
Agent route planning in complex terrains

Brian Logan and Aaron Sloman
School of Computer Science, University of Birmingham

Birmingham B15 2TT UK

b.s.logan@cs.bham.ac.uk

Abstract

For many autonomous agents, such as mobile robots, autonomous vehicles and
Computer Generated Forces, route planning in complex terrain is a critical task, as
many of the agent’s higher-level goals can only be accomplished if the agent is in
the right place at the right time. The route planning problemis often formulated
as one of finding aminimum-costroute between two locations in a digitised map
which represents a complex terrain of variable altitude, where the cost of a route
is an indication of its quality. However route planners which attempt to optimise
a single measure of plan quality are difficult to integrate into the architecture of
an agent, and the composite cost functions on which they are based are difficult
to devise or justify. In this paper, we present a new approachto route planning
in complex terrains based on a novel constraint-based search procedure,A� with
bounded costs (ABC), which generalises the single criterion optimisation prob-
lem solved by conventional route planners and describe how aplanner based on
this approach has been integrated into the architecture of asimple agent. This ap-
proach provides a means of more clearly specifying agent tasks and more precisely
evaluating the resulting plans as a basis for action.

1 Introduction

Autonomous agents must make decisions in complex, dynamic and uncertainenviron-
ments in pursuit of multiple, possibly conflicting, goals. For manyautonomous agents,
such as mobile robots, autonomous vehicles and Computer Generated Forces, route
planning in complex terrain is a critical task, as many of the agent’s higher-level goals
can only be accomplished if the agent is in the right place at the right time.For these
agents, the route planning task provides a useful framework in which to investigate
many of the issues which affect the design of the agent’s architecture, including when
to plan, what sorts of plans are required and what to do when plans go wrong. The
resulting problems of trading off current and future advantage are common to many
forms of deliberation, including inference, belief revision and predicting the behaviour
of other agents, and solutions to these problems are an essential element in any ‘broad’
agent architecture. [1]

In our work we are exploring architectures for agents which play variants of the
game of ‘hide-and-seek’ in complex terrains. Our hide-and-seek agents operate in a
dynamic simulated environment containing synthetic or real terrain data defining hills,
valleys, impassable areas etc. and must act on the basis of incomplete or uncertain
information. Each agent is initialised with one or more goals, for example to find

the other agents or to remain concealed from them, and can acquire additional goals
as a result of its interactions with other agents and its environment. A goal can be
characterised as a relationship between the agent and the terrain, for example: being
at the pointA; being able to observeA; being hidden from an observer atA, and so
on. Often these goals or the plans to achieve them are subject to additionalconstraints,
for example that the agent should be at pointA at or before a certain time, or that the
route to pointA should be concealed from one or more opposing agents. Moreover,
the amount of time an agent can afford to spend on planning depends on the current
situation: uncertainty about the terrain, the positions of opponents etc. may mean that
it is not worth developing a detailed plan. It is therefore desirable ifthe planner can
quickly return a partial plan, or a crude plan only the first segment of which has been
developed in detail, as a basis for immediate action.

In this paper we present a new approach to real-time route planning in complex
terrains based on a novel constraint-based search procedure and describe how a planner
based on this approach has been integrated into the architecture of a simple agent. In
the next section we briefly outline some of the problems with conventional approaches
to route planning based onA�. In subsequent sections we present a new approach to
route planning which generalises the single criterion optimisation problem solved by
conventional route planners and describe our approach to real-time planning which uses
meta-management rules to control the planner, allowing the agent to explicitly monitor
the progress of the planner to determine when a satisfactory plan has been found, to
relax or re-order the constraints when the planner is not making progress, or to interrupt
the planner if the situation changes. We conclude by arguing that constraints form an
appropriate interface between the higher-level components of the agent architecture
and its basic planning abilities, by providing a means of more clearly specifying the
agent’s tasks and more precisely evaluating the resulting plans as a basis for action.

2 Route planning withA�
The route planning problem is often formulated as one of finding aminimum-cost(or
low-cost) route between two locations in a digitised map which representsa complex
terrain of variable altitude, where the cost of a route is an indication ofits quality. In
this approach, planning is seen as a search problem in space of partial plans, allowing
many of the classic search algorithms to be applied. A number of route planners in the
literature are based on theA� algorithm [5] or variants such asA�� [11]. For example,A� has been used in a number of Computer Generated Forces systems as the basis of
their planning component, to plan road routes [2], avoid moving obstacles [6], avoid
static obstacles [7] and to plan concealed routes [10].

However, while such planners are complete and optimal (or optimal to some bound�), it can be difficult to formulate the planning task in terms of minimising a single
criterion (cost function). It is rarely the case that we are searching for a plan that is
optimal on a single criterion, and it is often more natural to express the problem re-
quirements in terms ofconstraintson the plan. For example, our hide-and-seek agents
must generate plans which satisfy a number of criteria, such as the length ofthe route,
whether it is concealed from their opponents, the amount of time or ‘energy’ required
to execute the plan and so on. In many cases an acceptable plan will be constrained to
attain some level on one or more of the criteria; for example, if one agentis to intercept
another agent, it must be in a given position at or before a particular time. Often there
is a preference ordering over such constraints; we may wish to specify that constraints

2

relating to the feasibility of the plan, such as the requirement that the plan should not
include any ‘no-go’ cells (cells which exceed the maximum gradient negotiable by the
agent), may be preferred to constraints which specify desirable attributes,such as the
requirement that the plan should take no more thanx timesteps to execute.

One approach to incorporating multiple criteria into the planning process is to de-
fine a cost function for each criterion and use, e.g. a weighted sum of these functions
as the function to be minimised. For example, we can define a ‘visibility cost’ for
being exposed and combine this with cost functions for the length of the plan or the
time required to execute the plan, to form a composite function which canbe used to
evaluate alternative plans. However if one or more of the individual cost functions is
non-linear, using weights to determine the relative importance of different constraints
is not straightforward, because when the magnitudes of costs change, the effects of
weights vary. The relationship between the weights and the behaviour ofthe planner is
complex, and it is often not clear how the different cost functions should be combined
to give the desired behaviour across all magnitude ranges for the costs.This makes it
hard to specify what kinds of plans the planner should produce and hard topredict what
the planner will do in any given situation. Small changes in the weight ofone criterion
can result in large changes in the plans generated by the planner. Similarly, changing
the cost function for a particular criterion involves changing not onlythe weight for
that cost, but the weights for all the other costs as well. In addition, if different criteria
are more or less important in different situations, we need to find sets of weights for
each situation.

Even if it were possible to specify a cost function which represents the constraints
on the plan and their relative importance, current planners based onA� are incapable of
‘trading off’ slack on one constraint to satisfy another, less important, constraint, since
they retain only a single plan to a given point.A� retains only the (estimated) cheapest
solution through a given point.A� collapses all costs into a single value which is used
to determine both the preference ordering and whether one plan dominates another.
The resulting loss of information means we cannot useA� to trade one constraint off
against another.

3 Route planning with ordered constraints

In this section we describe a new approach which involves planning to satisfy an or-
dered set of constraints rather than attempting to find the lowest cost plan to achieve
a goal [9]. Instead of using a cost function ofn arguments (one for each criterion)
which computes e.g. a weighted sum of its inputs, we use a list of constraints where
the position of the constraint in the list reflects its importance. In effect, we replace
the optimisation problem solved by the planner with a satisficing or constraint satis-
faction problem that allows optimisation as a special case.1 For example, rather than
finding the least cost path on the basis of both the time required to execute the plan
and the visibility, we might specify a route that takes time less thanx and is at least
50% concealed, or that takes time less thany and minimises visibility (subject to the
time constraint).2 This approach provides a means of more clearly specifying agent
tasks and more precisely evaluating the resulting plans: a plan can be characterised as

1It is difficult to formulate this problem as a constraint satisfaction problem [8] given the number of states(> 100; 000), the length of the plans(> 500 steps), and the softness of the constraints (see below).
2The notion of ‘constraint’ developed below is closer to thatof Fox [4] than that of e.g. O-Plan [16] or

UMCP [3], though in both cases there are significant differences.

3

satisfying certain constraints and only partially satisfying or not satisfying others. For
example, a particular plan might satisfy the requirement that the time taken be less thanx, but violate the requirement that the plan be at least 50% concealed.

In the case of the hide-and-seek agents, there are three main types offirst-order
constraints:

1. requirements that certain parts of the terrain should be visited or avoided e.g.
that the route should not be visible from a given position, or toavoid no-go (i.e.
impassable) areas (simple predicates withtrueor falsevalues);

2. limits on some property of the plan such as the time required to execute, degree
of visibility etc. (functions with values constrained to fall in some interval); and

3. optimisation constraints such as the requirement that the plan should be as short
as possible (functions with values to be minimised or maximised, including, for
example, a value being as close as possible to some constant).

and also somesecond-orderconstraints, for example constraints on the planning pro-
cess itself, e.g. that the planner should should take less thanx timesteps to find a plan,
but these are the concern of the meta-level planning rules which control the planning
process, see below.

We represent constraints as bounds on costs. Acost is a measure of plan quality
relative to some criterion, and can be anything for which an ordering relation can be
defined: numbers, booleans etc. Acost functionis a function from a plan and a model
to a cost. Different cost functions use different abstractions of the basic topographic
model. For example, the no-go cost of a plan may be computed using a thresholded
maximum gradient map, a visibility cost may be computed using a visibility map which
represents the degree to which each cell in the model can be seen by opposing agents
and so on. Aconstraint is a relation between a cost and a set of acceptable values
for the cost, for example the boolean value ‘true’, a (possibly open) interval such as
‘< 10’, ‘= 100’, or ‘� Oe + �’ (i.e. within � of the estimated optimum valueOe, a
minimisation constraint). Costs are used to determine if a plan satisfies a constraint,
whereas constraints are used to control backtracking.

3.1 Valid Plans

A (possibly partial) plan which satisfies all the constraints is termedvalid. The con-
cept of validity is complicated by the difficulty of evaluating a partial plan against the
constraints. Constraints are typically properties of a complete plan andare not directly
applicable to the partial plans produced by the planner. We therefore use aweaker cri-
terion which allows us to evaluate partial plans: if some completion of apartial plan
satisfies the constraints, then the partial plan is deemed to be acceptable. Wherethe
constraint bounds a monotonically increasing function of the plan suchas time or dis-
tance travelled, this is relatively straightforward. For example if the plan should take
less thanx timesteps to execute and a partial plan takesx + 1 timesteps, then it is
clear that no extension of the partial plan can ever satisfy the constraint. However in
other cases we can’t tell until the plan is complete whether the constraint issatisfied.
Optimisation constraints introduce further difficulties in that theoptimum is usually
not known when planning begins; we can only estimate the optimum by attempting
to produce a plan, and the current best estimate of the optimum is continually revised
throughout the planning process.

4

In general, demonstrating that it is possible to complete a partial plan so as to satisfy
the constraints is of course equivalent to the original planning problem. To avoid this
problem, we use the following optimistic policy: if it is not possible to prove that a
partial plan cannot satisfy the constraints, we make the assumption thatthe planner
will be able to find a completion of the plan which does satisfy the constraints. Each
constraint is associated with aheuristic functionwhich returns an estimate of the cost
of completing a partial plan. Together with the cost function, the heuristic function can
be used to derive an estimated total cost for a plan. By comparing the total cost against
the constraint, we can get an idea of whether some completion of the partial plan is
likely to satisfy the constraint.

If the constraints areadmissible, e.g. if the associated cost function always returns
an underestimate of the true cost for an upper bound or minimisation constraint, then
we can guarantee that if a partial plan fails to satisfy a constraint, all extensions of that
plan will also fail to satisfy the constraint, since the cost of the plancan only increase
as the plan is extended. Conversely, we don’t want the cost functions which greatly
underestimate the true cost of the plan, as this will result in the planner being overly
optimistic about a plan which will never satisfy the constraint. While admissible cost
functions are desirable, they are not necessary. It is enough that the cost functions
generallyunderestimate the true cost of a plan to limit the amount of effort wasted on
plans which can never satisfy a constraint. If the cost functions are not admissible, we
lose any guarantee of optimality, but given our emphasis on satisficing,this is not really
a concern.

3.2 Plan ordering

The planner uses an ordering over plans to direct the search and control backtracking.
Plans are ordered on the basis of the number of important constraints they satisfy.
We compare the value of each constraint in the constraint list in turn until we find a
constraint which is satisfied by only one of the plans, preferring the plan which satisfies
the constraint. This is essentially lexicographic ordering on fixed length boolean strings
in which true is preferred tofalse. For the purposes of comparison, we view the goal
as the 0th constraint, i.e. a complete plan which fails to satisfy some of the constraints
is preferred to a valid partial plan. (It is clear that, in the general case, this ordering
cannot be produced using a weighted sum cost function.)

The total ordering on constraints is used to order partial plans into equivalence
classes, with those which satisfy all the constraints in the first equivalence class, those
that satisfy all but the last constraint in the second equivalence class and soon. By
definition, all plans which satisfy a constraint are equally acceptable. However, if the
heuristic functions are admissible, the estimated cost of a partial plan will typically
increase as the plan gets longer. We therefore prefer plans which over satisfythe con-
straints, i.e. where there is some ‘slack’ between the cost of the plan and the constraint.
We associate each constraint with anordering relationwhich defines a partial order
over the estimated total costs for that constraint, depending on how well the cost ‘sat-
isfies’ the constraint. For example ifv is a cost value andk1; k2 are constants, the
following constraints could have the associated orderings:

5

Form of constraint on costv Cost orderingv = predicate(plan) true < falsev < Oe + � <v < k1 <v > k1 >v = k1 jk1 � vjk1 < v < k2 j((k1 + k2)=2)� vj
This allows us to sub-order plans within an equivalence class, i.e. how well the plan
satisfies the constraint or how close it is to satisfying the constraint. Favouring plans
which over-satisfy the constraint reduces the likelihood that the plan will violate the
constraint as the length of the plan increases, reducing the amount of backtracking.
Conversely, for violated constraints, the sub-ordering favours plans which are closer
to satisfying the constraint. This can be useful in the case of ‘soft’ constraints, where
minor violations are acceptable. Moreover, plans which have more slack are often more
robust in the face of unexpected problems during execution.

Several ordering strategies are possible. For example we could order the equiva-
lence classes using the costs for the most important constraint or the cost for the most
important violated constraint. In our work to date, we have used a lexicographic order-
ing over costs to sub-order the equivalence classes.

3.3 A� with Bounded Costs

The search strategy used by the planner is similar toA�.3 We use two lists, anOPEN

list of unexpanded partial plans, and aCLOSED list which records all non-dominated
plans to each point visited by the planner. At each cycle, we expand the plan with the
greatest slack in the first non-empty equivalence class. If this is a valid solution and
all the constraints are admissible we return the plan and stop. Otherwise we generate
all the successors of this plan, and for each successor we cost it and determine its
equivalence class. We remove fromOPENandCLOSEDall paths dominated by any of
the successors of the plan and discard any successor which is dominated by any plan
on OPEN or CLOSED. One planpa dominatesanother planpb if both plans terminate
in the same point, and there is at least one costfi such thatfi(pa) < fi(pb) and there
is no costfj such thatfj(pa) > fj(pb). We add any remaining successors toOPEN, in
order, and recurse (see Figure 1).

In addition, the planner retains a pointer to the best plan found to date,which is
returned if the planner is interrupted by a timer or after some pre-determined number
of expansions have been performed before a complete, valid plan has been found. If
the constraints are not admissible, we can never be sure we have found the best plan
without an exhaustive search: even if we have a plan which satisfies all theconstraints,
there may be another plan with greater slack. In this case it is up the agent to determine
if the best plan found so far constitutes an acceptable solution in the current context
(see below).

As might be expected, the additional flexibility ofABC involves a certain overhead
compared withA�. The lexicographic ordering of plans requires the comparison ofk
constraint values for each pair of plans. If we sort within equivalence classes, we
must also perform an additionallogm comparisons, wherem is the number of plans

3ABC is a strict generalisation ofA�; with a single admissible optimisation constraint its behaviour is
identical toA�.

6

OPEN [start]
CLOSED []

repeat
if OPEN is empty return false

remove n, the least member of the first non-empty
equivalence class, from OPEN and place it on CLOSED

if n is a solution then return n
otherwise for every successor, n0, of n

cost n0 and determine its equivalence class

remove from OPEN and CLOSED all paths dominated by n0
if n0 is dominated by any path on OPEN or CLOSED,
discard n0
otherwise add n0 to OPEN, in order

Figure 1: TheABC algorithm

in the equivalence class. In total, we use three orderings: a preference ordering on
constraints, a preference ordering on costs and subsumption ordering on costs which
is used to compute the set of non-dominated paths to each state. In addition, we must
update the constraint values of the plans in theOPEN list when we obtain a better
estimate of the optimum value for an optimisation constraint. If theheuristic functions
are admissible, any improvement in the estimate of the optimum can only increase it,
and any plan that satisfied a constraint will still do so. Similarly, any improvement in
the estimate of the optimum can only increase the amount of slack, as a plan will be
closer to the optimum than before. However, plans which didn’t satisfythe constraint
may come to do so, thereby moving from one equivalence class to another.

There is also a storage overhead associated with this approach. For each plan we
must now holdk constraint values in addition to thek costs from which the constraint
values are derived. More importantly, we must remember all the non-dominated plans
from the start point to each point visited by the planner rather than justthe minimum
cost plan as withA� since: (a) it may be necessary to ‘trade off’ slack on a more
important constraint to satisfy another, less important constraint; and (b) it may not
be possible to satisfy all the constraints, in which case we must backtrack to a plan
in a lower equivalence class. (UnlikeA�, theCLOSED list contains all non-dominated
paths to a state, rather than the least cost path to each expanded state.) Nor can we
discard plans after they have been expanded as otherwise we can’t check for loops. In
some cases remembering all the non-dominated plans can be a significant overhead.
However, there are a number of ways round this problem, including more intelligent
initial processing of the constraints and discretising the Pareto surface. For example
we can require that the planner retain no more thanp plans to any given point, by
discarding any plan which is sufficiently similar to an existing plan to that point. (In
the limit, this reduces toA� where we only remember one plan to each point.)

7

4 Controlling the planner

The architecture of the hide-and-seek agents is based on the general agent architecture
described in [14], and consists of three layers: a reactive layer, a deliberative layer and
a reflective or ‘meta-management’ layer (see Figure 2). The reactive layer contains
automatic or pre-attentive processes such as reflexes and the generation of goals in re-
sponse to changes in the agent or its environment. For example collision avoidance
and simple perceptual processing, including object identification and tracking, are im-
plemented at the reactive layer. The deliberative layer contains knowledge-basedpro-
cesses in which options are explicitly considered and evaluated before selection, such
as planning, scheduling and decision making. These processes are resource limited;
for example, there are only a finite number of goals the agent can attend to at any one
time. In the hide-and-seek agents, the deliberative layer consists of threemain com-
ponents: visibility reasoning, belief revision and route planning. The reflective layer
controls the activities of the deliberative layer, providing global monitoring and ‘self-
evaluation’ functions. For example, the reflective layer is responsiblefor scheduling
competing goals within the agent. The agents are implemented using theSIM AGENT

toolkit [13].

action

THE ENVIRONMENT

AN ARCHITECTURE FOR HIDE AND SEEK AGENTS

Variable
threshold
attention
filter

Feedback
Automatic (pre-attentive)
 processes

RESOURCE-LIMITED REFLECTIVE
 MANAGEMENT PROCESSES

Reflexes (some learnt)

META-MANAGEMENT
processes

action
inner

perception
inner

Motive
activation

perception

 visibility
reasoning

 route
planning

belief
revision

Figure 2: The Agent Architecture

The route planning capabilities of the hide-and-seek agents is distributed across the
deliberative and meta-management layers.4 At the deliberative layer, the route plan-
ning component is implemented as a time-sliced constraint-based planner thatplans
to achieve a single goal at a given level of abstraction and an abstract model genera-
tor that can produce a (more) abstract version of a given terrain model. Thesebasic
components are controlled by a collection of planning rules. At the reflective layer, the
planning capabilities of the agent are controlled by a collection of meta-management
rules, which decide when to plan, what sorts of plans are required and how much effort
the agent can afford to spend on planning.

4At present, the role of the reactive layer in route planning is limited to goal generation.

8

4.1 The Deliberative Layer

At the deliberative level, agent tasks are represented as goals. Agoal is a description
of a states in which certain propositions are true and in which certain actions have
been performed. Goals are represented as state descriptions consisting of two parts: a
conjunction of propositions which should be true in states, for example that the agent
should be at some location or that the time should not be later than some timet, and a
list of actions which should have been performed in some state prior tos, for example
that the agent should have observed some locationl. In simple cases such goals can be
achieved without planning. For example, if the goal is to be at the current or an adjacent
position and any actions to be performed can be performed in the current state, then
the deliberative layer can simply invoke behaviours defined at the reactive layer, to e.g.
move to an adjacent location.

However, in more complex cases, such goals give rise to sub-goals to have a plan,
the execution of which will result in the agent being in a state in which the propositions
are true and which will allow the actions to be performed during its execution. For
example, the task of observing a location to discover if it is occupied becomes a con-
straint that the plan should pass through at least one cell from which thetarget location
is visible. In some cases, tasks are decomposed into more than one constraint on the
plan. For example, ‘observing a target location from concealment’ is brokendown into
two constraints: that the plan should pass through at least one (concealed)observation
position, and that no step in the plan should be visible from the target position. (We
assume that visibility is asymmetric and that certain configurations of the terrain allow
an agent to observe a location without itself being seen by an agent at that location. For
example, an agent can ‘peek’ over a ridge to observe another agent in the next valley
without itself being seen.)

Route planning goals are generated either in response to changes in the environment
which are outside the scope of the simple hard-wired behaviours at the reactive layer or
from higher level goals communicated to the agent by other agents. To achievethese
goals, the hide-and-seek agents often have to produce plans of several hundred steps at
the resolution of the base model. The resulting search problems are intractable, and it
is necessary to simplify the problem in order to limit the search. One wayto do this is
to first generate an abstract plan which can then be refined to give a detailed plan inthe
base model. If the size of the terrain model exceeds a (context dependent) threshold,
the planning rules generate a goal to produce a plan in an abstract model at a larger
scale, together with goals to produce scaled versions of the abstract models required
by the cost functions and constraints (e.g. no-go and visibility models). If the resulting
scaled models are still too large for practical planning, a further abstract plan goal is
produced. This process is repeated until the abstract model is small enough to plan in
effectively.

When an (abstract) plan is produced at some level of abstraction, this can be used
to guide the planning process at the level below. The abstract plan is usedto define a
‘corridor’ within which the planner will search for a refinement of the abstract plan at
the next lower level of abstraction. The corridor is itself represented asa constraint, an
‘abstract plan constraint’, which is simply added to the existing listof constraints at the
next lower level of abstraction to give a new planning goal. The position at which the
abstract plan constraint is inserted into the original list of constraints determines how
important it is to stay within the corridor defined by the abstract plan.For example,
if we put the abstract plan constraint first in the list of constraints,the planner will
abandon all the other constraints before it leaves the corridor. If we put it last, the

9

abstract plan constraint is simply advice to the planner, which it may ignore in an
attempt to satisfy the other constraints.

The resulting, more detailed, plan is used to construct a new corridor to constrain
further refinement at the next lower level of abstraction. Successive refinements may
result in repeated displacement of the centreline of the corridor at lower levels of ab-
straction and helps to eliminate artifacts introduced by the abstraction process.5

4.2 The Reflective Layer

At the reflective layer, a collection of meta-management rules monitor the progress of
the deliberative layer, and determine the order in which goals, includingroute planning
goals (abstract plan goals, plan refinement goals or plan execution), are processed.

The default strategy is to find a complete plan at one level of abstraction before
starting to refine it at a lower level of abstraction. However the real-time demands on
the agent and/or uncertainties about the the terrain and the positions andgoals of other
agents mean that this is often not an appropriate approach. However meta-management
rules allow context dependent plan abstraction and refinement, allowing the agent to
decide when and how far to abstract, when to accept an abstract plan as the basis of
future action, when to start refining the abstract plan and how much of it should be
refined to the level of basic actions.

Typically, the agent will have to act before the planner has found a valid or even
a complete plan. This can happen when, for example, the time required to produce
and then execute a plan exceeds the time available to achieve the goal and the agent
must plan and act concurrently, or when there is an immediate threat to the agentat
its current location. We therefore arrange for the planner to return the best (possibly
partial) plan it can find within a given time-slice (typically 200 milliseconds though
this is problem and processor dependent). It is then up to the planning rules at the
meta-management level to decide whether the plan is acceptable in the circumstances,
in which case the agent can begin execution of the plan, or whether the plannershould
be allowed to continue searching for a better plan.6 If the agent is pressed for time,
a decision may be taken to accept a partial plan or a complete plan which violates
some constraints as the basis of further plan refinement or action in the environment.
Conversely, if the situation allows, the planner can be restarted and run for another
time-slice. The architecture allows the agent to plan on several different abstraction
levels in parallel while simultaneously executing some initial fragment of the base-
level plan, and ensures that any further refinement of an abstract plan is consistent with
the already executed portion of the base-level plan.

This approach moves the complex constraint evaluation problem (e.g. howclose a
constraint is to be being satisfied) which is both constraint specific and context sensitive
out of the planner and into the meta-management layer. The meta-management rules
allow the agent to explicitly monitor the progress of the planner to determine when a
satisfactory plan has been found, to relax or re-order the constraints when the planner
is not making progress, or to interrupt the planner if the situationchanges sufficiently
to invalidate the current plan.

5Other problems caused by abstraction, or averaging, may require task specific abstraction procedures.
6Obviously, if we can show that there is no plan which satisfiesall or enough of the constraints, there is

no point in giving the planner more time to search for a betterplan; the only option is to relax one or more
of the constraints. However this is difficult to determine without exhaustive search, unless the cost functions
are admissible: if the most optimistic estimate of the cost,for all the plans on theOPENlist fail to satisfy the
constraint, then the constraint can never be satisfied.

10

5 A simple example

In this section, we illustrate the use of ordered constraints with two example plans pro-
duced by the current implementation. The planner currently supports seven constraint
types:� energy constraints bound a non-linear ‘effort’ function which returnsa value

expressing the ease with which the plan could be executed—the cost function
is based on the 3D distance travelled with an additional non-linear penaltyfor
going uphill;� time constraints establish an upper bound on the time required to execute the
plan (or equivalently on the length of the plan), assuming the agent is moving at
a constant speed of one cell per timestep;� no-go constraints establish an upper bound on the maximum gradient of any cell
traversed by the plan;� concealed route constraints enforce a requirement that none of the steps in the
model be visible from one or more observation positions;� region constraints enforce a requirement that the plan should pass through one
or more points in a given circular region;� observation constraints enforce a requirement that the plan should pass through
one or more points from which an agent can observe a target position; and� concealed observation constraints require that the plan should pass through one
or more points from which an agent can observe another agent while remaining
concealed from it.

We consider the problem of planning from coordinates (223, 162) to (160, 43) in
an400 � 400 grid of spot heights representing a 20km� 20km region of a synthetic
terrain model. In this example we use only two constraints, a time constraint and an
energy constraint. Figure 3(a) shows an (enlarged) region of the terrainmodel (lighter
shades of grey represent higher elevations).

In the first case we require that the time taken to execute the plan shouldbe less
than 500 timesteps(t < 500), i.e. it should not exceed 25km at a constant speed of one
cell (50m) per timestep, and the energy cost should be less than 25,000(e < 25; 000).
The resulting plan (planA), shown in Figure 3(a), is 263 steps long (13.15km) and has
an energy cost of 24,968, i.e. it just satisfies the energy constraint. A straight line path
would have given maximum slack on the first constraint, but the plannerhas traded
slack on the more important constraint to satisfy the second, less important constraint.

Figure 3(b) shows what happens if we relax the energy constraint such thate <50; 000. The plan (planB) now goes over the ridge rather than following a more
circuitous route along the river valley. The energy cost has increased to 34,815 but the
time taken to execute the plan has reduced. The length is now 7.25km, whichis the
shortest plan which satisfies the new, relaxed, energy constraint.

PlanB is the is the sort of planA� with a weighted sum cost function would
produce if the weights were chosen in such a way as to ensure that the time constraint
were never violated. In contrast, if it were impossible to satisfy both constraints, e.g.
if t < 250 ande < 25; 000, theABC planner would satisfy the time constraint while
coming as close as possible to satisfying the energy constraint.

11

(a) (b)

Figure 3: Planning with two constraints.

6 Conclusions and further work

We have presented a new approach to real-time route planning in continuous terrains
based on a novel constraint-based search procedure and illustrated how this approach
can be embedded within an agent architecture. The feasibility of the theoretical ideas
is demonstrated by an actual implementation in theSIM AGENT toolkit.

Our approach has a number of advantages over much of the work found in the
literature. By using an ordered set of constraints to represent the requirements on
the plan we avoid the difficulties of formulating an appropriate set ofweights for a
composite cost function. There is a straightforward correspondence between the ‘real
problem’ and the constraints passed to the planner. As a result, it is not necessary
to establish that the solution with least cost actually satisfies the constraints on the
plan. Changing the relative importance of the criteria or introducingnew cost functions
or constraints does not require re-computation of weights. The total ordering over
constraints blurs the conventional distinction between absolute (hard) constraints and
preference (soft) constraints. In our approach, all constraints are preferences that the
planner will try to satisfy, trading off slack on a more important constraint to satisfy
another, less important, constraint, and it is up to the agent to decide how important
these are in the current context, for example if planning should be terminated if one of
the constraints is violated, or if the agent should accept an invalid or incomplete plan
when under time pressure.

Constraints provide a means of more clearly specifying agent tasks and more pre-
cisely evaluating the resulting plans: a plan can be characterised as satisfying some
constraints (to a greater or lesser degree) and only partially satisfying or not satisfy-
ing others. Annotating plans with the constraints they satisfy facilitates the integration
of the planner into the architecture of an agent by providing a convenient interface
between the condition-action rules that coordinate the agent’s behaviours and the func-
tions of the planner. We do not have to choose a cost threshold below which it is safe
to start executing a plan; the implications of executing the current bestplan are im-
mediately apparent. This approach moves the complex constraint evaluation problem

12

(e.g. how close a constraint is to be being satisfied) which is both constraint specific
and context sensitive out of the planner and into the reflective layer.7

We currently have an initial implementation of a time-sliced constraint-based plan-
ner, based onABC, which will plan a route from an initial point to a destination point
satisfying a number of boolean and interval constraints [9]. However the current im-
plementation does not support optimisation constraints and further work is required to
complete the implementation and improve its performance. More work is also neces-
sary to establish the optimality and/or completeness ofABC and to characterise its
performance implications relative toA�.

Another area which we hope to explore is the extension and refinement of the meta-
management planning rules which control the basic planner. For example, itwould be
interesting to investigate utilising information about violated constraints to redefine the
problem when an acceptable (e.g. valid) plan cannot be found in a reasonable amount
of time. By monitoring the progress of the planner, e.g. the number of constraints sat-
isfied by the current best plan returned at the end of each time-slice, the agent could
get some idea of the difficulty of the planning problem. If the plannerdoes not appear
to be making progress, e.g. all the plans found so far violate one or more important
constraints, the agent could elect to change the order of the constraints, relax one or
more constraints or even to redefine the goal, before making another attempt to solve
the problem. We believe that the separation of the agent’s overall planning capabili-
ties into a series of basic components controlled by a collection of planning rules will
facilitate the incremental development of additional capabilities and the exploration of
more complex real-time planning strategies.

Acknowledgements

We wish to thank the members of the Cognition and Affect and EEBIC (Evolution-
ary and Emergent Behaviour Intelligence and Computation) groups at the School of
Computer Science, University of Birmingham for useful discussions andcomments.
Natasha Alechina read an earlier version of this paper and made many useful com-
ments. This research is partially supported by a grant from the Defence Evaluation and
Research Agency (DERA Malvern).

References

[1] J. Bates and A. B. Loyall and W. S. Reilly. Broad agents,Proceedings AAAI
spring symposium on integrated intelligent architectures, 1991, (reprinted in
Sigart Bulletin, 2(4), Aug. 1991, pp. 38–40)

[2] C. Campbell, R. Hull, E. Root and L. Jackson. Route planning in CCTT, in Pro-
ceedings of the Fifth Conference on Computer Generated Forces and Behavioural
Representation, Technical Report, Institute for Simulation and Training, pp. 233–
244, 1995.

7Earlier versions of the hide-and-seek agents incorporateda simpleA�-based route planner as a primitive
action, on the assumption that encapsulating the planner would simplify the integration of planning with other
behaviours. In practice, this turned out to be too inflexible.

13

[3] K. Erol, J. Hendler, D. Nau and R. Tsuneto. A Critical Look at Criticsin HTN
Planning, inProceedings of the Thirteenth International Joint Conference on Ar-
tificial Intelligence, IJCAI-95, pp. 1592–1598, 1995.

[4] M. S. Fox.Constraint-directed search: a case study of job-shop scheduling, PhD
thesis, Carnegie Mellon University, 1983.

[5] P. E. Hart, N. J. Nilsson and B. Raphael. A Formal basis for the heuristic deter-
mination of minimum cost paths,IEEE Trans. Syst. Sci. Cybern.SSC-4(2), pp.
100–107, 1968.

[6] C. Karr, M. Craft and J. Cisneros. Dynamic obstacle avoidance for Computer
Generated Forces, inProceedings of the Fifth Conference on Computer Gener-
ated Forces and Behavioural Representation, Technical Report, Institute for Sim-
ulation and Training, pp. 245–254, 1995.

[7] C. Karr and S. Rajput. Unit route planning, inProceedings of the Fifth Confer-
ence on Computer Generated Forces and Behavioural Representation, Technical
Report, Institute for Simulation and Training, pp. 295–304, 1995.

[8] H. Kautz and B. Selman. Pushing the Envelope: Planning, Propositional Logic,
and Stochastic Search, inProceedings of the Thirteenth National Conference on
Artificial Intelligence, AAAI-96, AAAI Press/MIT Press, pp. 1194–1201, 1995.

[9] B. Logan. Route planning with ordered constraints, inProceedings of the 16th
Workshop of the UK Planning and Scheduling Special Interest Group,17-18 De-
cember 1997, University of Durham, UK, 1997, (to appear).

[10] M. Longtin and D. Megherbi. Concealed routes in ModSAF, inProceedings of the
Fifth Conference on Computer Generated Forces and Behavioural Representa-
tion, Technical Report, Institute for Simulation and Training, pp. 305–314, 1995.

[11] J. Pearl.A�� – An algorithm using search effort estimates,IEEE Transactions on
Pattern Analysis and Machine Intelligence, Vol 4, No. 4, pp. 392–399, 1982.

[12] J. Pearl.Heuristics: intelligent search strategies for computer problem solving,
Addison-Wesley, 1984.

[13] A. Sloman, and R. Poli.SIM AGENT: A toolkit for exploring agent designs, inIn-
telligent Agents II: Agent Theories Architectures and Languages, M. Wooldridge
et al (Eds.), Springer-Verlag, pp. 392–407, 1996.

[14] A. Sloman. What sort of control system is able to have a personality?, inCreating
Personalities for Synthetic Actors: Towards Autonomous Personality Agents, R.
Trappl and P. Petta (Eds.), Springer-Verlag (Lecture notes in AI), pp. 166–208,
1997.

[15] A. Stenz. Optimal and efficient path planning for partially known environments,
in Proceedings of the IEEE International Conference on Robotics and Automa-
tion, May 1994.

[16] A. Tate, B. Drabble and J. Dalton. Reasoning with Constraints within O-Plan2, in
Proceedings of ARPI Workshop, Tucson Arizona, Morgan Kaufmann, 1994.

14

