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Abstract

Clearly we can solve problemsby thinking about them.
Sometimeswe have theimpressionthat in doingsowe use
words, at other times diagramsor images. Often we use
both. What is going on whenwe usementaldiagramsor
images?This questionis addressedin relationto themore
generalmulti-prongedquestion: what are representations,
whatarethey for, how many differenttypesarethey, in how
many differentwayscanthey beused,andwhatdifference
doesit make whetherthey are in the mind or on paper?
Thequestionis relatedto deepproblemsabouthow vision
and spatial manipulationwork. It is suggestedthat we
are far from understandingwhat’s going on. In particular
we needto explain how peopleunderstandspatialstructure
and motion, and I’ ll try to suggestthat this is a problem
with hidden depths,since our graspof spatial structure
is inherently a graspof a complex rangeof possibilities
andtheir implications. Two classesof examplesdiscussed
at length illustrate requirementsfor human visualisation
capabilities.Oneis theproblemof removing undergarments
without removing outer garments. The other is thinking
aboutinfinite discretemathematicalstructures.

Wecan think with diagrams
Consider the trick performed by Mr Bean (actually
the actor Rowan Atkinson): removing his (stretchable)
underpantswithout removing his trousers.1 Is that really
possible? Think about it if you haven’t previously done
so.2

Is it possibleto removetheunderpantswithoutremoving
the trousers(i.e. the waistbandof the trousersremains

1Thefirst draftof thispaperlocatedMr Beanin a launderette.
Toby Smith correctedme, pointing out that the shy Mr Bean
was on the beach,and wished to remove his underpantsthen
put on his swimmingtrunks,bothwithout removing his trousers.
On 29th July 1995 I postedMr Bean’s problemas a followup
to a discussionof achievementsof AI in several internetnews
groups(comp.ai,comp.ai.philosophy, sci.logic,sci.cognitive)and
received a number of interestingand entertainingcomments.
ChrisMalcolmpointedoutthesimilarity with thebraandsweater
problem,i.e. removing a brawithout removing thesweaterworn
above it. Readersareinvited to reinvent thejokesthatwerethen
posted,aboutwhich problemwaseasierfor whom underwhich
conditions. In particular, someonepointed out the distinction
betweendifficulty dueto unfamiliarity vsdifficulty dueto being
distracted.

2I havepreviouslygivenaudiencesthetaskof findingouthow
many possiblenumbersof intersection(or tangent)points there
can be betweena triangle and a circle in the sameplane. It’ s
easierthanMr Bean’s problem,but many peoplemissout some
casesunlessprompted.

constantly around the person’s waist), allowing only
continuous changes of shape of the body and the
underpantsandtrousers,e.g.stretching,bending,twisting,
but no separationof anything into disconnectedparts,no
creationof new holes,etc.? Does it matterwhetherthe
waistbandof thetrousersis tight or not?

Many peoplecananswerthisquestionby thinkingabout
it andvisualisingtheprocessesrequired,evenif they have
notseenRowanAtkinson’sperformance.

Somequestions:

a. What sort of knowledgeenablespeopleto work out
theanswer?(This subsumesthedeepquestion:whatsort
of knowledgeenablesthemto understandtheproblem?)

b. How is that knowledgerepresentedin their brains?
How many different forms of representationdo we have
availablefor suchknowledge?

c. Can the information usedbe expressedin predicate
calculus?In first orderpredicatecalculus?

d. What would the knowledge actually look like if
expressedin someform of predicatecalculus, or other
logical system? (I.e. which predicates,functions, etc.
would be used? which axioms? How would the initial
stateand desiredend statebe described? Would modal
operatorsbeneeded,e.g.to expresswhich transformations
are possible? Would temporal operatorsbe neededto
expressthe notion of a processandthe constraintson the
process?How would the requirementthat the waistband
notbemovedbeexpressed?)

e. What sort of logic enginewould be neededto find
thesolution?Whatsortof searchspaceis involved?How
couldthesearchbecontrolled?

f. Which alternatives to logical representationsand
manipulationsarepossible?

g. What sorts of reasoning mechanismsdo people
actuallyusefor this sortof problem?Canthey uselogic?
Do they everuselogic?Whatalternativesareavailable?

h. Can some or all of the human competencebe
replicatedoncomputer-basedmachines?

i. Which of theseabilities are sharedby which other
animals,e.g. a magpiebuilding a nestin a treetopout of
twigs of many shapesandsizes,a squirrelworking out a
routeto thebagof nutshungup for birds,a femaleorang-
utangin atreeclutchingherinfantwith onehandandusing
theotherto weavea nestfor thenight,out of branchesand
leaves?



A confession
I have beenthinking (and writing) aboutsuchquestions,
andabouthow humanandanimalvision works, for many
years(seethebibliography).But I remaindeeplypuzzled
since nothing I have thought of, or seen in AI, or in
psychology or brain science, seemsto come close to
explaininghuman(andanimal)visualandspatialreasoning
abilities.

Oftenanimplementationappearsto bedoingsomething
like humanvisualisation,but on closerexaminationlacks
the generality and power: give it a slightly different
problemand it cannotcope. The neuraltheoriestend to
identify locationswherelow level visual processesoccur,
but say little or nothing about higher level capabilities
or how visualisationmechanismsare used in problem
solving. When attemptsare madeto formulate theories
I usually find that they do not describeanything that I
caninterpretasaworkabledesignwith explanatorypower.
E.g. talkingaboutmechanismswhich“manipulateimages”
explainsnothing.It merelyre-formulateswhatneedsto be
explained.

Somecommentson the problem
It makesa differencewhetheryou considerthecontortions
of postureMr Bean has to go through to producethe
appropriatesequenceof changes,or whetheryou merely
considertheunderpantsbeingdistorted.Ignoringwhodoes
it andhow makestheproblemeasier. Sofrom now on I’ ll
abstractaway from theproblemof how thewearermakes
the transformationhappen: assumevarious changesof
shapeandlocationoccurwithout consideringwho makes
themhappen,or how Mr Beancoulddoso.

Even with this abstractionthere are several different
ways of thinking about the underpantsproblem. Some
use only topological relationshipspreserved under all
continuoustransformations,includingthosewhich change
size,shapeanddistances.Someusemetricalrelationships
involving shapeandsize.

Thinking purely topologicallyis quitehardto do, since
it involvesfinding themostgeneralway to characterisethe
relationshipbetweenMr. Beanand his garmentsin the
initial andfinal statesandseeingthat in a sensethosetwo
statesareequivalent. So thereis no problemfor Mr Bean
to solve.

Most peopledo not think like that. They conceptualise
the problemin a metrical fashionand considerways the
underpantsmightstretchandfold. We’ll seethatit is useful
to combinedifferentabstractions.

How many distinct solutionsare there?
Informal enquiriessuggestthat mostpeopleseeonly two
symmetrically related solutions to the problem. One
involves stretchingthe left side of the underpantsdown
throughthe left trouserleg, over the foot andbackup the
left leg, leaving only the right leg throughits hole. The
underpantscanthenbeslid down theright leg andout. A
similarsolutionstartswith theright side.

If the trousers’waist bandis not tight thereareseveral
morepairsof symmetricallyrelatedsolutions,e.g. sliding
onesideof theunderpantsup over theheadanddown the

other side and out throughthe leg, or sliding the central
partof theunderpantsdown insidea leg thenover thefoot
andup thesameleg on theoutside,thenout pastthewaist
band,over the headanddown the otherleg. It’s easierto
visualisethanto describe!Anotherpair of solutionsstarts
thesameway, andendswith theunderpantsgoingoff past
thehead.That’sfour pairsof solutionssofar. But there’sat
leastonestill missing!(Or more,dependinghow solutions
arecounted.)

At first I saw only two solutions,anddid not think of
pulling the underpantsover the headuntil someoneelse
pointedout thatpossibility. Much later I looked for more
solutionsandnoticedthatthecentralpartof theunderpants
could be moved first, leading to underpantsaroundthe
waist. Still later, after further abstraction,followed by
somearithmetic,explainedbelow, I found nine different
solutions.

A sphericalBean
Thesolutionsoutlinedaboveall usedametricalrepresenta-
tion, in whichtheunderpantsarestretchedoverprotrusions
likelegsandheads.Wecande-emphasisemetricalfeatures
(size, shape,distance)and focus more on topology if
we envisagethe body shrinking to a sphere,or egg, as
in Figure 1, with the trousersand underpantsfollowing
faithfully, so that eachbecomesa hemispherewith two
holes,while theirwaistbandsremainaroundtheequator.

Whatkindsof cognitivemechanismsenableus to grasp
that if theproblemstarting froma sphericalshapecanbe
solved,socantheoriginal problem?

Considering the shrunken Bean makes it “obvious”
(how?) that the underpantscan slide out throughone of
the holesin the trousers.Sincetherearetwo holesthere
areessentiallytwo symmetricallyrelatedsolutions.

Loosening the waistband permits another type of
solution in which the underpantsslide out pastthe band,
with thespherepassingthroughoneof theleg holes.Since
there are two leg holes we have anothersymmetrically
relatedpairof solutions.

Anothersolutionhastheunderpantssliding out pastthe
waist band, without the spherepassingthrough the leg
holes.

Sowith thetrousersattachedandimpassableatthewaist,
therearetwo distinct solutions. Looseningthe waistband
enablesseveral more distinct solutions. Have we found
themall?

Holy spheres

We canthink of a two-holedhemisphereasa spherewith
threeholes!Thenwecanenvisageunderpantsandtrousers
eachasthree-holedsphericalsheets,concentricwith each
other and with the sphericalBean. The two sheetshave
theirholesaligned,but wecanignorethat.

What kind of cognitive processallows you to grasp
the three-holedsphereview? I didn’t until I directed
my attention to the task of looking for more general
characterisationsof theproblemandthensaw that talking
about the loosewaistbandwas a distraction. Once it is
loosethere’s just anotherhole in the trousers. Similarly
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there was all along just anotherhole in the underpants
correspondingto thewaist.

Thereseemto betwo waysof seeingthis. Oneinvolves
noticingthesimilarity in structureandfunctionbetweenthe
big hole at the top andthe two small holesat the bottom.
Ignoring differencesin sizeandlocation,they aresimilar
in function: somethinginside(theunderpantsor trousers)
cancomeoutonly by goingthroughoneof thethreeholes.

Anotherway of seeingthe hemispheresas three-holed
spheresis to envisageasimplecontinuousdeformation,i.e.
pulling themup over thesphere,turningtheminto spheres
with threesimilarholes.

I.e. youcanseethemoreabstractcharacterisationeither
by noting commonaspectsof the functional roles of the
holesdespitetheir differencein size, or by visualisinga
deformationwhich makesthemindistinguishableanyway.
Differentcognitivemechanismsandskillswouldbeneeded
for thesetwo tasks.

So, assumingthe waist bandis loose,we now have a
configurationmadeupof a solidspheresurroundedby and
concentricwith two spherical(rubber?) sheetseachwith
threeholes. Removing the underpantsthen involvestwo
steps:
(1) gettingMr Beanout of the underpantsthroughoneof
thethreeholesin theinnersheet.
(2) getting the underpants(the inner sheet)out of the
trousersthroughoneof thethreeholesin theoutersheet.

Suddenlyit becomesclear that therearethreewaysof
doingstep(1) eachconsistentwith threewaysof doingstep
(2), sotheremustbe3 * 3 = 9 differentsolutions,covering
all possible combinations(at this level of abstraction,
whichignoresprotrusionslikelegsstickingoutthroughthe
holes).

I leave it asanexercisefor thereaderto work outwhy it
is thatif theproblemis viewedat thefully metricallevel it
maybepossibleto dostep(2) beforestep(1).

It’s worth noting that the type of abstractionidentified
herewhich enablesus to reasonabout the combinations
of stepsdoesnot requireMr Beanand the two garments
to have any specific shape as long as the garments
are approximatelyconvex, or at least have a distinction
between inside and outside and three communication
ports betweenthem. I’ ll continueto talk of spheresbut
withoutassumingall themetricalpropertiesof spheres,e.g.
smoothness,constantcurvature,fixedradius,etc.

Yet more abstraction
A further abstractionis possible. The situationwith the
sphereand two stretchableenclosingspheresis clearly
equivalentto a spherewith two flat sheetseachwith two
holes.In thatcontext nothingis insideor outsideanything
else,andthere’s thereforenodifferencebetweentheinitial
andthefinal state.Sothere’snoproblemto solve!

Another way of making the same point is that the
configuration depicted in the figure is topologically
equivalent to one in which the three items are simply
separatedvertically, by moving the sphereup and the
trousersdown.

Only mathematiciansreactto the original problemthat
way, concludingthatit’s trivial. Onedid, whenI originally

Figure1: Mr Beanwith tr ousersand underpants,before
and after beingcontinuouslytransformed into a sphere.

postedthe problem on the internet. Unfortunatelythat
doesn’t helpMr Beangethisunderpantsoff.

When moving betweendifferent abstractionswe need
to know whereto stop. E.g. in analysingoptionsfor the
removal processit is useful to go from the fully metrical
initial specification,where the detailedshapesand sizes
are relevant, to the minimally metrical nearly topological
situationwhereonly inside-outsiderelationsare relevant
(but still metrical becausebeing “inside” an object with
holesis a metricalproperty).Having enumeratedpossible
strategies at the minimally metrical level (where each
strategy involvesuseof oneholein theunderpantsandone
in thetrousers)wecanthenmovetomoredetailedplanning
andevaluationin the fully metricalrepresentation,where
changesof shapeandlengtharerequired,i.e. stretchingof
underpantsover theheador down andunderthefoot.

Different coexistingsearch spaces
We found that therearenine differentsolutionswhenthe
problemis construedasinvolving threeconcentricspheres
(or, to be more precise,threespherestotally orderedby
an “encloses”relation). This discovery wasnot madeby
visualisationor simulationof the removal process,but by
usingthe generalinformationthat for somethingto move
from beinginsideaholedsphereto beingoutsideit mustgo
throughoneof theholes.How onegainsthat information
is anotherquestion.

Why was the full rangeof solutionsnot obvious with
theoriginal configuration?Themissingsolutionfrom the
previous section involves getting both leg holes of the
underpantsround to the top of Mr Bean’s head,so that
theunderpantsareupsidedown, andthenpulling themoff
upwards. I.e. Mr Beanexits the underpantsthroughthe
waistholeandtheunderpantsexit thetrousersthroughthe
waist hole. Therearedifferentwaysof doing this which
are equivalent at the current level of abstraction,though
they involvedifferentcontortionsof Mr Beananddifferent
locationswheretheunderpantsrisk beingtorn.

Thus the searchspace at the metric level is more
complex: there are more detailed options, with more
explosive combinatorics.Consequentlygettinga view of
the full rangeof routesis far more difficult, and at that
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level the simpler structuregot by groupingtopologically
equivalentoptionsis notvisible.

This is just another illustration of the well known
fact that finding an abstractspatial representationand
combiningthat with someabstractnon-spatial(arithmetic
or logical) reasoningcan give a deeper insight into
the problem than simply using very concrete spatial
visualisationcapabilities.

Given enoughtime to explore visually all the possible
metricaltransformationswould we eventuallydiscover all
nine possibilities? I suspectmost peoplewould not get
around to consideringsomeof the options becausethe
more complex searchspaceprovides a more complex
book-keepingtask if the searchis to be systematicand
exhaustive.Humanarchitecturesdon’t copewell with deep
stacksor long queues,thoughtheseareeasyto implement
oncomputers.

Our limitations may arise in part from more complex
arraysof possibilitiescompetingin parallel for attention.
When consideringany spatial structurethere are indefi-
nitely many changesof size, shape,orientation,colour,
etc. that we can envisageif we think of them (Sloman
1996a).AI cannotyet matchthis. Part of thepriceof our
flexibility is unmanageablecombinatoricswhensearching
for a sequenceof changesto solve a problem. This is
sometimesalleviated by using more abstractpatternsto
control the search. Could this explain the achievements
of the more successfulchimpanzeesin Kohler’s famous
experiments?

What makesus fail?
What cancausea personto fail to visualisean actionor
change,or fail to draw an inference– even in contexts
wherefailureis costly?

We need to distinguish (i) inadequatearchitecture
(e.g. ability to constructonly simple structures,limited
possibilitiesfor modifying structures,limited possibilities
for analysingstructures,limited possibilitiesfor storing
sequencesof modifications), (ii) wrong or incomplete
stored information (e.g. about changespossible in a
physical system, about consequencesof changes),(iii)
inadequatemechanismsfor monitoringeffectsof changes
in order to infer consequences,(iv) lack of meta-
level know-how and architecturalsupport required for
systematicallyexploring all the availableinformationand
all the available transformations,(v) not using available
know-how e.g. becauseof an attention problem or a
motivational problem or some kind of “fixation” on a
differentinadequatestrategy.

Points(i) to (v) are merely illustrative of the require-
mentsfor asystemableto explainor modelhumansability.
Somefailuresmay involve transientdysfunctions,suchas
distractedattention,or forgetfulness.Theremaybeothers
producedby brain damage,geneticbrain malformations,
drugs,chemicaldisorders,etc. Sometasksmaycometoo
earlyfor a developingarchitecture,in childhood.

External and internal diagrams
Our discussionshows that a diagram on paper is not
necessarilya good model for what is graspedwhen

someonevisualisesaspatialstructure.
One personlooking at the diagrammay seeonly the

more detailed,metrically specific configurationwhereas
another can see (“grasp”? “comprehend”?) in the
samediagrama moreabstractstructurein which metrical
relationshipsplay a reducedrole. Soevenif they bothhad
aninternallyinspectable2-D diagramthey mightstill view
it quitedifferently.

Moreover, having both views of the diagram(or the
original 3-D scenario)canhelpin theprocessof solvinga
problem,i.e. planninga detailedsequenceof actions.This
is just anothercaseof thewell known fact thatmulti-level
planners,whichformmeta-plansin oneor moreabstraction
spaces(e.g. ABSTRIPS, NOAH) can sometimeswork
betterthan“flat” singlelevel planners(e.g.STRIPS).

A dominant theme in the history of mathematics,is
the constantdevelopmentof new forms of abstraction
and techniques for relating and combining different
abstractions. A similar theme can be found in child
development(Karmiloff-Smith,1996).

Representationsand transformations

All of the different ways of thinking about Mr Bean’s
problem require not only some way of representing
the original configuration, but also a grasp of the
possibletransformationsof thatconfiguration,a capability
discussedmorefully in (Sloman,1996a).

We’ve seenthat different transformationsare possible
at different levels of abstraction. At one level thereare
many detailedchangesof shapeasMr Beanpulls part of
theunderpantsdown his trouserleg, over thefoot andthen
backup again. At the higher level of abstractionthat’s a
non-operation:thesphereis still in theunderpants,asif a
protrusionfrom thesphere(the leg) hasbeensquashedin,
leaving theunderpantsfreer to rotatearoundthesphere:a
marginalgain.

So the visualexperiencesof looking at thediagramare
differentatdifferentlevelsof abstractionandthey differ in
(amongother things) the possibilitiesfor change that are
grasped. Similarly, visualisingthe situationwithout the
helpof anexternaldiagrammustalsoinvolve assembling
thosepossibilitiesfor changeso that they canbe usedin
thinkingaboutasolutionto theproblem.This is oneof the
skills developedby a mathematicaltraining, thoughother
sortsof trainingdevelopmorespecialisedversions.

For instancegainingexperienceasa softwareengineer
involves gaining facility in grasping configurationsof
data-structuresalong with procedureswhich transform
them, and understandingthe consequencesof those
transformations. Likewise, being a composer, painter,
mechanicalengineer, dressmaker, etc., involvesacquiring
specialisedabilities to grasp structuresalong with rich
classesof transformationsthat are possible for those
structures. (I think I learnt a greatdeal by playing with
Meccanosets,asa child.)

Differentstructuresin thesamegeneralclasscansupport
very different numbersof possibletransformations. A
simple line drawing with few lines supportsfar fewer
transformationsthanmorecomplex line drawingswith far
more lines, junctions,regionsetc. Thusas you visualise
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a structure changing, therequirementsfor graspingwhich
further changes are possible may also be constantly
changing. How?

Thinking with qualia
All this is relatedto ongoing disputesabout the nature
of consciousness,including the questionwhetherqualia
aresimply unanalysablegivensor whetherthey areto be
understoodascrucialpartsof the functioningof an infor-
mationprocessingsystem,asarguedin a long,incomplete,
still expandingpaper, availablefor commentandcriticism
in the file ftp://ftp.cs.bham.ac.uk/pub/groups/cogaffect/
Sloman.consciousness.evolution.ps Compare Chalmers
(1996)

Theconnectionwith thepresentdiscussionis thatvisual
qualia,e.g.seeingaredpatch,arenotunanalysablegivens.
They have rich “internal” differencesdependingon what
sortsof possibilitiesfor changetheexperienceris capable
of handling.Changescouldincludechangesof shape,size,
orientation,location, splitting into two or more patches,
andmany waysof acquiringnew colouredsub-regions(e.g
abluepatchin themiddleor agreenline traversingthered
patch,etc.)

Wittgensteinsummedthis up thus: “The substratum
of this experience is the mastery of a technique”
(Wittgenstein,1953,p208).A full accountof visualisation
(andthinkingwith diagramsor even3-D spatialstructures)
would requireusto analysethehugevarietyof techniques
implicit in even the simplesthumanexperiences,thereby
uncovering the implicit complexity in apparentlysimple
qualia.

Otheranimalsmayhavemuchsimplerqualia,especially
those born or hatchedwith genetically formed visual
mechanismsready for use, e.g. chickens, deer, horses.
Altricial birds, hunting or tree climbing animals and
humansarebornmorehelplessandgrow theirbrainswhile
interactingin simplerwayswith theenvironment.Perhaps
this producesa muchrichergraspof structureandmotion
thancaneasilybeencodedin genes.

Visualising infinite structures
How do we visualiseinfinite structures?The answerwill
dependonthetypeof infinite structure.Whenwevisualise
continuousobjectsor continuouschangesthis involvesthe
possibilityof “zoomingin” to smallerandsmallerportions
of theobjector motion,without limit. That’s partof what
is implied by beingcontinuous.It alsounderliessomeof
Zeno’sparadoxes.

Mr. Bean’s problem involves continuous change
(stretching,bending,moving), but our graspof continuous
motion neednot play a significantrole in thinking about
the problem. The differencebetweencontinuouschange
anda finite successionof discretestateswould not make
any differenceto our previousdiscussion.In facta useful
way to tame a problem involving continuouschangeis
to identify a small number of key states, and ignore
intermediatestates.That’show wefound9 solutions.

We canalsothink aboutinfinite discretestructures,like
thesetof integersor thesetof proofsin someformalism.
Clearly we cannot createsomethinginfinite inside our

heads. So visualisationin this case(and probablyin all
the othercasestoo!) doesnot involve actualcreationand
inspectionof thestructurevisualised.Somethingfar more
subtlehappens:whenyou visualisea spatialstructureor
processthereneednot be any actualspatialstructureor
processthatis inspected,noranything isomorphicwith the
structureor process.

Therecould be only a representationof inspectingthe
structureor process.If donewell, that could fool us into
thinkingwe aredoingsomethingthatwe aren’t. But being
fooleddoesn’t matteraslongastheprocesswhichproduces
the illusion is exactly what is neededto implement a
powerful reasoneror problem solver: i.e. it’s a good
biological solution, like being fooled into thinking tables
aresmooth,solid, continuousandrigid, becausethey look
andfeelasif they are.

Infinite “images” involving numbers

Let’sconsidersomeexamplesof infinite structures,suchas
thesequenceN of naturalnumbers,0, 1, 2, .... etc. This is
easilyvisualised,goingoff into thedistanceaway from us,
or from left to right for instance.N satisfiesPeano’saxioms
for arithmetic. (i) There’s an initial element. (ii) Every
elementhasa uniquesuccessor. (iii) The initial element
hasno predecessor. (iv) Every non-initial elementhasa
uniquepredecessor. (v) Theaxiomof induction:properties
which arepossessedby the initial element,andpossessed
by thesuccessorof any possessor, arepossessedby all the
elements.

Any sequencesatisfying those axioms is a Peano
structure,e.g. an infinite row of dots. It is clear that
therearemany visualisablesubsetsof N which arePeano
structures,e.g. the even numbers,2, 4, 6, ...., or the
numbersstarting from 999 and continuing indefinitely:
999,1000,1001,....

Graspingtherelationshipbetweentheaxiomaticcharac-
terisationand the visualisedstructureis non trivial. For
hundreds(thousands?)of yearsbeforePeanocameupwith
his axioms,peoplethoughtaboutand usednumbersand
were able to visualisethe infinite sequenceof numbers.
Kantdiscussedsomeof theissuesin 1781.

What cognitive mechanismsenabledPeanoto find the
axioms? Considerthe different roles of the axioms in
characterisingthe required set. (i) and (ii) guarantee
that the set isn’t empty and that you can go on along
the sequenceforever, with no choicepoints (becauseof
the word “unique”). (iii) preventsyou going backwards
beyond the initial element. (iv) implies that you can go
back from any non-initial element,and again the word
“unique” rules out choicepoints, therebypreventing the
sequencedoubling back and rejoining itself, as this one
does: 0,1,2,3,4,5,6,3,4,5,6,3,4,5,6..... I.e. it prevents3
having both 2 and6 aspredecessors.(v) is moresubtle,
andpreventssequenceswhichgoonforever, andthenhave
moreitemsbeyondthat,likeS1definedbelow.

Wecaneasilyinfersomepropertiesof avisualisedPeano
structure. E.g. given any two distinct elementsin the
structure, there must be a chain of successorelements
startingwith oneof themandendingwith the other. So
theelementscomprisea total ordering.This is not soeasy
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to proveby logic from theaxioms.

More complexinfinite structures
We canalsovisualisestructuresviolating Peano’s axioms.
For example,imaginetheevenandoddnumbersseparated
out, into two sequences,0, 2, 4, .... and1, 3, 5, .... We can
visualisetheseconcatenatedin a structureS1 with all the
evennumbersgoingfrom left to right, followedby all the
oddnumbersgoingfrom left to right.

S1 has a successorrelation just as N did, but it is
“obvious” that Peano’s axiomsare no longer satisfiedin
S1. First,noteverynon-initialnumberhasapredecessorin
thenew configuration.(There’s oneexception.)Secondly
the axiom of inductionno longerholds: propertieswhich
arepossessedby the initial number, andpossessedby the
successorof any possessorareno longerpossessedby all
theintegersin this new organisation.An exampleis being
even.

We can visualise a different infinite series S2 by
reversing the odd numbersand adding them all before
the even numbers. That producesa structure like the
set of positive and negative integerswhich is infinite in
both directions. There is no longer any item without a
predecessor. S2hassymmetrylackingin Peanostructures.

Moreover, if we start from the fact that there are
infinitely many prime numbers(which is provable alge-
braically, thoughnot so easily proved visually), we can
form infinitely many Peanostructuresand concatenate
them. Starting from any prime number we can form
a Peano structure consisting of all its powers, e.g.��������������	
������� ��������������	����������������
�����
	
�������

It is thennot hard
to visualiseall of thesesequencesconcatenatedto form
S3, a totally orderedsetof numbers,which hasinfinitely
many elementsviolating axiom (iv) becausethey have no
predecessor. This can either be proved formally from a
logicalspecificationof theconstructionof S3, or intuitively
by visualisingthe processof constructionandseeingthat
eachtimeanew setof powersis addedits first elementhas
nopredecessor.

Well-ordered structures
The original sequenceN is easily seen to be “well-
ordered”,i.e. everysubsetof N containsa “least” element,
one which has no predecessorin the subsetand which
precedesall the othersin the subset. This is connected
with the fact that N is inherentlyasymmetric. It is built
by startingwith aninitial elementandgoingonindefinitely
addingelements,oneat a time, on onesideonly. Proving
logically that every Peanostructure is well-ordered is
harderthanseeingthatit is.

It is not hard to see that the structure S3 got by
concatenatinginfinitely many Peanostructures,is also
well-ordered.

This would not be true if we reversedsomeof thesub-
sequences,e.g. if all the powersof 13 were includedin
reverseorder. Thatwouldviolatewell-orderingsincethere
wouldbeasubsetwith nofirst element.

Justifying Peano’s axioms
Having notedthatit is easyto visualisestructures,like S1,
S2, S3, whichviolatetheaxiomsin differentways,wecan

seethatoneway to “justify” Peano’saxiomsis usingthem
to rule out thosestructures.I have no ideaif this is how
Peanoarrivedathisaxioms.

Whetherthoseaxiomssuffice to determineuniquelythe
“intended” intuitive model is a controversial topic which
will notbediscussedhere.See(Sloman,1992).

A Peanostructurewhetherspecifiedaxiomatically or
visually is asymmetric.Moving along it in onedirection
always leads to the least element, whereasthe other
directiongoesonforever, whichweoftenrepresentby “....”
Being“well-ordered”is anothertypeof asymmetry:every
subsethasafirst element,thoughnotnecessarilyalastone.

How do wegraspan infinite ordered sequence?
It may be that part of what makes the visualisedinfinite
naturalnumbersequencewhatit is ratherthananon-Peano
structureis an information processingimplementationof
theasymmetryalongwith somethingcloselyrelatedto the
axiomof induction.I don’t know how to makethisprecise.
Two aspectsof such an implementationcould be (1) a
mechanismfor expandinganincompletesequence“on the
right” asoftenasrequired,and(2) a reasoningmechanism
that implicitly assumesthat properties propagatedto
successorsare propagatedto everything further along.
This sort of mechanismis not inherentlyconnectedwith
numbers.

Anyone who can visualisean infinite row of vertical
dominoesgoingoff to theright,andthenvisualisethewave
of activation that occurswhen the first dominofalls over
causingthe secondoneto fall over, etc. andwho finds it
“obvious” that they will all (eventually)end up knocked
over, is usingthe equivalentof the axiom of induction. I
havenoideahow thatis implementedin humanbrains.It is
probablypartof alargesuiteof operationsfor manipulating
finiteandinfinitediscretestructures,whichwill bedifferent
in detailfrom thosefor continuousstructures,but mayhave
someoverlap,e.g. theability to concatenatestructures,or
to “move” somethingalongastructure.

What makes something a visualisation of a Peano
structureratherthanadifferentsortof structuresuchasS1,
S2, or S3, dependson theapplicabilityeverywhereof this
localproperty-transmitter. Theinfinite detailneedneverbe
constructed,justavailablewithout restrictionwhenneeded
(as in lazily evaluateddata structures). This is partly
analogousto whatever makes it possibleindefinitely to
zoomin to continuousstructures.For Peanostructureswe
usesomethinglike an ability indefinitely to “zoom to the
right”.

It would be interestingto explorewhenandhow young
childrendevelop this ability, and also how it might have
evolved.

Visualisingproofsand refutations
It’s easyto visualisecounter-examplesto theclaim thatall
orderedstructuresare Peanostructures,or that they are
all well-ordered. It is not so easyto usevisualisationto
prove generalisations,suchas that any concatenationof
a well-orderedsetof well-orderedstructureswill alsobe
well-ordered. That’s much easierto prove by reasoning
logically from definitionsthanto demonstrateby somehow
visualisingall possibleconcatenationsof well-orderedsets.
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In generalit is easierto visualisea casethat refutesa
generalisationthanto visualiseall possibleinstancesof a
generalisationin a reliable way. Sometimesthat can be
done by visualisinga sort of patternor templatewhich
covers all the possibilities. Mateja Jamnik’s work on
verifying diagrammaticproofs,reportedat thisconference,
includestheuseof diagramsto reasonover an infinite set
of finite structures,e.g. in proving that for every � the
sumof the first � odd numbersis � �

. This dependson
a commonpatternsharedby all thestructures,sothatthey
canbevisualisedin a uniformway.

A muchhardervisualisationof an infinite structure(or
process)is requiredto provetheCantor-Bernsteintheorem,
whichsaysthatif therearetwo setsA andB eachof which
is in oneto onecorrespondencewith a subsetof theother,
thenthere’s a oneto onemappingbetweenA andB. The
proof involvesconstructingthenew mappingfrom thetwo
given ones,and it is helpful when thinking aboutthis to
visualisesomethinglikeapairof mirrorsfacingeachother
with raysbouncingbackandforth indefinitely.

How do wedo it?
What is going on when we visualise these infinite
structures?We obviously don’t constructinfinite physical
structuressince our brains are finite. However, it may
be accurateto say that infinite structuresare constructed
in some sort of virtual machine, like the familiar
virtual machinesthat support sparsearrays or infinite
lazily evaluatedlists, constructablein someprogramming
languages.It’s not hard to createin a computera sparse
array with more locationsthan thereare electronsin the
universe,as long as we leave most locationscontaining
the default value. Perhapsbrains use similar tricks for
representingextremelylarge,or eveninfinite, structures.

It might be temptingto think thatwhatwe do whenwe
visualisean infinite structureis constructa very large set
andusethat asan approximationto the infinite set,since
afterall a veryvery largevisualisedcollectionof dots,like
a starrysky, might aswell be infinite if we cannottake in
thewholelot andseehow many there.

But that won’t do. If you visualisethe structureS1,
with ALL the even numbersfollowed by ALL the odd
numbers, then no very large finite subsetof the even
numberswill do as an approximationto ALL of them.
For example,the structureS1violatesPeano’s axioms,as
explainedabove, whereasif thereare only finitely many
even numbersprecedingthe odd numbersthenthe axiom
thateverynumberhasa uniquepredecessorwill no longer
be violated, for the first odd number will now have a
predecessor, the lastevennumber. Moreover theaxiomof
inductionwill againhold. I.e. if we replacethe infinite
sequenceof even numberswith a finite subsetthis will
transformS1into a Peanostructure. So a large finite row
of evennumberscannotmodeltherequiredinfinite row in
thiscontext.

Somethingdeep goes on when we visualise the two
infinite setsasbeingconcatenated.Perhapsthe important
point is that what we experienceas pure visualisationis
actually a combinationof visualisationand unconscious
but explicit specificationof rules for indefiniteexpansion

andrulesfor inference?E.g. we mayhave somethinglike
thepreviouslymentionedmechanismfor continuingto the
right waiting in the wings to preventany interpretationof
thesetof evensasafinite set,howeverlarge.That’safairly
abstractand sophisticatedkind of visualisation,on a par
with thedomino/inductionmechanismthatwaspreviously
waiting in the wings to propagatepropertiesalongall the
naturalnumbersequence.(Alas,all this is still toovague.)

How many other sorts of visualisationsinvolve such
a mixture of implicit rules or axioms or mechanisms
alongwith somethinglike a spatialstructure?Oneof the
requirementsfor a mechanismof the sort discussedhere
is that whetherthe visualisedspatialstructureis finite or
infinite,discreteor continuous,thevisualisationis possible
only insofar as it implicitly involves the availability of
a large numberof possiblechangesin the structure,as
previously discussed.What exactly is visualiseddepends
onexactlywhich transformationsareavailable.

Visualising is not lik eseeing
From the discussionso far, it is clear that whatever
visualisationof a structureis, it cannotbesomethingvery
similar to seeingeven if it feelssimilar. That’s because
the kind of graspingof a spatial structure involved in
visualisingis part of whathappensin seeingthestructure.
Hence if visualising involved seeing then visualisation
would be part of visualising and we’d have an infinite
regress.

Also we cannot see an infinite structurebut we can
visualiseone. And it is arguablethat whenwe visualise
thekind of abstracttopologicalstructurethatwepreviously
discussed,thatcannotbelikeseeingbecauseseeingalways
involves specific metrical structures and relationships
whicharemissingin theabstractvisualisations.

We need a new way of thinking about the problem,
other than proposing that the brain creates2-D or 3-
D arraysand then “looks at” or “inspects” them, for if
the looking at or inspectioninvolves understandingthe
spatial structurewe are going round in circles chasing
a non-existent homunculus. There must be a way of
understandingspatialstructure(or moregenerally)a way
of understanding,which is not to beexplainedin termsof
understandinganotherstructure!

It must, however, be something like a type of
information-richcontrol state,i.e. a statewhich affects
what the systemcan or will do next. Elsewhere I’ ve
arguedthat we needto view minds primarily as control
systemsand representationsas control substateswith
syntax, pragmaticsand in some casessemantics,e.g.
(Sloman,1993a;Sloman,1993b;Sloman,1996b).

What sort of control state? How doesgraspingsome
structureaffectwhatyou cando?Notethat“what you can
do” doesnot refer only to externalbehaviour. It includes
the sortsof internal processingwhich becomeavailable
whenwegraspsomestructure.

Other problemsinvolving visualisation
Mr Bean’s taskis justoneof many problemswhichpeople
seemto beableto solve by visualisingtransformationsof
a structure.
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Somearemucheasier:e.g. if a penny with the “head”
on top is turnedover threetimeswill the heador the tail
beon top? Thatoneis easyto do eitherby visualisingthe
process(simulatingit mentally)or by reasoningaboutit. If
wemodify theproblemto onein whichthepenny is turned
over threethousandandfive times,it is mucheasier(and
farmorereliable)to reasonaboutthanto visualise.

Here the more sophisticatedprocess,using meta-level
knowledge about the nature of the less sophisticated
process,is easierandfasterto dothanthelesssophisticated
processwhich blindly goes through the steps to get
from the start state to the end state. Being able to
discovernew waysof solvingold problemsandbeingable
to selectbetweenalternative approachesrequires“meta-
level” knowledge,i.e. the ability to reflecton andreason
aboutknowledgeandproblemsolving. Oneof theearliest
interestingexamplesof thiswasSussman’sHacker (1975),
whichdebuggeditself by watchingitself atwork, thoughit
dealtonly with a tiny fragmentof the problem,like most
modelssofar.

Being able to understandthe possibility of looking for
andusing“easy” shortcutsrequiresa moresophisticated
processingarchitecture than a typical problem solver
or planner. It requiresan architecturewhich supports
mechanismsfor observing, analysing, evaluating, and
noticingpatternsin internalprocesses.

However, having an architecturesupportingsuchmeta-
level abilities does not guaranteegeneral meta-level
competence. It seemsthat humanshave to learn to be
reflective in different domains. E.g. someonewho is
goodat noticing opportunitiesfor improving his software
designsmay fail to notice opportunitiesfor improving
communicationandrelationshipswith otherpeople.

Muchmathematicalability seemsto dependongrasping
patternsandstructuresin one’sown thinkingandreasoning
processes,like noticing that the outcomeof a counting
processdoesnot dependon the order in which itemsare
counted,or noticing that repetitive processcan continue
indefinitely. I suspect that our ability to visualise
infinite structuresis related to the ability to grasp and
reflect on properties of repetitive processes,and our
ability to manipulatethemby performingoperationslike
concatenationor reasoningabout subsetsdependson
noticing analogiesbetweeninfinite structuresand finite
structures.

Childrendon’t seemto startoff with theseabilities,but,
unlessdamagedby teachers(or parents?),they somehow
manageto bootstrapthe more sophisticatedarchitecture
andto applyit in differentdomains.(For somespeculations
aboutthis in connectionwith learningaboutnumbers,see
chapter8 of (Sloman,1978). CompareKarmiloff-Smith
(1996).)

Spatial vs logical: what’s the difference?

Introspectively, many peopleareconvincedthat there’s a
deepdifferencebetweensolving problemsby reasoning
logically (or verbally) and solving them by visualising
and transforming spatial structures. Whether such

introspectionsarereliableis amatterof dispute.3 However,
it’s not socommonlynoticedthatbothsortshave muchin
common,andwhatthey have in commonis probablymore
importantandharderto accountfor, thanthedifferences.4

Whenever we reason, whether with pictures words,
imaginedmovements,or anything else, processesoccur
in which structuresare createdand manipulated. If you
reasonlogically or algebraicallyusing pencil and paper,
you’ll normally createa sequenceof spatial structures,
wherethe transitionfrom oneelementof the sequenceto
thenext correspondstoastepin thereasoning.(Thisiswhy
visualisationof sequencesplayssuchan importantrole in
a lot of meta-mathematicalreasoning.)

Problemsin Euclideangeometrycan often be solved
without a spatialsequence:insteadwe modify a diagram
in situ. (SeeNelson(1993).)Moderntechnologysupports
this and also allows direct transformationof a single
logical or algebraic structure presentedon the screen
without having to producea sequenceof spatiallyseparate
structures,as happenswhen we reasonwith sentences,
equations,logical formulae.Perhapsbrainsgot therefirst?

The collectionof structure-manipulationspossiblein a
classof structuresdefinesa generalisednotionof “syntax”
for suchstructures. We can also generalisea notion of
“pragmatics” from linguistics, to refer to the functional
rolesof informationstructuresin largersystems.In some
casestherewill alsobe“semantics”insofarasthestructures
are usedto describe,summarise,plan, other internal or
externalstructures,actions,or goals.

We need a better grasp of the types of structure-
manipulationmechanismsthere are and the many ways
in which different possibilities for further manipulation
are actively madeavailable by the currentcontentsof a
particularstructure.This may enableus to comeup with
better theoriesof how brains do all this. That would
require,yet again,re-inventingideasdiscoveredlong ago
by evolution,andin thecourseof doingsowe’ll probably
have to discardmany of ourcherisheddistinctions.

Conclusion
I’ ve tried to draw attentionto someunexplainedfeatures
of our ability to think and to visualise. All such cases
(whetherdiagrammaticor not) seemto involve theability
to createstructures– not necessarilythe structureswe
think we are visualising, and not necessarilyphysical
structures,sincethey canbestructuresin virtual machines
(the “physical symbol systemhypothesis”taken literally
is a huge red herring). They also involve the ability
to have readily available a collection of mechanismsfor
manipulatingthosestructureswhich somehow implement
our grasp of the possibilities for changeinherent in a
structure.The possibilitiesfor changedeterminehow the

3Someof thedifferencesbetween“Fregean”(applicative)and
“analogical” representationswere analysedin Sloman(1971).
Thedifferencesareoftenmisdescribed.

4I’ ve previously arguedthattherearenotonly two categories,
but awide rangeof significantlydifferenttypesof representation,
e.g. in (Sloman,1971;Sloman,1975;Sloman,1996b). Similar
stricturesapplyto otherallegeddichotomiese.g.betweenimplicit
andexplicit, computationalandnon-computationalmechanisms,
proceduralanddeclarative representations,etc.
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structureis graspedor understood,and provide the basis
for its pragmaticandsemanticfunctions.

Whatconstitutesagraspof somethingspatialasopposed
to algebraic, or continuousas opposedto discrete, or
finite as opposedto infinite, or linear as opposedto tree
structured,or planar as opposedto three dimensional,
etc. will dependin part on the collection of types of
transformationsand inferencesavailable and readyto be
appliedto thestructure.

In somecasesthe samestructuremay be viewed or
understoodin differentwaysby makingdifferentclassesof
transformationsor inferencesavailable,asin thedifference
betweena metrical and a topologicalunderstandingof a
spatialconfiguration.

Using such a grasp in solving a problem or making
a plan involves somehow being able to orchestratethe
collection of possiblechangesin such a way as to find
sequencesof changeswhichsatisfysomecondition.When
thesituationrepresentedis continuous,continuouschanges
canbe visualised.Whetherwe canactuallyproducesuch
changesor only convincing representationsof themis not
clear.

Beingintelligentofteninvolvessimultaneouslyviewing
somethingin two or more ways and relating the sets
of possiblechangesin the different views. What does
and does not work has to be learnt separatelyin the
context of differentclassesof structures,differentclasses
of manipulationsanddifferentclassesof problems,which
is why there’snosuchthingastotally generalintelligence.

How all thiscanbeimplementedin brainsor computers
remainsan openproblem. If we study lots morespecial
caseswe may eventuallyunderstandwhat sort of general
architecturecanaccommodatethemall, alongwith closely
relatedcapabilitiessuch as vision and motor control. I
don’t think this will be easyto do, not leastbecausewe
probablystill don’t understandwhattheproblemis.

Acknowledgementsand Apologies
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providing a literaturereview. Usefulsourcescanbefound
in Brachman& Levesque(1985),Glasgow et al. (1995)
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