion it is possible to
sample both the on-route and off-route views need to traiassifier.

Panoramic images were unwrapped and downsampled befere per
forming feature extraction using simple Haar-like feagJi&gure 5].
Examples of the unwrapped panoramic images are given irefigur
which shows an unwrapped image (top) and a heavily downsampl
version of the same image (middle) together with the remtasien
of the downsampled image in terms of the activations of afs&90@
Haar-like feature detectors (bottom).

Classifying images is a difficult task due to the high dimenai-
ity of the input if we adopt a pixel by pixel representation.drder
to make learning tractable we need to project this high dsiveral
space into a lower dimensional space that retains enoudteafec-
essary structure to allow successful classification of tipeit. As a
first step in reducing the dimensionality of the input we deample
the images to a resolution of ten degrees per pixel [Figureédt m
dle]. To further reduce the dimensionality of the input we ganple
Haar-like features [Figure 5] to construct a lower dimenalaepre-
sentation of each image. Each feature produces a singleatesid
output for a given image so we can can control the dimensigraf]
the input to our navigational algorithm by defining the numtifdea-
tures that we use. In the current work we chose to use one édindr
features selected from a randomly initialised pool of tesutand.
Finally we use the thresholded outputs of the features gisioias-
sifiers. This leaves us with the problem of selecting theufesstfrom
our pool of ten thousand and determining how to combine their
puts to form a reliable classification. Thankfully, boogtiprovides
us with an approach that achieves both of these requirements

Figure 1. The gantry robot used in all of the experiments.

To test our hypothesis we need to sample the world from as ant’
view point. To do this we used a large volume Cartesian XY2tob
to sample panoramic images along a pre-specified groured-tes
jectory through a cluttered environment [see Figures 1,244n

2.1 Boosting

Boosting is a supervised learning technique for constngastrong
classifierfrom a set ofveak classifiergiven a training set of labelled
positive and negative examples.weak classifieis a classifier that
performs only slightly better than chance. Conversebtrang clas-
sifieris one that performs arbitrarily well. Atrong classifieis con-
structed from a linear weighted combination of the outpdite@ak

Figure 2. The environment viewed from above showing the learnt route classifiers. . . . .

(dotted line) through a cluttered environment. The scafedriziicates 1m. There exist many variants of boosting algorithms. Adab@@jst
the approach we use in this paper is one of the most commonly
used. The basic algorithm works as follows. At each itergtibe

In order to train a classifier it is necessary to generatetigesi training data are resampled or reweighted according to tailiis
and negative training examples of the input to be classifiredur tion of weights that indicate the current importance of eexdaimple




in the dataset. Aveak classifielis then learned using this resam-
pled/reweighted dataset and is added tostiheng classifierThe rel-
ative contribution of each of thereak classifiergo the finalstrong
classifieris determined by performance on the sampled data. Fi-
nally, the weights of incorrectly classified examples areréased
and correctly classified examples decreased, thereby eaging the
nextweak classifieto focus more on the examples that were incor-
rectly classified at the last iteratioeak classifierare added until
the overall classification performance exceeds some thiesh the

100 200 300 400 500 600 700 . .
0.5 degrees/pixel maximum number ofveak learnerss reached.

The psuedocode for Adaboost is as follows:

 Em 1 SetT = maximum number of weak classifiers
‘ Given: (z1,y1),- -+, (Tm, Ym)
10 1510deg'e%52/gixel 25 30 35 WherE‘JJ@ eX,y €Y ={-1,+1}

Initialize W1 (i) = —,i=1,...,m
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m

Strong Classifier
H=sign (sum(alpha*h)) Fort = 17 e 7T :

Find the classifieh; : X — {—1,+1} that minimizes the error
with respect to the distributioi’,

Weak Classifiers

-1 1 Feature F
Activati A _ . .
Theshod T Choosea; = #In’= wheree, is the weighted error rate

Heioring  aloha of classifierh; with respect to the reweighted data.
h

Output

Update Wy 1(i) = XeeeCorvihi@d) \where Z, is a
normalization factor that ensures that represents a probability
distribution over the training data

Figure 4. High (top) and low (middle) resolution panoramic images of a : r
typical view from the workspace. The downsampled image t®ded using Output the final classifieH () = sign (Zt 1 atht(x))

a set of one hundred Haar-like basis functions (bottom)ahafixed in
space relative to the direction of view. Following Viola and Jones [13] we implement adaboost using s

gle Haar-like features [Figure 5] as the basis of mwgak classi-
fiers The Haar-like features consist of randomly chosen reciang
patches of the image which are then subdivided in one of faysw
The value of aone rectangle featurés simply the mean intensity
value of the patch. The value oftao rectangle featurés the dif-
ference between the mean intensity of two rectangular nsgithe
regions have the same size and shape and are located nexhto ea
other either horizontally or vertically. The value oftaee rectangle
featureis given by the mean intensities of two outer rectangles sub-
tracted from the mean intensity of a central rectangle ragaéented

either horizontally or vertically. Lastly, ®ur rectangle featureom-
putes the difference between diagonal pairs of rectangleseak
classifierh; (x) thus consists of a Haar featufe a threshold; and

a parityp; that determines whether the output of the feature detector
f; should be greater than or less than the threségld

hj(z) = p;fi(x) < p;0;
By providing a pool of feature detectors, each defining a weak
learner, adaboost is able to perform feature selectionaél éera-

tion a single feature detector is chosen that best aids sifieation.
This allows adaboost to pick out and use only those feathssare
most useful for the current classification problem.
Figure 5. Examples of the six classes of Haar-like features that weee u Key to our use of a boosted classifier is the fact that it is ibtess
to represent the images. Each feature is defined in termsadiaign a size to obtain a confidence value associated with any given iesson
and a class. made using the trained classifier. This confidence valudasedto
the margin and is given by:

conf = HEL azhy () H



Which is simply the degree to which the the combined weak clas
sifiers differ from zero, prior to the sign being taken.

By applying the classifier to views in different directiong wan
attempt to determine which of the views are from the learoeder
By weighting each of the viewing directions that produceifpas
classifications by their associated confidence values wedeter-
mine a direction to move that is most likely to keep us on therled
route.

2.2 Data collection

All experiments reported here were performed on a gantrgptreb

a large volume XYZ Cartesian robot. The gantry axis configjoma
provides an operating volume of 3000 mm X 2000 mm X 2000 mm.
The sensor end of the Z-axis can be placed anywhere withén thi
volume with sub-millimetre accuracy. For the experimemtspnted
here a catadioptric camera system (VCAM 360) is mounted en th
Z-axis to produce panoramic images. A panoramic mirrorqutsja
360° image of the environment onto a downward facing CCD video
camera. The image is transformed from a circular reflectibo &
panoramic image that is used for subsequent processing.

The gantry workspace was populated with a variety of objemts
sisting of foam blocks, piles of fabric, paper rolls and ad@m selec-
tion of toys. Objects were placed in such a way that it wasiples®
move the sensor head along a route through this visual cIRbeites
could be made more or less challenging by varying the dedreate
ter and the straightness of the routes. In order to go beydrat is
possible with a snapshot type model, the beginning and emtspaf
all routes were chosen so that it would not be possible toparthe
route using this approach. This is achieved by making swattkte
end point of the route could not be viewed from the startingjtpm.

2.3 Route learning through classification

Haar-like features were extracted from the set of trainmgges and
used to train a boosted classifier. During testing the camvasapo-
sitioned at the start of the route facing in the correct dioec From
this position images were sampled in a range of directioom fr
—60° to +60° in steps of5° relative to the current heading. Fea-
tures were extracted from all of these images and used as topu
the classifier. All of the viewing directions that producegasitive
classification contributed to to a weighted average witlwtaighting
controlled by the confidence interval of the individual sifisations.
The weighted average was then used to determined the dinewfi

The three leftmost starts fail due to the path exiting therper
sible workspace of the robot. The fourth leftmost startsfaifving
successfully negotiated the first corner suggesting tleapthvious
three starts would also have failed had they not stoppedaligat-
ing the workspace. The remaining six starts including thgiral
start position (position five) all successfully recapitalthe original
route.
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Figure 6. Performance of the algorithm. Top) Training data were ctéle
along the route indicated by the linked stars and the reguiarned route is
indicated by the dots. Note the symbols on the two routes dndeate the
points at which images were taken although for the trainmge they do
indicate the waypoints that defined the route. Bottom) Temrgle runs of
the navigation algorithm. The ten starting positions argreel on the
original starting position. Six out of ten trials are susfab Black regions
indicate areas of the workspace that the were defined as bouofds due to
potential damage to the camera from collisions with objects

In order to get an understanding of how the algorithm would pe
form across the entire environment. We moved the panoraamt ¢

travel and &cm step was made in this direction. The process wasera across a grid covering the entire workspace. At eachitocae

then iterated until success or failure.

3 Results

To test our approach a classifier was trained using a set afdésma
gathered during a single traversal of the route shown indi@uiThe
training data consisted of 171 views from 57 positions althegpre-
specified route, 57 forward facing views and 57 views to bloghléft
and right resulting in 57 positive and 114 negative views.oadied
classifier with 100 weak classifiers was trained on this datéer-
formance was then assessed by starting the robot in a sénifs o
ferent positions close to the original starting positioigure 6 (top)
shows the performance of the approach when starting at the sa
point as during the training run. Figure 6 (bottom) showsdepa-
rate runs with starting positions at varying distances ftioenoriginal
start point.

scanned in all directions and used the classifier to determipre-
ferred direction of movement, together with a confidencespre-
diction. The results of this analysis are shown in figure hwin-
fidence indicated by the length of the arrows. Contrary totwie
would expect from the performance observed during routevsl
ing, when input is sampled from all directions at all posisanany
views are clearly erroneously classified as being assakvaith the
route as evidenced by the arrows (or lack of them) in Figureat t
are not consistent with the left to right route on which thessifier
was trained.

How can we reconcile this result with the successful peréoroe
during our initial experiments? In our route following exipeents
we did not perform a fulB60° scan as we did in constructing the map
in Figure 7, but instead limited the scan to forward facingclions.
If we construct a map similar to that in Figure 7 but for eacimpo
also provide a heading, then we can apply the navigatiorrighgo
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Figure 7. Map of predictions of the route direction based on the route
classification algorithm for fulB60° scans of the environment sampled
across the permissible workspace. Confidence values aesegyied by the
size of the arrows. The dotted line shows the successfutrgaing from
left to right, followed in the first experiment. Black regomdicate areas of
the workspace that the were defined as out of bounds due ttjabte
damage to the camera from collisions with objects.
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Figure 8. Map of predictions of the route direction based on the route
classification algorithm fof=60° scans of the environment centred on a
heading parallel to the route heading of the nearest segfitive original
route. Confidence values are represented by the size ofrthesarThe
dotted line shows the successful route, going from leftdbtrifollowed in
the first experiment. Black regions indicate areas of theksmace that the
were defined as out of bounds due to potential damage to theradnom
collisions with objects.

exactly as it is used in the first experiment. We determineaaling
for each point in space to be the route heading of the nearebs
of the route. Figure 8 shows the preferred direction of maem
together with confidence values again indicated by the feafithe
arrows. Note the area where the route failed in the 4th ruheofitst
experiment has zero confidence indicated by the lack of aswarr
which explains why the algorithm fails at this point. Theaithm
appears to define a corridor along which successful routewiig

is possible with confidence values decreasing the furthaydwom
the learned route that the agent strays.

4 Discussion

It is important to note that we are not primarily attempting en-
gineering solution to the problem of visual navigation.té=sl we
are trying to gain insight into how ants might learn and usiai
information to guide their routes. This is an important paimce it
means that while successful route following using this apph is
a minimum requirement, of potentially greater interesttaeelimi-
tations and modes of failure that we observe. We have thereiot
attempted to improve the overall navigational performaofdae ap-
proach at the expense of the conceptual simplicity thapitagents.

The idea that routes can be learnt using a set of StimulupdRes
(S-R) relations is not new. Equally, it has been observedasious
authors that it is possible to orient rotationally by conipguviews
in different directions to a reference view, effectivelputting in a
visual compass [17, 9]. However, combining aspects of tiwese
approaches, as we have done, constitutes a novel apprdestly, F
by parameterising the S-R relationship using a boostedifikars we
not only provide a compact representation of the problemaise
obtain a more robust solution by being less reliant on deteéng an
exact match between the learnt stimulus and the current Bea-
ondly, by using the classifier to determine view familiantye are
performing recognition rather than recall which is a fundatally
easier problem. In using familiarity rather than similatib a partic-
ular reference view, we can go beyond a simple visual comgads
instead construct a method for learning entire routes.

We have shown that it is possible to learn a non-trivial route
through an environment using a simple view classificatioatst
egy based on positive and negative views collected duringges
episode of learning. The route was designed to include hégjness
of occlusion and variable depth structure such that a sisggshot
taken at the route end-point could not underpin succesaftigation
through simple image matching. By considering the tightptiog
of sensation and action that is present in ants and somesralt
were able to reframe the problem of route navigation in teofns
search for simple directional views using a classifier thatiles a
compact way of storing the information required to recogri&nil-
iar views and crucially a measure of the expected unceytaiinthe
classification.

By embodying the view classifier on a physical platform ana-co
straining the required spatial behaviour to routes, we vabile to
explore other areas for parsimony. The positive and negaisws
used by the classifier were collected by simulating a siniglecsis
path. Consequently, we observed that although spatial ledlgs
was fragile when the robot was placed at all points in therenment
(Figure 7), as long as the agent has some context provideteby t
likely current direction of travel (Figure 8) the agent canapitulate
a learned route through a visually cluttered world and pcedsensi-
ble headings from points off the original learned route sTgrovides
an interesting example of where a simple interaction batveebe-



havioural strategy and learnt information provides rothedtaviour

and without that interaction the agent would require a muchem
comprehensive survey of the environment. Interestinglg, tiype of

interaction has been observed in ants where directionatrirdtion

from path integration has been shown to increase the poect

visual landmark use [7].

Our ultimate goal with this project is to understand likehdavi-
able mechanisms used by insects for navigation. Therefiseise-
ful to summarise our framework with respect to some of thérdete
properties of insect route behaviour: (i) Route knowledgeutd be
procedural, i.e. an agent should be able to produce theatdree
haviour for a given place independently of the prior seqaesfois-
ited places. By constraining vision and motion we producsitrgle
procedural mechanism for visually setting heading whicinée-
pendent of the sequence of prior visited places. Althoughatsd
above, some degree of hysteresis can be useful to compdosate
sparse set of positive and negative views acquired duraigiig; An
interaction which merits further study. (ii) Route knowdedshould
consist of a broad corridor of familiar places rather tharagife nar-
row ridge and agents need to produce sensible behaviour thibgn
are outside the route corridor. In our pilot-study we carisgathis
criteria as the estimates of heading produced from closeoatk lo-
cations are sensible. Then as one moves further from the tbat
uncertainty in recalled headings increases which would bsedul

signal to commence a systematic search for the route; a ioeinav

seen in ants when they are lost [8].

Our results suggest that it may be possible for ants andiggssi

other animals (including humans) to learn routes withoet ieed
for recall of the specific views encountered during learningtead,
recognition together with the simple procedural rule ofdieg in
the direction that appears most familiar may well provid#icient
information to allow successful navigation along routes.

5 Future Work

The ultimate test of our model of route acquisition in antauldo
require the comparison of the performance our approach thiéth
of an ant in the same environment. There are obvious diffesiih
achieving this, however as a first step towards this goal vemahto
implement the algorithm on a mobile robot that can then biedrh
using images collected along an actual foraging route ugeahts.
It is hoped that by careful manipulation of prominent visigatures
along the route it will be possible to determine whether arthe
approach provides a useful model of real behaviour.

In addition to this there are two main aspects of our approiaah
we are keen to explore further. These are: (i) How we reptesen
image. (ii) How we sample the environment to generate pesétnd
negative examples for training a classifier.

In the current set of experiments we chose to represent wisws
ing the outputs of a set of Haar-like features. This choice mainly
motivated by the success of this approach when applied toeadie-
tection task [13] where processing speed was a key factoceSie
are less concerned with how fast our code runs we intend todbo
the result of employing a more comprehensive feature setison
ing of Gabor filters at different positions, scales and degans. By
providing a pool of Gabor filters and learning routes in aefgriof
different ant-like environments we hope to determine weethere
is any consistency in the filters that are selected by Adabaes
whether there is a general purpose set of filters that willkwora
variety of different environments.

Next, we want to look at different ways of generating negativ

training examples. Potentially any views that are not dlstyert of

the route might be used to define negative instances for tpope
of training. We intend to explore how different, behavidlyralausi-

ble, sampling strategies effect the performance of therglgo. For

instance, in the current experiments we only provided megatews
to the left and right of the current heading and found that tbsulted
in classification errors for views from the route facing baakds rel-
ative to the learned route direction. By including a widenga of
negative views during learning it should be possible to muprthe
robustness of the approach.
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