
MINDER1:

An implementation of a protoemotional

agent architecture

Ian Wright

Aaron Sloman

School of Computer Science,

The University of Birmingham

Edgbaston, Birmingham,

B15 2TT, UK

I.P.Wright@cs.bham.ac.uk,

A.Sloman@cs.bham.ac.uk

December 9, 1996

Abstract

An implementation of an autonomous resource-bound agent able to op-

erate in a simulated dynamic and complex domain is described. The agent,

called MINDER1, is a partial realisation of an architecture for motive pro-

cessing and attention. It is shown that a global processing state, called per-

turbance, can emerge from interactions of subcomponents of the architecture.

Perturbant states are characteristic features of many states that are commonly

called emotional. The agent is compared to other computer simulations of

emotional phenomena.

Contents

1 Introduction 3

2 A design for motive processing 3

3 An implementation of motive processing 4

3.1 The SIM AGENT toolkit . 4

3.2 The minder domain . 5

3.3 Behaviour and capabilities . 5

3.4 The reactive layer . 6

3.4.1 Shallow perception . 7

3.4.2 Shallow belief maintenance 8

3.4.3 Reactive plan execution . 8

3.4.4 Generactivation of motivators 10

3.5 The management layer . 11

3.5.1 Shallow motive �lter mechanism 11

3.5.2 Shallow motive management 11

3.5.3 Shallow plan execution . 15

3.6 The metamanagement layer . 15

3.7 Evaluation of the architecture . 17

3.7.1 Evaluation . 17

3.7.2 Some limitations . 19

4 Emergent processing states 19

4.1 Filter oscillation . 20

4.2 Decision oscillation . 20

4.3 Perturbant states . 21

4.3.1 Perturbant scenario . 21

4.3.2 Proto-perturbances in MINDER1 22

5 Perturbance and theories of emotion 24

5.1 Other design-based simulations . 25

6 Conclusion 26

7 Acknowledgments 26

8 Appendix 27

8.1 Motives . 27

1

8.2 List of basic actions . 27

8.3 List of prestored plans . 28

8.4 List of TR programs . 28

8.5 Example trace . 29

8.6 Example code . 30

References 32

2

1 Introduction

There are many approaches to the study of emotions. We favour a design-based

approach (Sloman, 1994) that takes the stance of an engineer attempting to build,

and understand the design options for, a system that exhibits the phenomena to be

explained. We move from abstract requirements for functioning agents to possible

designs that satisfy those requirements. This is an exploration of niche-space and

design-space and the mappings between them (Sloman, 1995a). Our interest focuses

on complete or `broad but shallow' agents (Bates, Loyall & Reilly, 1991) that com-

bine many capabilities (such as perception, planning, goal management and action)

but where each capability is initially implemented in a simpli�ed fashion. The inter-

action of sub-components of an architecture can give rise to emergent phenomena,

some of which we believe are important in an understanding of the emotions.

In this paper we describe an implemented architecture that partially supports a

processing state called perturbance, which is a partial or total loss of control of at-

tention. The state is related to existing information processing theories of emotion

and existing computational models. We claim that perturbances will and do exist

in resource-bound architectures that attempt to meet a requirement for managing

multiple motives in complex and dynamic domains. The implementation demon-

strates this for our particular agent design and simulated world, points to futher

extensions of the work, and illuminates one of the characteristic features of human

emotional states.

2 A design for motive processing

The requirements and high level design for the agent architecture that informs all

our work has been described elsewhere, notably in (Beaudoin, 1994), summarised

in (Beaudoin & Sloman, 1993; Sloman, Beaudoin & Wright, 1994; Wright, Sloman

& Beaudoin, 1996), and �rst elaborated in (Sloman, 1978; Sloman, 1985). It is

partly inspired by George�'s Procedural Reasoning System (George� & Ingrand,

1989; George� & Lansky, 1989; Rao & George�, 1991b; Rao & George�, 1991a).

The discussion of the design is not repeated here. However, the main design points

to keep in mind are: (i) the architecture is multi-layered allowing coarse-grained

asynchronous parallelism, (ii) there is a reactive layer that includes `automatic'

processes all implemented in highly parallel dedicated, but trainable, `hardware'. A

major function of the reactive layer is to generate motives (although motives may

be generated by non-reactive processing). (iii) A variable threshold attention �lter

only allows motives of su�cient insistence (Sloman, 1987) to surface and be can-

didates for higher level, management processing. Insistence is a `quick and dirty'

heuristic measure of the urgency and importance of a motive, and is a disposi-

tional ability of a motive to gain management resources and attract attention. The

mechanisms assigning insistence values must work using simple `heuristic' measures

because computing accurate measures of urgency and importance could be too slow

and computationally expensive, possibly diverting the very higher level processes

the �lter mechanism is designed to protect. However, insistence measures based

on fallible heuristics can sometimes cause `bad' decisions about what should and

should not enter management processing. (iv) A management layer involves pro-

cesses that, among other things, decide whether new motives should be adopted or

not. Management processes, but not the low level processes, can create, consider

and evaluate explicit representations of options before selecting between them, for

deliberation, planning and problem-solving. (v) A metamanagement layer involves

3

goal-directed processes that refer either to management processes or metamanage-

ment processes, such as deciding whether to decide to adopt a goal, or raising the

motive �lter threshold level if management processes are too `busy' and so forth.

More sophisticated metamanagement can include evaluation of management activ-

ities and the development of new deliberative strategies.

We have acknowledged that the design sketch is speculative, vague and subject

to revision in the light of implementation problems or empirical evidence (Wright,

Sloman & Beaudoin, 1996). It is speculative in that empirical checking has not

yet been attempted and may be very di�cult. Nevertheless we think the whole

architecture is in principle implementable using current arti�cial intelligence (AI)

techniques, including neural networks and other `sub-symbolic' mechanisms where

appropriate, and that iterative `broad but shallow' design based work of this kind is

needed to understand the full complexity of emotional states and other `high level'

mental states and processes in human-like systems, including moods, attitudes,

personality and so forth. The following section reports a partial implementation of

the processing of motives based on our design.

3 An implementation of motive processing

This section describes (i) a toolkit that allows rapid prototyping of agent designs,

(ii) a simulated microworld domain that serves as a demanding testbed for our

agent architecture, and (iii) the implementation itself, including the capabilities

and behaviour of the agent, and its three processing layers (reactive, management

and metamanagement).

3.1 The SIM AGENT toolkit

For our work exploring architectural design requirements for intelligent human-like

agents, and other kinds, we need a facility for rapidly implementing and testing

out di�erent agent architectures. The SIM AGENT toolkit (Sloman & Poli, 1995;

Sloman, 1995e; Sloman, 1995d), freely available on the internet, is designed to make

it relatively easy to implement a collection of interacting objects and agents, where

each object (or agent) has internal complexity represented as sets of concurrent in-

teracting condition-action rules that can invoke additional mechanisms of any kind,

including ordinary procedures, neural nets, theorem provers, databases, genetic al-

gorithms, and so forth.

The toolkit has two main components: Poprulebase (Sloman, 1995b) and the

SIM AGENT library (Sloman, 1995d; Sloman, 1995e). Poprulebase is a sophis-

ticated and very general interpreter for condition-action rules, written in Pop-11.

It is a forward-chaining production system interpreter, but provides a collection of

unusual facilities, including a smooth interface to neural net or other `sub-symbolic'

mechanisms, mechanisms for control to be transferred between collections of rules

as the context changes (allowing SOAR-like (Laird, Newell & Rosenbloom, 1987)

pushing and popping of contexts), and facilities for altering the allocation of pro-

cessing resources to di�erent rulesets (Sloman, 1995c).

The SIM AGENT library provides a set of base classes and scheduling mechanisms

for running simulations involving a number of objects and agents whose internal

mechanisms are implemented using Poprulebase. The scheduler simulates paral-

lelism between agents and between subcomponents of agents. SIM AGENT makes

use of the object oriented facilities provided in the Pop-11 Objectclass package,

4

a CLOS-like extension to Pop-11 providing multiple-inheritance, generic functions

and so forth. Objects allow the production of re-usable, extendable software mod-

ules and shareable libraries. The agent and domain we are about to describe have

been implemented using the toolkit

1

.

3.2 The minder domain

We have chosen a domain that imposes many tasks on the agent requiring the man-

agement of multiple motives and the control of attention. The domain is analogous

to a nursemaid or minder in charge of a collection of babies (see (Beaudoin & Slo-

man, 1993))

2

, but highly simpli�ed in order to avoid the need to solve all the prob-

lems of AI, including 3-D vision, motor control, and naive physics. Simpli�cation

allows us to address motive processing while avoiding problems best left to others.

The `nursery' can take various forms. In the form used here it is a two-dimensional

room that contains a collection of simple reactive agents, called `minibots' or depen-

dents, which wander around getting into various di�culties, such as running out of

`charge' or falling into ditches. The reactive agents are dependents as they require

the assistance of a minder agent whose task is to `care' for them. For example,

the minder agent can pick up dependents and carry them to a safe distance from

a ditch. The wandering of the dependents ensures that new minder motivators are

continually generated. Hence, the minder needs to arbitrate between many motives

while maintaining reactivity to new, possibly urgent and important events. The

domain could easily be extended in several directions. Figure 1 is a screenshot of a

simple graphical representation of the nursery that is used for viewing the agent's

external behaviour and debugging purposes.

3.3 Behaviour and capabilities

For ease of reference this particular implementation of the design is named MIN-

DER1. The name is not an acronym.

Figure 2 shows MINDER1 constructing an enclosure used to keep minibots at the

north end of the nursery to prevent them from wandering into ditches. MINDER1's

behaviour can be observed in real-time but with occasional brief halts as pop-11

collects accumulated `garbage' (old data that can be destroyed to free up memory).

A separate window contains the textual trace output of the simulation. During

a normal run the trace monitors the state transitions of all motives. However, a

collection of debug ags can be altered so that MINDER1's current beliefs, sense

data, motives, other knowledge stores, and internal processing may be examined at

runtime.

MINDER1 `scurries' around the nursery pursuing its various motives. For example,

it may sense that a dependent needs recharging and move towards it to pick it

up. Also, MINDER1 often replaces its current motive with a new motive. For

example, MINDER1 may be taking a dependent to the recharge point but `notices'

that another dependent is about to fall into a ditch. MINDER1 drops the minibot

it is holding, saves the other minibot from falling into the ditch, and then returns

to the recharge task. If the original minibot has moved MINDER1 may then search

1

Other computational experiments with the toolkit are described in (Davis, Sloman & Poli,

1995; Davis, 1996). See http://www.cs.bham.ac.uk/~axs/cog a�ect/sim agent.html for mpeg

movies of some of the experiments, including the minder domain.

2

The idea for movable and rotatable bars is borrowed from Nilsson's botworld domain (Nilsson,

1994; Benson & Nilsson, 1995).

5

Object Capabilities Graphic

Minder agent See section 3.3 Dark circle labelled \a"

Dependent agents Erratic roaming Numbered light circles

Fences Movable Dark bars

Recharge point Refuels dependents Small square

Dismissal point Removes dependents Large rounded square

Ditches Damages dependents Dashed rectangles

Walls Encloses 2-d surface Bounding box

Figure 1: The microworld domain

for it in the immediate vicinity. Minibots frequently fall into ditches and become

damaged because MINDER1's perceptual �eld and speed of movement is limited. If

there are no other pressing motives then MINDER1 may take the damaged minibot

to the dismissal point. There are many other kinds of motive and corresponding

behaviours that could be described (see appendix 8.1 for a full list).

Informally, MINDER1 seems to prioritise its tasks in an reasonably intelligent man-

ner: it successfully acts in the nursery domain to achieve its motives. However, as

the number of minibots increases performance deteriorates. MINDER1 can man-

age multiple motives, dynamically rescheduling them where necessary. Its resource

limited management processes are protected from too high a processing load and

interruption by a �lter threshold that can vary according to the number and insis-

tence level of motives. However, there are limitations, discussed in section 3.7.2.

The architecture is evaluated in section 3.7.1.

The following three subsections describe how this functionality is achieved.

3.4 The reactive layer

Purely reactive processes cannot explicitly construct representations of alternative

possible options and select between them: they have reex-like or `ballistic' causal-

ity. If conicting actions are generated simple weight combinations or winner-take-

6

1 2

3 4

Figure 2: Stages in the construction of an enclosure. Note: text under window

is the descriptor of the currently active motive.

all mechanisms determine the outcome. The reactive subsystems in MINDER1 are

(a) perception, (b) belief maintenance, (c) reactive plan execution, and (d) preat-

tentive motive generation. Each is described in turn.

3.4.1 Shallow perception

MINDER1's perceptual subsystem is implemented in a very shallow manner: in each

time slice the required, externally visible features of domain objects are converted

into a representation that is stored in an internal database, which, at any time,

will have only partial and possibly incorrect information about the environment.

The sampling range is limited to a �xed radius (see dashed circle in �gure 1).

Any object within range can be sensed but, unlike vision, the occlusion of objects

is not supported. The perception rulesets are provided with su�cient processing

cycles to perform all necessary domain sampling within each time slice. An example

new sense datum is the following:

[new_sense_datum

time 64 name minibot4 type minibot status alive distance 5.2 x 7.43782

y 12.4632 id 4 charge 73 held false]

7

The data structure describes a dependent minibot4 that was sensed at time 64,

which is alive, has charge 73, is not held by another agent, and is at distance 5.2

units from MINDER1. The sensing of other objects is essentially similar, except

the sensing of fences, which includes information about orientation and size.

3.4.2 Shallow belief maintenance

Beliefs, compared to sense data in this system, are more complex structures. They

represent states-of-a�airs that, due to the dynamism of the domain and the limits

of perception, may or may not hold. There are two kinds of belief: sensory-based

beliefs, which contain information about objects in the environment and are con-

structed from new sense datum items, and agent-based beliefs, which are generated

by agent actions, such as beliefs about fences serving as components of an enclosure

(see �gure 2).

At any particular moment many of MINDER1's beliefs will be wrong. For example,

it may believe that minibot4 is in the absolute coordinate location (80,90). However,

location (80,90) may be currently out of sensor range and minibot4 may have moved.

A design problem arises when MINDER1 returns to a location within sensor range of

location (80,90). If minibot4 is sensed the corresponding belief is updated; however,

if minibot4 is absent then no new sense datum will update the belief: it is not

possible to sense an absence. Without rudimentary belief maintenance MINDER1

will continue to hold a false belief despite having su�cient information to infer

its falsity. The problem is solved by storing defeaters with each belief. Defeaters

are conditions that must remain false in order for the belief to remain true. If

the defeating conditions for a particular belief evaluate to true then the belief is

removed. An example belief is the following (note that double equals matches any

sequence of items in a list):

[belief time 20 name minibot8 type minibot status alive distance 17.2196

x 82.2426 y 61.2426 id 8 charge 88 held false

[defeater

[[belief == name minibot8 == x ?Xb y ?Yb ==]

[WHERE distance(myself.location, Xb,Yb) < sensor_range]

[NOT new_sense_datum == name minibot8 ==]]]]

The defeater is composed of poprulebase conditions, and says, `IF I have a belief

about minibot8 AND I have no new sense data about minibot 8 AND I am in a

position that, according to my belief, I should have new sense data about minibot 8

THEN my belief is false'. The defeater mechanism allows arbitrary size hierarchies

of defeats to be formed. For example, a `second order' belief may be justi�ed by

a `�rst order' belief. If the defeater of the �rst order belief evaluates to true then

the second order belief is also removed. In this way beliefs are automatically main-

tained, although it should be noted that belief maintenance is a di�cult problem

to solve in general (Logan, 1996). Also, the strategy adopted here could become

computationally expensive (consider deleting a long chain of n-order beliefs). If

belief maintenance is to be `deepened' a more e�cient strategy is needed.

3.4.3 Reactive plan execution

MINDER1 needs to be able to act in the domain. As the nursery is changing con-

tinually it is fruitless for MINDER1 to attempt to construct and execute precise

but inexible plans that depend on beliefs that can rapidly become obsolete. In-

stead, MINDER1 needs a level of plan execution that is robust, that is can recover

8

from unexpected failures, and reactive, that is can immediately react to new con-

tingencies in the course of plan execution without the need to engage higher level,

resource limited systems. For example, MINDER1 may have a plan to move to

location (50,50). The execution of this plan will involve many steps, including mov-

ing forward, rotating, sensing the route ahead, planning routes around obstacles

and so forth. It is possible that obstacles, such as fences, can be moved by other

agents; therefore, a purely classical planning approach, in which a complete plan

is constructed prior to action and then blindly followed in detail, is likely to fail.

Plans that can alter themselves to achieve their goals via continuous feedback from

the current situation avoid this di�culty. An approach that partially meets this

requirement is Nilsson's teleo-reactive (TR) program formalism (Nilsson, 1994). We

have adopted it here, and will briey describe it.

A TR program is an ordered set of production rules that directs the agent toward

a goal in a manner that takes into account changing environmental circumstances

(Nilsson, 1994):

K

1

�! a

1

K

2

�! a

2

. . .

K

n

�! a

n

K

i

are conditions on agent knowledge (including information items such as beliefs,

new sense datum, representations of current motives etc.) and a

i

are actions on the

world or on beliefs. On every cycle the conditions of all active TR programs are

evaluated from top to bottom (simulating the presumably parallel implementation

of a reactive subsystem). The a

i

of the �rst K

i

that evaluates to true is executed. If,

on the next cycle, the same K

i

evaluates to true then the same action is executed,

and so on until the conditions change. A TR program must satisfy a regression

property, which, informally, states that an action, a

i

, will eventually achieve a

condition, K

j

, which is higher in the list (j < i). TR programs can call other TR

programs or themselves, that is they can be hierarchic and recursive. Figure 3

provides an example TR program implemented in MINDER1.

K

1

: ~(held(obj)) ^ charged(obj) �! a

1

: null

K

2

: held(obj) ^ charged(obj) �! a

2

: DROP(obj)]

K

3

: held(obj) ^ close enough(obj, recharge point) �! a

3

: CHARGE(obj)

K

4

: T �! a

4

: TAKE OBJECT(obj, recharge point)

Predicate Semantics

held(obj) T if agent holds object obj

charged(obj) T if agent believes obj has su�cient charge

close enough(obj1, obj2) T if agent believes obj1 and obj2 are adjacent

Imperative Semantics

DROP(obj) Agent attempts to drop obj, makes hold(obj) false

CHARGE(obj) Agent charges obj at recharge point, makes charged(obj) true

TAKE OBJECT(obj1, obj2) Agent moves obj1 to obj2 by invoking another TR program

Figure 3: TR program charge object

The TR program is called by a a higher level executor (see section 3.5) that uni-

�es a parameter value with obj, such as the value minibot4. In this example, the

TAKE OBJECT action is a call to further, more complex, TR programs that can

9

search for objects, home in on their location, pick them up, move while avoiding

obstacles, and so forth. Even this simple program can deal with unexpected failures:

for example, if, for whatever reason, the obj is no longer held the TR program will

reactively `drop down' to condition K

4

and attempt to relocate and hold the obj.

MINDER1 currently has thirteen TR programs (see appendix, section 8.4) that

serve as reactive behavioural building blocks. Each TR program is implemented as

a set of SIM AGENT production rules satisfying the regression property. As TR

programs are fully evaluated each time step it is helpful to think of their semantics

in terms of dedicated circuits that continuously evaluate feedback from actions

(Nilsson, 1994)

3

.

3.4.4 Generactivation of motivators

For MINDER1 to use its TR programs it requires goals to achieve. The source

of motives in MINDER1 is a suite of generactivators that express the agent's con-

cerns(Frijda, 1986). For example, a particular generactivator G low charge searches

the internal database for beliefs about dependents with very low charge; if such a

belief is found then the generactivator constructs a declarative representation of a

motive and places it in a motive database

4

:

[MOTIVE motive [recharge minibot4] insistence 0.322 status sub]

The motive contains a motivational attitude towards a state of a�airs in the domain

(`make it true that minibot4 is recharged')

5

, an insistence value, which, in MIN-

DER1, is a heuristic, quantitative representation of the urgency and importance of

the motive, and a current status, sub, which is a ag that states that the motive

has not surfaced through the variable threshold attention �lter (see appendix, sec-

tion 8.1 for a full list of possible motives). Currently, the insistence heuristics have

been built by hand. This is a simpli�cation: we have avoided the need to design

mechanisms that can construct insistence heuristics from domain interaction. The

heuristics are functions that map conditions on agent knowledge to the reals in

the interval [0,1]. For example, the generactivator that constructs motives when a

dependent is too near a ditch uses the simple function f(distance from ditch) �!

insistence to calculate insistence. The higher the number the higher the insistence

and, consequently, the greater the motivator's dispositional powers to surface and

grab management resources.

MINDER1 has eight generactivators expressing various concerns. A selection, de-

scribed informally, are `dependents must be fully charged', `damaged dependents

need to be removed from the nursery', `the ditches need to be patrolled', `an en-

closure needs to be built to protect the dependents', `ensure dependents are at safe

3

(Benson & Nilsson, 1995) describes further experiments with TR programs in a sophisticated

agent architecture.

4

Behaviour-based approaches to autonomous agency criticise the use of explicit representa-

tions of goals (e.g., see (Brooks, 1990; Brooks, 1991b; Brooks, 1991a; Agre & Chapman, 1987;

Chapman, 1989; Chapman, 1990)). We believe that the behaviour-based approach in isolation is

ultimately limited (Wright, 1994) and that declarative representations of goals are required for

more sophisticated goal management, such as deciding whether to adopt goals, deciding when to

schedule them, determining how important they are, and so forth. (Norman, 1994; Norman &

Long, 1995) present arguments to show that agents with declarative representations of goals have

the potential to be much more exible than those that are purely reactive.

5

Note, however, that the motivational attitude is not explicitly represented. The motivational

attitude is implicit in the procedures that use the declarative representations of motives. In this

case MINDER1 does not follow the speci�cation for motives provided in (Beaudoin & Sloman,

1993; Beaudoin, 1994).

10

distances from ditches' and so forth. In addition to constructing motives, gener-

activators also remove motives when the original rationale for activation no longer

holds, and dynamically alter insistence values, thereby reactivating motives to be

candidates for surfacing.

The next section describes the resource limited management layer that takes explicit

representations of multiple motives and translates them into intentions for action.

3.5 The management layer

The processes in the management layer are resource limited but can operate on

explicit representations of alternative motives and select between them. Manage-

ment processes pose design problems of great di�culty, and this is reected in the

shallowness of the management implementation. Discussion of the many limitations

of the implementation is postponed to section 3.7.2 where the urgent need for a

comprehensive theory of motive management is identi�ed. The main management

subsystems in this implementation are the motive �lter mechanism, shallow motive

management, and shallow plan execution. Each is described in turn. Figure 4 is

a schematic representation of the architecture of and processes within MINDER1.

The diagram is fully explained in this section.

3.5.1 Shallow motive �lter mechanism

MINDER1's �lter threshold is a real number in the interval [0,1]. (Beaudoin, 1994)

considers more complex �lter mechanisms and (Norman, 1996) considers a similar,

but more developed, �lter-based selective attention mechanism implemented in a

factory domain. Newly generated motives are initially of state sub. Call the set

of motives of state sub, M

sub

. All members of M

sub

are candidates for surfacing:

if their insistence values are equal to or higher than the current �lter threshold

they surface and their state changes to surfacing; otherwise, their state remains

the same. Figure 5 lists the variety of motive states represented in MINDER1

and conditions for the surfacing and `diving' (a surfaced motive returning to state

sub) of motives. Motives that remain members of the set M

sub

for more than one

cycle are not su�ciently insistent to gain management resources. However, this can

change by generactivators recomputing insistence levels or by the lowering of the

�lter threshold (see section 3.6 on metamanagement). The �lter acts to limit the

number of motives that management processes need to consider, that is it functions

as an `attention' �lter.

3.5.2 Shallow motive management

Before describing motive management processes a short note explaining �gure 5 is

required. The setM represents all MINDER1's current existing motives. There are

various subsets ofM , including the sets unsurfaced,M

sub

, and surfaced,M

surfaced

.

The subsets ofM

surfaced

represent motive state transitions that are possible within

management. These state transitions are now explained.

(a) Deciding. All m

i

2M

surfacing

are decided by management processes. Deciding

involves determining whether the motive should remain surfaced, that is whether

management resources should continue to be devoted to it. A full implementation of

deciding would need to include processes of motive assessment, such as developing

sophisticated qualitative measurements of urgency and importance, determining the

risks and bene�ts of adopting the motivator, and comparing these measurements

11

Perception Effectors

new_sense_data Reactive plan
execution

beliefs
Belief

Motive generactivators

G2
Gn

SUB

Motive management

Decide Schedule Expand

SUSPENDED

Teleo-reactive
program library

Motive

Motive metamanagement Plan library

The environment
Sensing Acting

Motive Motive

Motive

Knowledge databases, mechanisms and processes

Filter

G1

SURFACING

ACTIVE

Expanded and adopted

Plan:

Information flow

(Teleo-reactive plan steps)

Effector feedback

Perception to action links for reactivity

Rejection

maintenance

Shallow self-monitoring

Figure 4: The route from perception to action in MINDER1. Solid lines

represent mechanisms and databases, dotted lines represent processes that may

occur within a mechanism, and dashed lines represent declarative data structures,

such as motives.

with similar measurements of other motives. Often a motivator cannot be assessed

until it has been partially expanded, or cannot be decided until it has been assessed,

or cannot be assessed until partially executed, and so forth (Beaudoin, 1994). In

other words, motive management systems that have purely linear motive state tran-

sitions are unlikely to meet the full requirements (compare (Sloman, 1978)).

MINDER1 has an extremely simple and shallow deciding process yet exhibits com-

plicated interactions between deciding, scheduling, expanding and motivator states.

The relations between these management processes are tangled but have been dis-

tinguished for the sake of exposition. For example, if a motive has already been

scheduled, and is therefore active, it may be partially expanded in preparation for

deciding. A motive such as:

[MOTIVE motive [save ditch1 minibot5] insistence 0.646361 status active]

is partially expanded to:

[MOTIVE motive [save ditch1 minibot5] insistence 0.646361 status active

12

Motive sets Explanation of state

M Current agent motives

M

sub

Unsurfaced motives

M

surfacing

Surfacing motives

M

surfaced

Surfaced motives

M

suspended

Surfaced but suspended motives

M

suspended;meta

Surfaced and suspended during meta-planning

M

suspended;execute

Surfaced and suspended during execution

M

active

Surfaced and adopted motives

M

active;meta

Surfaced and adopted for meta-planning

M

active;execute

Surfaced and adopted for execution

Where,

M

sub

[M

surfaced

�M

M

surfacing

[M

suspended

[M

active

�M

surfaced

M

suspended;meta

[M

suspended;execute

�M

suspended

M

active;meta

[M

active;execute

�M

active

length(M

active

) = 1

And,

if insistence(m

i

2M

sub

) � �lter threshold then m

i

2M

surfacing

;

if insistence(m

i

2M

suspended

) � �lter threshold then m

i

2M

sub

.

Figure 5: Motive states and the transition between attentive and preat-

tentive processing

plan [[decide] [get_plan]]

trp [stop]

importance undef]

The partially expanded motivator, m

i

2 M

active;meta

, contains an initial metaplan

with plan steps decide and get plan. These plan steps are not external actions

but calls to management processes. A metaplan is executed by the management

system, whereas a normal plan is executed by the plan executor (see later). If

the motive remains scheduled (i.e., another motivator has not displaced it as the

active motive) the plan step decide is executed, invoking a decide routine stored

in the plan library (see node 3 of �gure 6, which is a graphical representation of

management processes that occur on surfaced motives). Currently, MINDER1 has

a single, shallow decide routine for all motivators, of whatever type. The decide

routine determines the importance of the motivator, which for most motivators

is the designator `normal', meaning that the motivator's heuristic insistence level

is held to be a good approximation of a developed measure of the importance of

the motivator. However, no developed measure of importance ever occurs, and

developed measures of urgency are not supported, which is a signi�cant limitation

of the implementation when compared to the complete design

6

. An important

exception (node 4 in �gure 6) to this is discussed in section 4. If the motivator still

remains scheduled on subsequent cycles the next plan step, get plan, is invoked.

It has the e�ect of retrieving a stored plan from the plan library (see node 6).

However, due to the parallelism of the MINDER1 architecture, new motives may

surface at any time, be scheduled for immediate processing and replace the currently

active motive. The replaced motive can be suspended either during a metaplan

phase, or during an execution phase, that is be either m

i

2 M

suspended;meta

or

m

i

2 M

suspended;execute

respectively. In both cases, the motive remains partially

6

However, for many situations, heuristic urgency as represented by insistence is su�cient to

order motives, such as choosing which of two minibots to rescue from falling into a ditch.

13

expanded to allow readoption at a later time.

(b) Scheduling. Scheduling involves determining when a motivator should become

active, be executed and control current internal or external actions. (Contrast

meta-scheduling, a metamanagement function, which schedules scheduling, that

is determines when to consider a motive). A full implementation of scheduling

processes would include developed measures of urgency that could answer questions

such as: when will it be too late to satisfy the motivator? need it be satis�ed

at a particular time? can it be postponed? is it too early to do this? and so

forth. MINDER1 bases its scheduling decisions on the insistence and importance

of motivators. Therefore, urgency measures are only implicitly and heuristically

represented. Nevertheless, the scheduling mechanism dynamically orders the set

M

surfaced

such that a single motive, m

i

2 M

active

, is chosen to be activated for

metaplanning, m

i

2 M

active;meta

, or execution, m

i

2 M

active;execute

, depending

on its current expansion status. (Beaudoin, 1994) considers limited management

parallelism that allows the adoption of more than one active motive, but MINDER1

does not support this desirable feature. Scheduling operates every management

cycle; however, the �lter mechanism ensures that the number of motives that needs

to be considered is always low.

[4]

m

i

2M

suspended;meta

imp(m

i

) = low

ins(m

i

) = 0

[5]

m

i

2M

active;meta

imp(m

i

) = normal

�

�

�

�

�

rejection

Z

Z

Z

Z

Z

[3]

Decide

m

i

2M

active;meta

[6]

Plan

m

i

2M

active;meta

retrieve plan

[7]

Execute

m

i

2M

active;execute

execute plan

!

!

!

!

!

!

!

!

Q

Q

Q

Q

Q

X

X

X

X

X

X

X

X

X

X

X

X

X

[2]

Expand

m

i

2M

active;meta

[8]

m

i

2M

suspended;meta=execute

�

�

�

�

Do now

X

X

X

X

X

X

X

X

X

X

X

X

X

Do later

[1]

Schedule

m

i

2M

surfaced

Where,

imp(m

i

) returns the importance of a motive, and

ins(m

i

) returns the insistence of a motive.

Figure 6: Management processes on surfaced motives in MINDER1

(c) Expanding. As stated, the metaplan step get plan retrieves a stored plan from

the plan library suited to the particular motive. Currently, MINDER1 has seven

plans in its plan library (see appendix, section 8.3). In general, information con-

tained in the motive is uni�ed with plan variables. An example expanded motive

to build an enclosure of fences is the following:

14

[MOTIVE motive [no_maginot] insistence 0.05 status suspended

plan

[[make_wall 40 60 0 second]

[make_wall 65 60 0 third]

[make_wall 90 60 0 fourth]]

trp [stop]

importance normal]

In this example the partially executed plan consists of three plan steps of the same

type, make wall. The plan step make wall is itself a TR program that can be exe-

cuted by the reactive plan executor. A more complete implementation of MINDER1

would include a planning mechanism that could construct new plans for new situa-

tions based on the agent's available action primitives. Planning capabilities would

require storing STRIPS-style add and delete lists with both plans and primitives

to allow reasoning about chains of behaviours. (Benson & Nilsson, 1995) describes

an agent architecture that can learn pre and postconditions for TR programs from

observations of the e�ects of its own behaviour and then dynamically construct

novel reactive plans. Such exibility would be a desirable extension to MINDER1's

management processing. There are many planning algorithms in the AI literature,

and incorporating a planner would not be di�cult. However, this was not a major

goal of the project.

3.5.3 Shallow plan execution

The plan steps of the currently adopted motive are executed as TR programs (see

right-hand-side of �gure 4). For example, the make wall plan involves calls to fur-

ther TR programs, such as grab wall and place bar. These TR programs themselves

call other TR programs; some examples are search, which makes the agent search

the nursery for a speci�ed object if the agent has no beliefs concerning the object's

location, grab object, which makes the agent approach an object and pick it up, and

amble, which moves the agent to a speci�ed location while avoiding obstacles (see

appendix, section 8.4). The leaves of TR program trees are atomic actions, such

as MOVE, ROTATE, SETSPEED, GRAB, ROTATE BAR, and so forth. Note

however that the TR program tree is constructed as a complete circuit on every

cycle. In other words, the links in the tree can dynamically change to allow unex-

pected contingencies to be catered for, such as an object being moved by another

agent. Currently, MINDER1 has nine action primitives (see appendix, section 8.2).

Building real robots requires much work to develop robust action primitives, for

example (Marjanovic, Scassellati & Williamson, 1996) discusses designing primi-

tives for robot arm pointing. Simulation work allows us to abstract from these

engineering problems and concentrate on motive management.

This completes the description of the route from perception to action in MINDER1.

3.6 The metamanagement layer

MINDER1 has two metamanagement functions: changing the �lter threshold level

and detecting perturbant states. The discussion of perturbance detection is post-

poned until section 4. Metamanagement implementation is extremely shallow when

compared to our design. A full implementation would include sophisticated `self-

monitoring' processes that detect, evaluate and control management processes(Wright,

Sloman & Beaudoin, 1996).

It is assumed that management processing is resource limited. To reect this we

15

arbitrarily chose a maximum limit of three surfaced motives together with a maxi-

mum cycle limit for management rules. (A cycle limit de�nes how much processing

resources are devoted to a ruleset in each time slice.) A metamanagement pro-

cess monitors the number of surfaced motives. If the number of surfaced motives

is more than three then the �lter threshold level is incremented. The threshold

level continues to increase every cycle until there are three or less surfaced motives.

For example, if a m

i

2 M

suspended

has an insistence level lower than the thresh-

old it will `dive' and return to status sub. Similarly, if there are fewer than three

surfaced motives then the �lter threshold is decremented. The process continues

until the threshold reaches zero or a su�cient number of sub motives surface into

management processing.

The joint operation of the dynamic �lter and generactivators recomputing insistence

values ensures there can be a continual movement of motives from preattentive to

attentive processing and back again. For example, MINDER1 may have ten motives

in total, four of which have surfaced, and one active. In this case the number of

surfaced motives exceeds the maximum and the �lter threshold is raised on each

time step. The �lter rises until the least insistent surfaced motive `dives' and the

processing load returns to a manageable level (see �gure 7).

The original agent design (Beaudoin, 1994) did not specify a state transition of mo-

tive diving. Instead, suspended motives not attended to for some time decayed and

were eventually removed. However, this is not entirely satisfactory as suspended

motives, whether they be postponed for execution or deciding, will impose extra

computational load on management processes. For example, to meet a require-

ment of mutual compatibility between motives there will need to be processes that

consider the relations between all motives in the set M

active

[M

suspended;execute

.

For example, motives that have been decided for execution, but are currently sus-

pended, might be incompatible with newly surfaced, active motives (e.g., a person

may intend to resume job hunting later in the day, but receives news that a friend

is in hospital). Management processes would need to detect and resolve such in-

compatibilities. Detecting incompatibilities requires considering both M

active

and

M

suspended;execute

. Therefore, if a subset of suspended motives can be removed

from management the amount of computation required can be reduced. Allowing

motives to dive, in addition to surface, based on heuristic measures of insistence,

is a way to achieve this. However, the disadvantage is that the agent may fail to

detect a serious conict between a new action and a non-urgent but very important

suspended motive. Therefore, allowing motives to dive could be disastrous. Hence,

the implemented solution is not entirely satisfactory. A better solution would allow

surfaced motives to be always accessible but use indexing mechanisms to overcome

computational expense. But indexing may not be perfect, and relevance could still

be missed.

There are many reasons why the �lter level changes. For example, an active motive

may be removed due to successful completion of its plan, or removed due to the

loss of its rationale. The removal of a surfaced motive may stop the �lter threshold

being raised further and begin lowering it. The interactions between all these kinds

of processes can be complicated. A simple illustration is provided below. In this

short trace a new motive surfaces that causes metamanagement processes to detect

the presence of too many surfaced motives, resulting in the �lter being raised, an

existing, surfaced motive to dive, and the activation and adoption of the new motive.

======================= end of cycle 82 ==================

======================= end of cycle 83 ==================

** [[Surfacing --

16

[MOTIVE motive

[recharge minibot5]

insistence 0.21 status sub]]]

** [[RAISING filter threshold to 0.02]]

======================= end of cycle 84 ==================

** [[Diving --

[MOTIVE motive

[default]

insistence 0.02 status suspended plan

[[decide] [get_plan]]

trp

[stop]

importance undef]]]

======================= end of cycle 85 ==================

** [[Activated --

[MOTIVE motive

[recharge minibot5]

insistence 0.215 status active]]]

======================= end of cycle 86 ==================

A �lter mechanism of this sort is connected to the folk-psychological concept of

focus: a very high �lter level would correspond to a high level of focus, during which

attentive resources are concentrated on a single, very important and urgent motive

while being protected from unnecessary interruption. The situation of eeing a

battleground might engender this state, in addition to causing physiological changes

to increase action readiness. A low �lter level, however, would correspond to a low

level of focus, during which attentive resources are can be readily interrupted, easily

shifting from one concern to another, a situation that might occur while talking

among friends.

MINDER1's �lter level is incrementally altered. However, there are no a priori

reasons not to use di�erent mechanisms. One possibility is to store the current

lowest insistence level of surfaced motives. The �lter level would then be made

slightly higher than this value forcing the least insistent motive to dive. The problem

of unmotivated design decisions is discussed in the next section.

3.7 Evaluation of the architecture

This section briey describes how the architecture is to be evaluated, and the limi-

tations of the implementation, including how it should and could be extended.

3.7.1 Evaluation

The main aim of building MINDER1 was to show (i) that our high level design

could be implemented, albeit in a simpli�ed fashion, (ii) that the design could,

in principle, meet the requirements, and (iii) that this kind of motive processing

architecture would lead to a processing state called perturbance. We have shown

(i), but (ii) is more problematic, and (iii) is discussed in section 4.

A general problem of software engineering is to show or prove that a design, and

its corresponding implementation, meets or satis�es a set of requirements. Design

validation is di�cult. MINDER1 appears to cope in its domain but a full evaluation

of the architecture would require tests in a variety of domains, including more

17

complex variants of the nursery domain, and the collection of performance statistics

that could be compared with the performance of other possible designs. However,

our goal was not to explore design-space searching for the `best' motive management

system (in any event, the best design would vary over niche-space). It is su�cient

for current purposes that the prototype implementation demonstrates that it is

possible that the original design meets its requirements.

A related point is that many of the detailed design decisions taken during imple-

mentation were arbitrary. In (Sloman, Shing, Read & Beaudoin, 1992) six types of

design decision were identi�ed: (i) design decisions linked to initial requirements, (ii)

decisions linked to empirical data, (iii) decisions linked indirectly to requirements

via higher level design decisions, (iv) decisions made in order to test a theory, (v) ar-

bitrary decisions where previous requirements and design decisions do not prescribe

a unique decision, and (vi) decisions due to hardware or software limitations

7

. Some

of the high level design decisions were motivated. For example, three layers of pro-

cessing is suggested by empirical evidence, in particular evolutionary neuroscience.

Empirical observations of many kinds, such as the di�culty of attending to two

conversations at once, justi�es the design decision of management resource limits.

In addition, there are theoretical reasons for such limits, such as limited physical

resources imposing a bottleneck on cognition, limited memory resources imposing a

limit on the creation and storage of temporary structures, and the need for mutual

compatibility of adopted motives may limit the number that can be considered and

adopted at any time. Insistence heuristics can be similarly justi�ed, in particular

from the requirement for reactivity in dangerous domains; for example, there is

strong evidence of `quick and dirty, emotional' processing pathways in the brain

(LeDoux, 1994)). However, deciding on the precise form of representation of beliefs

and other intentional structures was largely a matter of convenience. Accordingly,

the implementation should be viewed as an exemplary illustration of our design

theory, but the details of the implementation are of secondary importance. How-

ever, implementation remains an essential part of the design-based approach: not

implementing MINDER1 would be like an engineer producing designs for bridges

without ever building one to see if it stays up. It was always a possibility that

the implementation would fail to manage multiple motives in the nursery domain.

If so, we would have learnt why the implementation was inadequate, which may

have motivated a revision of the theory. A full analysis, however, would include a

study of the surrounding design-space. It must be admitted that it is possible that

a fundamentally di�erent design might also meet the requirements, for example if

computers of the future have speeds many orders of magnitude faster than now.

MINDER1 is intended to have implications for an understanding of human minds

because human minds have evolved to satisfy similar requirements: humans need

to manage multiple motives with resource limited attentive processes. The gross

mechanisms of the design { reactive motive generation, motive �ltering, and motive

management and metamanagement { are held to exist in human brains. Note how-

ever that there need be no invariant neuronal correlates of these mechanisms. The

invention of the computer has demonstrated that the mapping between information

processing mechanisms and physical implementation is not straightforward.

MINDER1 is an engineering solution to a control problem, and could be used as a

command and control system or put to use in computer games, but this was not

the main reason for building it; rather, it is intended as a `toy designed to stretch

our minds' (Sloman, 1978), in particular to help us think about the full complexity

7

Existing work in software engineering attempts to formalise the relationships between require-

ments and design decisions, for example (MacLean, Young, Bellotti & Morgan, 1991). Work of

this kind can help us think about niche-space and design-space and the mappings between them.

18

of emotional states. The relevance of MINDER1 to theories of emotion constitutes

its primary scienti�c content and is discussed in section 5.

3.7.2 Some limitations

MINDER1 could be improved in many ways, both from the standpoint of devel-

oping agents that handle multiple motives in more intelligent ways, and from the

standpoint of developing a richer cognitive model of motive processing.

All the mechanisms described could be `deepened'. The management layer should

include a planning module, and much more sophisticated scheduling mechanisms,

including developing sophisticated measures of the urgency and importance of mo-

tives. The plan executor should be extended to notice opportunities or threats to

current plans (Pryor & Collins, 1992; Pryor & Collins, 1993; Pryor, 1994), or pos-

sibilities for satisfying more than one motive with a single plan (`killing two birds

with one stone'). Also, a more intelligent agent should construct its own insistence

heuristics. Currently, they are hand-coded. (Humphreys, 1996) describes a rein-

forcement learning mechanism that learns the relative priorities of various goals

in di�erent contexts. The metamanagement layer should include mechanisms for

`self control', that is ways for motive management to be controlled, in particular to

handle problematic emergent processing states (see next section). The �lter mech-

anism could be extended to include a facility for `exception handlers' (discussed in

(Beaudoin, 1994)), which would allow management processes to selectively prevent

classes of motives surfacing regardless of their insistence.

Finally, one of the di�culties of developing a motive processing architecture is the

lack of a comprehensive theory of motive management. AI researchers have devel-

oped sophisticated theories of planning, including the extension of such work to cope

with complex, uncertain and dynamic domains (e.g., (Nilsson, 1994; Firby, 1989;

Pryor, 1994)). However, the problem of managing multiple motives, which includes

synthesising such tasks as deciding whether to process a motive, at what time to

expand and execute the motive, how to compare the bene�ts and costs of pursuing a

motive compared to other motives, and so forth, has not been su�ciently addressed.

A key problem in this context is how to e�ectively manage limited resources, par-

ticularly computational resources, in real-time environments. The mechanisms of

reactive, heuristic motive generation, a �lter mechanism, and deliberative motive

management is our preliminary solution to this problem ((Bratman, Israel & Pol-

lack, 1988) also propose a �lter mechanism to meet similar requirements). Other

work in decision-theoretic control (rational deliberation under resource limitations),

such as anytime algorithms (Boddy & Dean, 1989), amended utility theory (Horvitz,

Gregory & Heckerman, 1989), or rational self-government (Doyle, 1989), is also of

relevance for developing a theory of motive management. Armed with such a theory

we could improve upon MINDER1's primitive motive management mechanisms.

4 Emergent processing states

There is much philosophical wringing of hands over the meaning of the term `emer-

gence' and what it might really mean. Here the term is used in two ways. First, to

refer to unexpected consequences of a design. Normally it is too di�cult to deduce

all the consequences of a design, which is one reason for the necessity of implemen-

tation. Both �lter and decision oscillation are emergent in this sense. The second

use of the term is to refer to processing states that arise from interactions between

submechanisms. Perturbant states were hoped for consequences of the design but

19

there is no `perturbance-producing' mechanism or module. Emergence of this kind

occurs because relations are real, that is the interactions between processes are just

as real as the processes themselves (compare thrashing in operating systems, or the

laws of supply and demand in economic systems). `Emergent' is normally reserved

for this kind of occurrence. Some of MINDER1's emergent states have psychological

relevance.

4.1 Filter oscillation

If there are less than three surfaced motives the �lter level is gradually lowered to

allow any m

i

2 M

sub

to surface into management. However, there are occasions

when many m

i

2 M

sub

have identical insistence values. Consequently, when the

�lter level is lowered a number of motives may surface at the same time. If this

occurs the �lter level needs to be raised because there are now more than three

surfaced motives. However, when the �lter is raised all the recently surfaced motives

dive. The �lter will then be re-lowered and the cycle repeats (see dense oscillation

regions of the �lter level in �gure 7). The threshold level continues to oscillate

until insistence levels change, or more insistent motives are generated, or the active

motive is completed, or a motive is removed, and so forth.

We had not considered the possibility of �lter oscillation but in retrospect in seems

unavoidable when the implementation of the �lter relies on a real number that is

incremented or decremented in discrete amounts. Moreover, the granularity of some

insistence heuristics is not su�cient to assign unique insistence values to di�erent

motives. However, �lter oscillation is a feature of this implementation, but not the

design. Oscillation could be avoided by using a neural network or `fuzzy' implemen-

tation of the �lter mechanism, and (Beaudoin, 1994) discusses a `�lter refractory

period' that briey increases the resistance of the �lter after a motive surfaces.

4.2 Decision oscillation

Occasionally, MINDER1 will `see' two minibots that are close to a ditch. The new

sense datum generates new beliefs that generate new motives to rescue the minibots

from falling into the ditch and damaging themselves. Normally, MINDER1 will, all

other things being equal, adopt the motive with the higher insistence

8

, grab the

particular minibot, and remove it to a safe distance. However, if in the course of

executing the plan for this motive, the other minibot moves even closer to the ditch,

MINDER1 may drop what it is doing and attempt to rescue it. Occasionally, how-

ever, both minibots are a similar distance from the ditch, which results in a similar

magnitude of insistence for each motive. Such a situation results in `dithering' or

`indecision', both internally, in terms of the repeated adoption and replacement of

each motive by the other, and externally, in terms of the agent repeatedly moving

�rst to one dependent then stopping and moving towards the other. Occasionally,

such `indecision' results in neither motive being completed and both minibots falling

into the ditch.

There are at least three ways to avoid this problematic motive processing state.

Abilities to construct a single plan to satisfy more than one motive would enable

MINDER1 to save both minibots. Alternatively, an implementation supporting de-

veloped measures of urgency and importance could impose an ordering on motives

8

Note that, in our design, insistence is not a criterion for adoption but for consideration.

However, because MINDER1's management processes do not develop measures of urgency and

importance, insistence normally has this role in the implementation.

20

when insistence heuristics do not. Finally, metamanagement processes could detect

states of decision oscillation and arbitrate. However, there are examples from hu-

man and animal behaviour of decision oscillation, which suggests that, in general,

the state cannot be avoided. For instance, humans are extremely indecisive when

confronted with hard ethical problems.

4.3 Perturbant states

The term perturbant refers to a state in which a partial loss of control of thought

processes is due to the continual surfacing of postponed or rejected, or unwanted,

motivators, or possibly disruptive thoughts, images, and the like (e.g., a catchy tune

that won't `go away'). Such disruption can interfere with the management of other,

important, motives. Perturbances are the type of information processing state that

the `attention �lter penetration' (AFP) theory posits as a characteristic feature of

many human emotional states (Simon, 1967; Sloman & Croucher, 1981; Sloman,

1987; Sloman, 1992). For example, both intense grief and joy involve perturbant

states: the mourner and lottery winner both �nd it di�cult to direct their attention

to other concerns, that is there is a notion of `loss of control' common to both

states. Note that perturbances can exist in dispositional forms: the mourner may

function normally at work only to break down in the evening. During the day the

perturbance was dispositional, in the evening occurrent. Note also that `perturbant'

is not a su�cient condition for an `emotional' state.

In this section we describe how MINDER1 can potentially support perturbant states

but lacks the necessary architectural features for a complete simulation of `loss of

control' of thought processes.

4.3.1 Perturbant scenario

Consider the following scenario that could occur in the nursery domain.

Robby the robot minder notices that a dependent has fallen into a

ditch and has been damaged. Robby decides not to retrieve the damaged

minibot because it has other pressing things to do. It has various active

motives that are more urgent and important, such as recharging other

active minibots, building a protective enclosure of fences, and ensuring

that more minibots do not fall into ditches. However, the thought of

the damaged minibot lying there continues to enter Robby's thoughts,

diverting attentive processing resources from the current set of active

tasks. Robby can't seem to get the thought out of his mind and �nds

it di�cult to concentrate on the task at hand ... Sometimes, however,

Robby is so very busy looking after the minibots that he temporarily for-

gets that there is a damaged dependent waiting to be repaired ... When

things eventually calm down, Robby retrieves the damaged minibot and

places it in the dismissal point for repair.

MINDER1 is not as sophisticated as Robby the robot because, unlike Robby, MIN-

DER1 has no mechanisms that can support a notion of `loss of control' of man-

agement processing. There are no metamanagement processes that express goals

about what should be occurring in management. Without these speci�c kinds of

normative, goal-directed processes there can be no notion of MINDER1 control-

ling or failing to control its own management processing. Perturbance requires an

21

architecture su�ciently sophisticated to support goals whose object is to control

management (or `attentive') processing.

For example, a person hears the latest pop single on the radio and soon the tune

is constantly `replayed' in their mind, perhaps diverting attentive resources from

other matters. This is not a perturbant state unless the following condition holds:

if the person were to wish that the tune would `go away' and tried to put it out of

their mind but found it di�cult to do so then there is a disposition to lose control

of attentive resources. For instance, some catchy tunes can become very irritating

and annoying. However, the loss of control need not be occurrent for a perturbant

state to exist. For example, excited anticipation is a perturbant state even if the

person experiencing that state does not wish to turn their thoughts to other matters

(they may be quite happy continually thinking about the presents they will get

for their birthday). The de�nition of perturbance is therefore counterfactual, and

requires an architecture su�ciently sophisticated to support goals whose object is

to control management (or `attentive') processing. MINDER1 does not have this

architectural complexity; consequently, it can only partially or potentially support

perturbant states. However, it does possess mechanisms that support the continual

surfacing of motives that are repeatedly rejected by management processes. The

repeated interruption of management processing is precisely the kind of state that

has the potential to conict with higher level metamanagement decisions if the

mechanisms for such decisions were added to the architecture. It is these potential

or proto-perturbances that are now described.

4.3.2 Proto-perturbances in MINDER1

To show that MINDER1 could potentially support perturbant states we ensured

that motives pertaining to damaged minibots were assigned relatively high insis-

tence values that management processes would subsequently `disagree' with. That

is, management processes would reject these motives by assigning them low im-

portance, contradicting their heuristically assigned insistence values (see node 4 in

�gure 6). The design decision was made in order to test a theory (see section 3.7.1)

and is therefore slightly contrived. However, if MINDER1 possessed more sophis-

ticated motive management processing then contradictions between insistence and

developed measures of urgency and importance would be commonplace, some of

which may be correctable by learning.

In order to detect any proto-perturbances a metamanagement process was devised

that measured the rate of rejection of motives. If the rate exceeded a threshold

then an occurrent proto-perturbant state was detected. If the rate subsequently

dropped below the threshold then the state had ended. MINDER1 maintains in-

ternal records of proto-perturbant episodes. However, it must be stressed that,

at present, the information about the occurrence of a proto-perturbant state is not

used by metamanagement to control the state. For example, such information could

be used to change the insistence heuristics for such motives, or place exception han-

dlers in the �lter mechanism. But this kind of `self-control' of motive processing

was not implemented. If it was then we would have an architecture that had goals

directed towards controlling its own management processes, and the beginnings of

a simulation of a perturbant state proper.

Figure 7 is a graphical representation of some statistics collected during a single

run of MINDER1 in the nursery domain. It shows that MINDER1 supports proto-

perturbant states and correlates their detection (shaded areas labelled `P') with the

total number of agent motives (motive axis) and the �lter threshold level (�lter

22

Figure 7: Filter level, number of motives and proto-perturbant (P)

episodes

axis) over time (cycles axis)

9

. A proto-perturbant state occurs when MINDER1

knows that a minibot has fallen into a ditch. The resultant belief satis�es the pre-

conditions of a generactivator that generates a motive to dismiss it. Management

processes decide that the importance of this motive is low compared to other motives

and rejects it. However, the insistence level is such that the motive resurfaces into

management processing. If this event happens with su�cient frequency, metaman-

agement processes detect the proto-perturbant state. Yet if there are many other

highly insistent motives the �lter may be raised to such a level that the dismissal

motive cannot surface. When this occurs the proto-perturbant episode temporarily

ceases (see cycles 1137 to 1355 in �gure 7). When the highly insistent motives have

been dealt with, the �lter may be lowered allowing the dismissal motive to once

again grab management resources, demonstrating that a proto-perturbance may be

either occurrent or dispositional.

MINDER1's proto-perturbances are a pale shadow of human perturbances. For

instance, MINDER1's proto-perturbances are all of one type. They arise from the

di�erence between the insistence value of the motive and the importance assigned

9

The run included 5 minibots and 4 fences. These parameters can be varied.

23

to it by management processes. There are no `catchy tunes' in MINDER1, or vivid

episodic memories, or unsatis�able motives, and so forth. Compared to the ora

and fauna of the human mind, and the corresponding variety of perturbant states,

MINDER1 is a simple automaton. But although MINDER1 does not support `loss

of control' it may, from the outside, be judged as dysfunctional when in a proto-

perturbant state by an observer who knows what is in the best long term interests of

the agent, even if the agent cannot make that assessment (compare parents watching

their young children).

5 Perturbance and theories of emotion

Perturbant states are emergent phenomena arising from the interaction of resource-

limited attentive processing, an automatic subsystem that generates new candidates

for such processing, a heuristic �lter mechanism, and a higher level system that

may attempt to control attentive processing. These design elements are inferred

from requirements for and constraints upon human-like autonomy in a complex

and dynamic environment. Perturbances do not arise due to a special perturbance

generating mechanism. Thus it is misguided to ask what the function of pertur-

bant states is or to postulate a perturbance mechanism. However, the mechanisms

that generate perturbant states may themselves be functional and have evolved,

in natural minds at least, for speci�c, adaptive purposes. For example, (Aube &

Senteni, 1996a; Aube & Senteni, 1996b) view `emotions' as those control structures

that speci�cally evolved to regulate the ow of commitments (goals to provide other

agents with resources) between individuals in animal and human societies. We do

not want to argue over what `emotions' really are, for that assumes that our ev-

eryday concept of emotion refers to a well-speci�ed set of phenomena. Like many

other pre-theoretical terms it can hide much more than it reveals. Instead of argu-

ing over de�nitions of words we identify some phenomenon and attempt to explain

it. Whether those phenomena concur with others' de�nitions of emotions is a side-

issue. Perturbances exist, and they are a ubiquitous feature of many states that

are commonly called emotional. However, there are many di�erent kinds of per-

turbances and a full analysis of their variety would not exhaust an analysis of the

emotions.

Approaches to the study of emotions can be very broadly categorised as semantics-

based, phenomena-based and design-based (Sloman, 1992). Semantics-based theo-

ries analyse the use of language to uncover implicit assumptions underlying emotion

words (e.g., (Wierzbicka, 1992)). Phenomena-based theories assume that emotions

are a well-speci�ed category and attempt to correlate contemporaneous and measur-

able phenomena with the occurrence of an emotion, such as physiological changes

(an early example is William James' theory { see (Calhoun & Solomon, 1984);

for a comprehensive review of many phenomena-based theories, see (Strongman,

1987)). MINDER1 shows that phenomena-based approaches are necessarily lim-

ited: the causal relations between perturbant states and observable behaviour

10

are indirect. Any highly complex information processing mechanism will have this

property. However, this is not to say that phenomena-based approaches are of no

use; on the contrary, they have generated empirical data and driven the develop-

ment of theories. But to understand fully the complexity of emotional states, which

can involve complex internal states not directly linked to observable phenomena,

we also require a design-based approach.

10

That is, the causal relations between internal states and behaviour observable by other agents

in the nursery domain. If we possessed tracing facilities for human minds that enabled us to

examine their internal processes then the problems of psychology would be largely solved.

24

5.1 Other design-based simulations

The AFP theory of emotion that underpins MINDER1 was inspired by Herbert

Simon's work (Simon, 1967) that focussed on the importance of interrupts and

multiple motives for adaptive behaviour in real-time environments, and the relation

between interruption of current goals and emotional states. Oatley and Johnson-

Laird's communicative theory of the emotions (Oatley & Johnson-Laird, 1985; Oat-

ley, 1992) also views interruption of cognitive systems as a characteristic feature of

emotional states (although there are a number of important di�erences that cannot

be discussed here). The common feature of such `interrupt' theories of emotion

is that they emphasise the aspect of control over representation. For example, all

theories posit a subsystem that can be interrupted by another process that makes

demands on its functioning. MINDER1 is the �rst, albeit simple, example of a

fully-functioning implementation of an `interrupt' theory of emotionality.

There are other design-based simulations of emotional phenomena. However, they

tend to emphasise representation over emergent processing states and concentrate

on the semantics of emotional appraisals or emotion words. For example, Dyer's

BORIS, OpEd and DAYDREAMER systems (Dyer, 1987) appraise story or `day-

dreaming' scenarios with respect to built-in goals. The appraisals may then gener-

ate a prediction of what emotional state is appropriate in the given scenario. These

systems, therefore, reason about emotional labels and their semantics. Frijda and

Swagerman's ACRES system (Frijda & Swagerman, 1987) is a computer program

that stores facts about emotions and reasons about those facts, but, in addition,

has various goals or concerns that it attempts to meet, such as a concern to have

correctly typed input. The satisfaction or dissatisfaction of the program's concerns

may cause it to interrupt current processing and generate new responses, such as

a request to the user for correctly typed input. ACRES can be asked for informa-

tion regarding its internal state, which is a measure of how well its concerns have

been met. However, ACRES is not an implementation of an architecture that can

support a distinction between attentive and pre-attentive processing, and does not

exhibit emergent processing states. Pfeifer's FEELER system, reviewed in (Pfeifer,

1994), also predicts appropriate emotional states given story scenarios. The OZ

project has investigated the role of emotion in arti�cial, believable agents (Bates,

1994; Reilly, 1993), that is agents that make it easy for an audience to suspend their

disbelief and accept the `reality' of the agents before them, much as an audience

accepts that an actor is King Lear. However, the mechanisms driving the emotional

agents are designed to express emotional states in animated movement, to time

and accentuate those expressions for maximum e�ect, and to perform pre-scripted

emotional scenarios. There can be no loss of control of attentive processing in these

agents, though they may be able to `smile' in appropriate scenarios.

Such implementations tend to `program in' representations of emotional intentional-

ity. The approach adopted here is quite di�erent. The process moves from require-

ments for complete functioning agents, to designs that meet those requirements,

and the testing of implementations. Perturbant states arise from other mechanisms

designed to meet those requirements. In the abstract, the requirements for MIN-

DER1 are the same as those for human-like autonomy; hence, perturbant states

have greater claim to model actual aspects of human information processing. Other

models have di�culties making such claims.

An exception is Mo�at and Frijda's WILL architecture (Mo�at & Frijda, 1995),

partly similar to MINDER1, and a design for a concern realisation system. However,

WILL does not exhibit protoemotional states.

The relevance of perturbance to an analysis of the emotions has been discussed in our

25

other publications, in particular an analysis of grief (Wright, Sloman & Beaudoin,

1996), and theories of how an architecture could support painful or pleasurable

perturbant states (Wright, 1996b; Wright, 1996a).

6 Conclusion

Implementing agent architectures, even with good tools, is a time consuming exer-

cise and presents di�cult software engineering and arti�cial intelligence problems.

However, it is a necessary stage of the design-based approach, an approach that we

believe is currently the only way to explore fully the complexity of mental phenom-

ena. By building MINDER1 we have shown that our paper design can meet the

discipline of computational realisation, or at least that part of the design that we

have managed to build given the available resources; and that it probably meets its

requirements, or at least this particular implementation appears to manage multiple

motives in the nursery domain. These results give us greater con�dence that the

gross functional decomposition of our design corresponds to information process-

ing mechanisms that exist in human minds, for human minds also have to manage

multiple motives in complex and dynamic domains while maintaining reactivity to

current events.

In addition to having relevance to agent architecture research, MINDER1 has the

architectural prerequisites to support perturbant states that involve a loss of control

of attentive resources. Perturbant states are characteristic features of emotional

states. Therefore, MINDER1 can be described as a protoemotional architecture, as

long as this is understood not to be a claim about the �rst-person phenomenology of

MINDER1 nor a claim about what constitutes emotionality in general. MINDER1

can enter states in which a motive continually surfaces through a variable threshold

attention �lter despite being continually rejected by resource limited management

processes. This is precisely what is meant by `protoemotional', nothing more and

nothing less.

7 Acknowledgments

Thanks to Brian Logan, Darryl Davies, Luc Beaudoin and Michel Aube.

26

8 Appendix

8.1 Motives

The general form of a motive is:

[MOTIVE motive <motive descriptor>

insistence <insistence value {0..1}]>

status <status descriptor {sub,surfacing,suspended,active}>

plan <list of plan steps>

trp <list of current TR program actions>

importance <importance descriptor {normal,low}>

]

The seven types of motive in MINDER1 are:

1. [MOTIVE motive [recharge ?Obj] insistence ?insist status sub plan

[] trp []]: A motive to recharge the speci�ed minibot. Generated if MINDER1

believes that an object has low charge.

2. [MOTIVE motive [enclose ?Obj] insistence ?insist status sub plan []

trp []]: A motive to move the speci�ed minibot to the northern area of the nursery

behind the line of fences. Generated if the enclosure has been built and MINDER1

believes a minibot is south of it. (Helps prevent minibots from falling into ditches.)

3. [MOTIVE motive [dismiss ?Obj] insistence ?insist status sub plan []

trp []]: A motive to move the speci�ed minibot to the dismissal point. Generated

if MINDER1 believes a minibot has fallen into a ditch.

4. [MOTIVE motive [visit ?Obj] insistence ?insist status sub plan [] trp []

]: A motive to visit the speci�ed ditch. Generated periodically. (Patrols the ditches

to spot minibots that might fall into them.)

5. [MOTIVE motive [no maginot] insistence ?insist status sub plan [] trp

[]]: A motive to build an enclosure. Generated if an enclosure has not been built.

6. [MOTIVE motive [save ?Obj2 ?Obj1] insistence ?insist status sub

plan [] trp []]: A motive to move the speci�ed minibot to a safe distance from the

speci�ed ditch. Generated if MINDER1 believes a minibot is too close to a ditch.

7. [MOTIVE motive [default] insistence ?insist status sub plan [] trp []]:

A motive to wander around the nursery. Always generated (a motive of last resort).

8.2 List of basic actions

MINDER1 has a set of basic actions that are directly executable by e�ectors. How-

ever, they can fail; for example, MINDER1 may attempt to move forward but

cannot due to an obstacle. The basic actions are:

1. move: Move forward in current direction. Takes no arguments.

2. rotate ?To: Rotates to new direction as speci�ed by argument.

3. setspeed ?To: Set new travelling speed as speci�ed by argument.

4. grab object ?It: Attempt to grab object identi�ed by argument, for example

"minibot2". (This action can fail if the object is not within reach.)

5. drop ?It: Drop object identi�ed by argument.

27

6. rotate bar ?It ?To: Rotate speci�ed fence to speci�ed direction. (MINDER1

must be holding fence identi�ed by �rst argument.)

7. charge ?It ?With: Charge speci�ed object with speci�ed object, for example

"charge minibot2 gas1". (This action can fail if �rst object not held or second

object not within reach.)

8. dismiss ?It ?With: Dismiss speci�ed object at speci�ed object, for example

"dismiss minibot2 exit1".

8.3 List of prestored plans

Plans consist of teleo-reactive program (TRP) plan steps, and most plans have a

single plan step. There is a unique plan for each motive, which is a major simpli�-

cation. Listed below are the seven types of motive and their associated plans.

1. motive [recharge ??Params] ==>

plan [[charge object ??Params 200]]:

2. motive [below maginot ??Params] ==>

plan [[take object ??Params exit1]]:

3. motive [dismiss ??Params] ==>

plan [[dismiss object ??Params]]:

4. motive [visit ??Params] ==>

plan [[drop] [goto object ??Params]]:

5. motive [no maginot ??Params] ==>

plan [[make wall 15 60 0 �rst] [make wall 40 60 0 second] [make wall 65

60 0 third] [make wall 90 60 0 fourth]]:

6. motive [save ??Params] ==>

plan [[put safe ??Params]]:

7. motive [default ??Params] ==>

plan [[drop] [search]]:

MINDER1 has two metaplans that specify internal management operations.

8. DECIDE: Determines the importance of a motive.

9. GET PLAN: Retrieves the correct plan for a motive from the plan library.

8.4 List of TR programs

Each TRP consists of a set of production rules. Rule conditions match items of

knowledge and rule actions can be calls to further TRPs, recursive calls to the same

TRP, internal operations that schedule basic actions, or assertions of temporary

beliefs to facilitate `reasoning', for example reasoning about available fences when

building an enclosure. Each TRP name and associated arguments is listed, followed

by a short description of its function and the basic actions and other TRPs it may

call.

1. TRP goto ?X ?Y: Move to the speci�ed coordinates. Uses [move, setspeed,

rotate].

2. TRP amble ?X ?Y: Move to the speci�ed coordinates while avoiding obstacles.

Calls [1, 2].

28

3. TRP goto object ?Obj: Move to the speci�ed object. Calls [2, 7].

4. TRP grab object ?Obj: Pick up the speci�ed object. Uses [grab object]; calls

[3, 6].

5. TRP take object ?Obj1 ?Obj2: Take the speci�ed object to the second

speci�ed object. Calls [3, 4].

6. TRP drop ?Obj: Drop the speci�ed object. Uses [drop].

7. TRP search: Search the nursery. Calls [2].

8. TRP place bar ?Obj ?X ?Y ?Heading: Place speci�ed fence at speci�ed

coordinates in speci�ed direction. Uses [rotate bar]; calls [6, 2].

9. TRP grab wall: Pick up a fence that can serve as a wall. Calls [6, 4, 7].

10. TRP make wall ?X ?Y ?Heading ?Side: Place a fence so to serve as a

wall. Calls [8, 9].

11. TRP charge object ?Obj ?Level: Charge speci�ed object to speci�ed level.

Uses [charge]; calls [6, 5].

12. TRP dismiss object ?Obj: Remove speci�ed object from the nursery. Uses

[dismiss]; calls [5].

13. TRP put safe ?Obj1 ?Obj2: Remove speci�ed object to a safe distance

from speci�ed ditch. Calls [6, 2, 4].

8.5 Example trace

The following short trace shows the state transitions of perturbing motives involved

in a cycle of `rumination' (see section 4.3.2).

======================= end of cycle 641 ==================

** [[Surfacing --

[MOTIVE motive

[dismiss minibot4]

insistence 0.15 status sub plan

[[decide] [get_plan]]

trp

[done decide]

importance low]]]

** [[Diving --

[MOTIVE motive

[dismiss minibot9]

insistence 0 status suspended plan

[[decide] [get_plan]]

trp

[done decide]

importance low]]]

** [[Management

rejects --

[MOTIVE motive

[dismiss minibot7]

insistence 0.15 status active plan

[[decide] [get_plan]]

trp

29

[done decide]

importance low]]]

======================= end of cycle 642 ==================

** [[Surfacing --

[MOTIVE motive

[dismiss minibot9]

insistence 0.15 status sub plan

...

...

8.6 Example code

Example code is included to show how to implement mechanisms using the SIM AGENT

syntax and production rule semantics. The �rst example shows some code that gen-

erates a motive if MINDER1 has a belief that any minibot is too near a ditch. The

second example shows how the teleoreactive program described in �gure 3 was ac-

tually implemented. Comments are provided throughout.

An example generactivator:

;;; G_near_ditch--

;;; rules---

;;; This generactivator is composed of one ruleset that is itself

;;; composed of a number of rules. Each rule contains a condition

;;; part that can match with items in MINDER1's database or memory

;;; store, and an action part that can place new items in the database.

define :ruleset G_near_ditch;

rule grule_near_ditch_remove_r1

;;; This rule removes a generated motive if its rationale no longer

;;; holds, that is the minibot has fallen into the ditch (it is too

;;; late to do anything about it!)

[MOTIVE motive [save ?Obj2 ?Obj1] ==][->> Motive]

;;; This line matches a declarative representation of a motive

;;; in MINDER1's database.

[belief == name ?Obj1 type minibot status dead ==]

;;; And a belief about a minibot of the same name as the

;;; matched motive.

==>

[DEL ?Motive]

;;; If the conditions match items in the database then

;;; there is a motive to save a minibot that has already

;;; fallen into a ditch; therefore remove it.

rule grule_near_ditch_remove_r2

;;; This rule removes a generated motive if the insistence is

;;; computed to be zero, that is the minibot has moved out of

;;; the danger zone of its own accord.

[MOTIVE motive [save ?Obj2 ?Obj1] insistence ?Insistence ==]

[->> Motive]

[WHERE Insistence = 0]

==>

[DEL ?Motive]

rule grule_near_ditch_add

;;; This rule generates a motive if there is a minibot too close

30

;;; to a ditch, and a motive to save it has not already been

;;; generated.

[belief == name ?Obj1 type minibot status alive == x ?X y ?Y ==

held false ==]

[belief == name ?Obj2 type ditch == x ?X1 y ?Y1 == poly_space ?Polygon ==]

[WHERE

is_near_ditch(Polygon, X1, Y1, X, Y, near_ditch_proximity)]

[NOT MOTIVE motive [save ?Obj2 ?Obj1] ==]

==>

[LVARS insist]

[POP11 near_ditch_insistence(Polygon, X1, Y1, X, Y) -> insist;]

;;; The insistence value is computed for this motive

;;; (near_ditch_insistence is a function defined elsewhere).

[MOTIVE motive [save ?Obj2 ?Obj1] insistence ?insist status sub]

;;; Place the new motive in the database: it is of status sub

;;; and becomes a candidate for surfacing.

rule grule_near_ditch_change

;;; This rule recomputes the insistence values of previously generated

;;; motives (the reactivation part of generactivation).

[MOTIVE motive [save ?Obj2 ?Obj1] insistence ?Insistence ==]

[belief == name ?Obj1 type minibot status alive == x ?X y ?Y ==

held false ==]

[belief == name ?Obj2 type ditch == x ?X1 y ?Y1 == poly_space ?Polygon ==]

[LVARS insist]

[WHERE

near_ditch_insistence(Polygon, X1, Y1, X, Y) -> insist;

insist /= Insistence]

==>

[MODIFY 1 insistence ?insist]

;;; Modify the insistence value of the existing motive.

enddefine;

An example TR program:

;;; TRP_charge_object ---

;;; rules ---

;;; Note that these rules satisfy the regression condition; therefore,

;;; the order of the rules matter. For instance, the topmost rule

;;; checks that the action has been accomplished and simply notes this

;;; fact (the null action in figure~\ref{fig:trp}).

define :ruleset TRP_charge_object;

rule TR_charge_object_r1

[MOTIVE motive == status active == trp [charge_object ?Obj ?Level] ==]

;;; There exists a motive to charge an object.

[NOT held ?Obj]

;;; MINDER1 is not holding the object.

[new_sense_datum == name ?Obj == charge ?Level2 ==]

[WHERE Level2 >= Level]

;;; MINDER1 can sense that the object has been recharged to

;;; the appropriate level.

==>

[MODIFY 1 trp [done charge_object ?Obj ?Level]]

;;; Therefore, the task has been accomplished.

[STOP]

rule TR_charge_object_r2

[MOTIVE motive == status active == trp [charge_object ?Obj ?Level] ==]

;;; There exists a motive to charge an object.

[held ?Obj]

31

;;; MINDER1 is holding the object.

[new_sense_datum == name ?Obj == charge ?Level2 ==]

[WHERE Level2 >= Level]

;;; MINDER1 can sense that the object has been recharged to

;;; the appropriate level.

==>

[MODIFY 1 trp [drop ?Obj]]

[POP11

prb_run(TRP_drop, sim_myself.sim_data, false);

]

;;; Therefore, drop the object because it is sufficiently

;;; charged. The call to prb_run is a recursive call to

;;; another TR program that drops the specified object.

[STOP]

rule TR_charge_object_r3

[MOTIVE motive == status active == trp [charge_object ?Obj ?Level] ==]

;;; There exists a motive to charge an object.

[held ?Obj]

;;; MINDER1 is holding the object.

[new_sense_datum == name ?Obj == x ?X y ?Y ==]

[new_sense_datum == name gas1 == x ?XX y ?YY ==]

[WHERE close_enough(X, Y, XX, YY)]

;;; MINDER1 can sense that the object is near enough to the

;;; recharge point (gas1) for recharging.

==>

[closure charge ?Obj gas1]

;;; Call a primitive action to charge the object at the

;;; recharge point. Note that this action will be repeated

;;; on subsequent cycles until rule r2 evaluates to true.

[MODIFY 1 trp [stop]]

[STOP]

rule TR_charge_object_r4

[MOTIVE motive == status active == trp [charge_object ?Obj ?Level] ==]

;;; There exists a motive to charge an object.

==>

[MODIFY 1 trp [take_object ?Obj gas1]]

[POP11

prb_run(TRP_take_object, sim_myself.sim_data, false);

]

;;; Recursive call to another TR program, take_object, that

;;; will itself call other TR programs that will attempt

;;; to locate the specified object, pick it up, and take it to

;;; the recharge point (or search for the recharge point it

;;; its location is unknown).

[STOP]

enddefine;

References

Agre, P. E. & Chapman, D. (1987). Pengi: an implementation of a theory of activity.

In Proceedings of the Sixth National Conference on Arti�cial Intelligence, pages

268{272, Seattle. AAAI.

Aube, M. & Senteni, A. (1996a). Emotions as commitments operators: a foundation

for control structure in multi-agent systems. In Proceedings of the Seventh Eu-

ropean Workshop on Modelling Autonomous Agents in a Multi-Agents World,

MAAMAW '96, Lecture Notes in Arti�cial Intelligence. Springer-Verlag.

Aube, M. & Senteni, A. (1996b). What are emotions for? commitments manage-

ment and regulation within animals/animats encounters. In Maes, P., Mataric,

32

M., Meyer, J.-A., Pollack, J., & Wilson, S. W. (Eds.), From Animals to Ani-

mats IV, Proceedings of the Fourth International Conference on the Simulation

of Adaptive Behavior, pages 264{271. The MIT Press.

Bates, J. (1994). The role of emotion in believable agents. Communications of the

ACM, 37(7):122{125.

Bates, J., Loyall, A. B., & Reilly, W. S. (1991). Broad agents. In Paper presented

at AAAI spring symposium on integrated intelligent architectures. (Available

in SIGART BULLETIN, 2(4), Aug. 1991, pp. 38{40).

Beaudoin, L. P. (1994). Goal processing in autonomous agents. PhD thesis, School

of Computer Science, The University of Birmingham.

Beaudoin, L. P. & Sloman, A. (1993). A study of motive processing and attention.

In A.Sloman, D.Hogg, G.Humphreys, Partridge, D., & Ramsay, A. (Eds.),

Prospects for Arti�cial Intelligence, pages 229{238. Amsterdam: IOS Press.

Benson, S. & Nilsson, N. J. (1995). Reacting, planning, and learning in an au-

tonomous agent. In Furukawa, K., Michie, D., & Muggleton, S. (Eds.),Machine

Intelligence 14. Oxford: The Clarendon Press.

Boddy, M. & Dean, T. (1989). Solving time-dependent planning problems. In

Proceedings of the Eleventh International Joint Conference on Arti�cial Intel-

ligence, vol. 2.

Bratman, M. E., Israel, D. J., & Pollack, M. E. (1988). Plans and resource-bounded

practical reasoning. Computational Intelligence, 4:349{355.

Brooks, R. A. (1990). Elephants don't play chess. Robotics and Autonomous Sys-

tems, 6:3{15.

Brooks, R. A. (1991a). Integrated systems based on behaviours. SIGART Bulletin,

2(4):46{50.

Brooks, R. A. (1991b). Intelligence without representation. Arti�cial Intelligence,

47:139{159.

Calhoun, C. & Solomon, R. C. (1984). What is an Emotion? Oxford University

Press.

Chapman, D. (1989). Penguins can make cake. AI Magazine, 10(4):45{50.

Chapman, D. (1990). Vision, instruction and action. Technical Report 1204, Mas-

sachusetts Institute of Technology, Arti�cial Intelligence Laboratory.

Davis, D. N. (1996). Reactive and motivational agents: towards a collective min-

der. In Agent Theories, Architectures, and Languages, the Third International

Workshop, Budapest, Hungary. ECAI-96.

Davis, D. N., Sloman, A., & Poli, R. (1995). Simulating agents and their environ-

ments. AISB Quarterly.

Doyle, J. (1989). Reasoning, representation, and rational self-government. In Ras,

Z. W. (Ed.), Methodologies for intelligent systems, pages 367{380. New York:

Elsevier Science Publishing.

Dyer, M. G. (1987). Emotions and their computations: Three computer models.

Cognition and Emotion, 1(3):323{347.

33

Firby, R. J. (1989). Adaptive execution in complex dynamic worlds. PhD thesis,

Department of Computer Science, Yale University.

Frijda, N. H. (1986). The Emotions. Cambridge: Cambridge University Press.

Frijda, N. H. & Swagerman, J. (1987). Can computers feel? theory and design of

an emotional system. Cognition and Emotion, 1:235{257.

George�, M. P. & Ingrand, F. F. (1989). Decision-making in an embedded reason-

ing system. In Proceedings of the Eleventh International Joint Conference on

Arti�cial Intelligence, pages 972{978, Detroit, MI. IJCAI.

George�, M. P. & Lansky, A. L. (1989). Reactive reasoning and planning. In

Proceedings of the Sixth National Conference on Arti�cial Intelligence, pages

677{682, Seattle. AAAI.

Horvitz, E. J., Gregory, F. C., & Heckerman, D. E. (1989). Reection and action

under scarce resources: theoretical principles and empirical study. In Proceed-

ings of the Eleventh International Joint Conference on Arti�cial Intelligence,

vol. 2.

Humphreys, M. (1996). Action selection methods using reinforcement learning. In

Maes, P., Mataric, M., Meyer, J.-A., Pollack, J., & Wilson, S. W. (Eds.), From

Animals to Animats IV, Proceedings of the Fourth International Conference on

the Simulation of Adaptive Behavior. The MIT Press.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for

general intelligence. Arti�cial Intelligence, 33:1{64.

LeDoux, J. E. (1994). Emotion, memory and the brain. Scienti�c American, pages

32{39.

Logan, B. S. (1996). Personal communication.

MacLean, A., Young, R. M., Bellotti, V. M. E., & Morgan, T. P. (1991). Questions,

options, and criteria: Elements of design space analysis. Human-Computer

Interaction, 6:201{250.

Marjanovic, M., Scassellati, B., & Williamson, M. (1996). Self-taught visually-

guided pointing for a humanoid robot. In Maes, P., Mataric, M., Meyer, J.-A.,

Pollack, J., & Wilson, S. W. (Eds.), From Animals to Animats IV, Proceedings

of the Fourth International Conference on the Simulation of Adaptive Behavior,

pages 35{44. The MIT Press.

Mo�at, D. & Frijda, N. H. (1995). Where there's a will there's an agent. In

Wooldridge, M. & Jennings, N. (Eds.), Intelligent Agents. Berlin: Springer-

Verlag.

Nilsson, N. J. (1994). Teleo-reactive programs for agent control. Journal of Arti�cial

Intelligence Research, 1:139{158.

Norman, T. J. (1994). Position paper: motivated goal and action selection. Pre-

sented at AISB workshop, Models or Behaviours, which way forward for

robotics? Leeds, April 1994, and University College London research note

RN/94/18.

Norman, T. J. (1996). Motivation-based direction of planning attention in agents

with goal-autonomy. PhD thesis, Department of Computer Science, University

College London.

34

Norman, T. J. & Long, D. P. (1995). Goal creation in motivated agents. In

Wooldridge, M. J. & Jennings, N. R. (Eds.), Intelligent Agents: Proceedings

of the ECAI-94 Workshop on Agent Theories, Architectures, and Languages,

pages 277{290. Springer-Verlag. Volume 890 of Lecture Notes in Arti�cial In-

telligence.

Oatley, K. (1992). Best Laid Schemes. Studies in Emotion and Social Interaction.

Cambridge: Cambridge University Press.

Oatley, K. & Johnson-Laird, P. N. (1985). Sketch for a cognitive theory of emotions.

Technical Report CSRP 045, School of Cognitive Science, University of Sussex.

Pfeifer, R. (1994). The `fungus eater approach' to emotion: a view from arti�cial

intelligence. Cognitive Studies: Bulletin of the Japanese Cognitive Science

Society, 1(2):42{57. Extended and revised version of an invited talk at AISB-

91, Leeds, UK. Also available as a technical report from AI Lab, Institute for

Informatics, University of Zurich-Irchel.

Pryor, L. (1994). Opportunities and planning in an unpredictable world. PhD thesis,

Northwestern University.

Pryor, L. & Collins, G. (1992). Reference features as guides to reasoning about

opportunities. In Proceedings of the Fourteenth Annual Conference of the Cog-

nitive Science Society. Lawrence Erlbaum Associates.

Pryor, L. & Collins, G. (1993). Cassandra: planning for contingencies. Technical

Report 41, The Institute for Learning Sciences, Northwestern University.

Rao, A. S. & George�, M. P. (1991a). An abstract architecture for rational agents.

In Proceedings of the Third International Conference on Knowledge Represen-

tation and Reasoning, Boston.

Rao, A. S. & George�, M. P. (1991b). Modeling rational agents within a BDI-

architecture. In Allen, J., Fikes, R., & Sandewall, E. (Eds.), Proceedings of the

2nd International Conference on Principles of Knowledge Representation and

Reasoning, pages 473{484, Cambridge, MA, USA. Morgan Kaufmann Publish-

ers.

Reilly, W. S. (1993). Emotions as part of a broad agent architecture. In Proceed-

ings of the Workshop on Architectures Underlying Motivation and Emotion,

WAUME93, Birmingham, UK.

Simon, H. A. (1967). Motivational and emotional controls of cognition. Reprinted

in Models of Thought, Yale University Press, 29{38, 1979.

Sloman, A. (1978). The Computer Revolution in Philosophy: Philosophy, Science

and Models of Mind. Hassocks, Sussex: Harvester Press (and Humanities

Press).

Sloman, A. (1985). Real time multiple-motive expert systems. In Merry, M. (Ed.),

Expert Systems 85, pages 1{13. Cambridge: Cambridge University Press.

Sloman, A. (1987). Motives mechanisms and emotions. Cognition and Emotion,

1(3):217{234. Reprinted in M.A.Boden (ed), The Philosophy of Arti�cial In-

telligence, OUP, 1990.

Sloman, A. (1992). Prolegomena to a theory of communication and a�ect. In

Ortony, A., Slack, J., & Stock, O. (Eds.), Communication from an Arti�cial

Intelligence Perspective: Theoretical and Applied Issues, pages 229{260. Hei-

delberg, Germany: Springer.

35

Sloman, A. (1994). Explorations in design space. In Proceedings 11th European

Conference on AI, Amsterdam.

Sloman, A. (1995a). Exploring design space & niche space. In Proc. 5th Scandina-

vian Conf. on AI, Trondheim, Amsterdam. IOS Press.

Sloman, A. (1995b). Poprulebase help �le. Available at URL

ftp://ftp.cs.bham.ac.uk/pub/dist/poplog/prb/help/poprulebase.

Sloman, A. (1995c). Rulesystems help �le. Available at URL

ftp://ftp.cs.bham.ac.uk/pub/dist/poplog/prb/help/rulesystems.

Sloman, A. (1995d). Sim agent help �le. Available at URL

ftp://ftp.cs.bham.ac.uk/pub/dist/poplog/sim/help/sim agent.

Sloman, A. (1995e). Sim agent web-page. Available at URL

http://www.cs.bham.ac.uk/ axs/cog a�ect/sim agent.html.

Sloman, A., Beaudoin, L. P., & Wright, I. P. (1994). Computational modeling of

motive-management processes. In Frijda, N. (Ed.), Proceedings of the Confer-

ence of the International Society for Research in Emotions, Cambridge. ISRE

Publications.

Sloman, A. & Croucher, M. (1981). Why robots will have emotions. In Proceed-

ings of the Seventh International Joint Conference on Ariti�cial Intelligence,

Vancouver.

Sloman, A. & Poli, R. (1995). Sim agent: a toolkit for exploring agent designs. In

Wooldridge, M., Mueller, J., & Tambe, M. (Eds.), Intelligent Agents Vol II,

pages 392{407. Springer-Verlag.

Sloman, A., Shing, E., Read, T., & Beaudoin, L. (1992). Six types of design decision.

Notes from a Cognition and A�ect project meeting. Department of Computer

Science, University of Birmingham.

Strongman, K. T. (1987). The Psychology of Emotion. John Wiley and Sons Ltd.

Wierzbicka, A. (1992). De�ning emotion concepts. Cognitive Science, 16:539{581.

Wright, I. P. (1994). An emotional agent: the detection and control of emergent

states in autonomous resource-bounded agents. Technical Report RP-94-21,

School of Computer Science and Cognitive Science Research Centre, University

of Birmingham.

Wright, I. P. (1996a). Design requirements for a computational libidinal economy.

Technical Report CSRP-96-11, School of Computer Science and Cognitive Sci-

ence Research Centre, University of Birmingham. Submitted to Cognition and

Emotion.

Wright, I. P. (1996b). Reinforcement learning and animat emotions. In Maes, P.,

Mataric, M., Meyer, J.-A., Pollack, J., & Wilson, S. W. (Eds.), From Ani-

mals to Animats IV, Proceedings of the Fourth International Conference on

the Simulation of Adaptive Behavior, pages 272{281. The MIT Press.

Wright, I. P., Sloman, A., & Beaudoin, L. P. (1996). Towards a design based analysis

of emotional episodes. Philosophy Psychiatry and Psychology, 3(2):101{137.

36

