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Abstract

The autonomy of a system can be defined as its capability to recover from unforeseen
difficulties without any user intervention. This thesis proposal addresses a small part of
this problem, namely the detection of anomalies within a system’s own operation by the
system itself. It is a response to a challenge presented by immune systems which can
distinguish between “self” and “nonself”, i.e. they can recognise a “foreign” pattern (due
to a virus or bacterium) as different from those associated with the organism itself, even
if the pattern was not previously encountered. The aim is to apply this requirement to
an artificial system, where “nonself” may be any form of deliberate intrusion or random
anomalous behaviour due to a fault.

When designing reflective architectures or self-diagnostic systems, it is simpler to rely
on a single coordination mechanism to make the system work as intended. However, such
a coordination mechanism cannot be inspected or repaired by the system itself, which
means that there is a gap in its reflective coverage.

To try to overcome this limitation, this thesis proposal suggests a conceptual frame-
work based on a network of agents where each agent monitors the whole network from a
unique and independent perspective and where the perspectives are not globally “man-
aged”. Each agent monitors the fault-detection capability and control algorithms of other
agents (a process called meta-observation). In this way, the agents can collectively achieve
reflective coverage of failures.

Keywords: anomaly, meta-level closure, immune system, meta-observation, perspectives,
reflection.

1 Introduction

This study is a response to a challenge presented by the emerging area of artificial immune
systems (AIS). The goal of AIS is to detect computer viruses or other forms of intrusion
which do not necessarily follow a known pattern (in contrast with typical virus scanning
software). In other words, such systems are looking for anomalies which may be defined as
any deviation from a “normal” pattern of activity. In the language of immunology, the system
must distinguish between “self” and “nonself”. For details, see e.g. Forrest et.al. [10].



It is the aim of this study to apply this requirement to autonomous agent architectures in
order to make the agent less vulnerable in a hostile environment, i.e. the autonomous agent
should distinguish between self and nonself. The virus detection problem is only one possible
application domain.

1.1 Macro- and Micro-level

The requirement for self/nonself distinction is expressed on the “macro-level”, i.e. it applies to
the whole system viewed externally, without regard to its internal structure. This particular
form of specifying the requirement is important because it draws attention to problems which
would otherwise be ignored (see later). However, to make it useful for engineering design we
must also ask the question: what internal micro-structure can be an underlying mechanism
for the required description on the macro-level?

The term “agent” can be used on both the macro- and micro-levels. First, we are looking
for an architecture for an autonomous agent which is defined on the macro-level and should
distinguish between self and nonself. Secondly, there are entities on the micro-level of this
architecture which may be called non-autonomous agents (because they are parts of a whole).
As a convention, I will use the term “agent” for the micro-level entities (in the sense of
participants in a “society” [25] while the macro-level system will be called the autonomous
system.

1.2 Relationship to Cognitive Architectures

The macro-level requirement for self/nonself distinction should not be confused with human-
like self-reflection as the latter is constrained by issues such as limited capacity and the
complex, psychological understanding of “self”, neither of which is relevant to the problem.
Use of the term “self” in immune systems relates only to the identity of subject and object
(i.e. the entity that is distinguishing/protecting etc. is the same as that being distinguished
from other things and protected).

In spite of this, some methods for modelling human reflection (e.g. Sloman’s work on
meta-management [29]) may still be useful as design techniques if we ignore the specifically
human-like constraints.

1.3 Meta-levels and “Aboutness”

In this report, the term “reflection” is used in the very broad sense used in Maes [20],
namely a computational system is reflective if it is “about” parts of itself. First, this means
that a computation is divided into a meta-level which does the reflection and an object level
(sometimes called the “base” level) which does the actual work. There are many ways in which
something can be a meta-level. For example, an agent architecture can have a meta-level
that can reason about the agent’s internal states and actions. This may or may not include
control or modification of these states. Such a meta-level may be embedded in a reflective
rulebase, where some meta-rules are “about” the interpretation of rules, e.g. choosing which
rules to apply and recording their success and failure rate (EURISKO [19]). Secondly, the
reflection must be causally connected in that any reasoning or report must be accurate and
any modification must be effective in the intended way.

1.3.1 Implementation meta-levels

Meta-levels are not necessarily reflective in the above sense. The simplest example is a
program being “about” its data, e.g. if it contains error-checking code of the form: “if the



data is not in form X then there is probably an error”. An operating system is also a meta-
level because it is “about” the running of programs. Other examples include interpreters for
languages and rulebases.

These “implementation meta-levels” are excluded from this study because the focus of
the research is on agent architectures. Since the architecture must be simulated initially,
there will be additional unintended meta-levels (incorporating the simulation mechanism)
which do not belong to the object of study. I therefore use the term “meta-level” to mean
a component that is embedded within the architecture of an agent as an explicit reflective
mechanism, and where the kind of reflection is “conceptual” (as in e.g. Ferber [9]). However,
if an explicit meta-level has a similar function to a rule interpreter or scheduler, (e.g. resource
management), it will be considered as part of the architecture. We can summarise by listing
three types of meta-level:

1. Implementation, e.g. rule interpreter;
2. Control: e.g. conflict resolution rules;
3. Declarative: e.g. self-diagnostic rules.

For the purposes of this study, the difference between type (1) and the others is that (1)
is #mplicit and hidden (like the foundations of a house) while (2) and (3) are ezplicit. A
particular meta-level can belong to both types (2) and (3), e.g. a meta-reasoning mechanism
can also have “modify” access in order to correct specific problems.

1.4 The Autonomy Problem

Most existing literature on reflective architectures is concerned with language interpreters and
other implementation meta-levels, e.g. a Lisp interpreter written in Lisp. Examples include
3Lisp [32] and object oriented reflection [31]. I will call these systems reflective program-
ming architectures. Their purpose is typically to make the internal operation of components
inspectable and modifiable by a user, to enable more flexibility in implementation, experi-
mentation with language extensions etc.

In contrast, I am addressing the problem of autonomy, which primarily requires that the
agent has these types of access to its own operation for the purpose of survival and (if possible
self-repair) in a hostile environment. In other words, the agent must succeed without user
intervention and this makes a significant difference to the kind of architecture required.

This is not to say that there is never any overlap between autonomy and reflective pro-
gramming requirements. For example, it may sometimes be better for an agent to wait
for user intervention instead of attempting to recover autonomously (deciding when to do
this is the theme of a new research area called “adjustable autonomy”). Furthermore, some
problems in reflective programming may be relevant to autonomous agent architectures (e.g.
removing infinite regress).

It should also be noted that we only ignore implementation meta-levels during conceptual
exploration of designs. If the architecture is to work in the real world, then these meta-levels
must also be considered as part of its embodiment (i.e. hardware and any control software
in which the agent software is embedded).

1.5 Reflection as Self-Observation

This research focuses on reflection in the context of anomaly detection, i.e. the autonomous
system must detect any attack or intrusion involving critical parts of its own operation. An
anomaly is defined as any significant discrepancy between an expected state and an actual



state. To detect such irregularities, the system must have an expectancy about its next state
and sensors to observe its actual state. Ideally, it should observe its own operation in the
same way that it observes processes in the outside world. This means that the observing
meta-level should be a concurrent thread which monitors the object level.

Examples of reflection as self-monitoring in a hostile environment include immunity-based
approaches [3] and model-based diagnosis systems [27]. Work on more general execution
monitoring and anomaly-detection has been done by De Giacomo et. al. [6], using a logic-
based approach.

1.6 Sufficient Reflective Coverage

We can now define the problem which must be overcome: In existing self-monitoring archi-
tectures, certain kinds of anomaly can escape detection by the system itself, namely those
which affect its anomaly-detection mechanisms. In other words, there is always a meta-level
that is not simultaneously an object level. We call this the reflective blindness problem.

To address the deficit, I propose an architecture where the reflection is distributed. A
distributed reflective architecture is a multi-agent system where each agent acts like a meta-
level for the others. Thus everything that is a meta-level is simultaneously an object-level.
This concept is an interpretation of Maturana and Varela’s organizational closure of a network
([21], [34]) which is central to their theory of living systems. (I will subsequently use the term
“meta-level closure”). The concept is also the foundation of “Second Order Cybernetics” (see
e.g. von Foerster [35]). From the AI point of view, Minsky [24] has also discussed this issue
in detail.

It should be noted that multi-agent distributed reflection may exist without meta-level
closure. The aim is to investigate whether meta-level closure can satisfy the requirements
more adequately than a non-closed architecture. Thus the effectiveness of different multi-
agent architectures will be compared.

To explain what “effectiveness” means, the problem to be solved by a candidate architec-
ture should now be stated more precisely. I am interpreting the requirement for self/nonself
distinction as “sufficient” reflective coverage. This means that anomalies should be detected
in any critical system operation. We can define a “critical” operation as one which is nec-
essary to ensure that minimal user requirements are not violated (e.g. data inregrity). This
is not the same as “complete” coverage which is clearly unattainable since it would require
sensors that can detect all possible events (something which cannot be defined for the real
world). Instead, self-monitoring resources should be focussed on the system’s most critical
management components.

A reasonable formulation of the the distributed reflection problem can now be given as
follows: To what extent can an architecture detect anomalies in its own critical operations,
given the following assumptions:

1. a physical event or a deliberate attack can only cause damage to one agent; i.e. more
than one agent cannot fail simultaneously as a result of the one event, but more than
one agent can fail sequentially as a result of separate events (e.g. hacker interference
with one agent followed by a random hardware fault of another agent).

2. the time between successive failures or attacks is sufficient to allow detection and re-
covery.

3. the sensors can detect the type of change caused by the intrusion or failure.

These assumptions are reasonable because they also apply to biological systems. E.g. an
immune system does not protect us from radiation or explosions. It does have the ability



to distinguish between self and nonself but with a certain response time and to a sufficient
degree of accuracy; it does not provide invulnerability. This means that the degree of solving
the problem should be measured in terms of probabilities: i.e. what is the probability of
detecting and recovering from a fault, given the above assumptions?

Furthermore, the degree of discrimination between a critical fault (e.g. in the controlling
software) and a non-critical fault (e.g. in some rarely used utility software) is also important.
In other words, the problem is solved well if the probability of detecting a fault in a critical
management component is higher than that of detecting unimportant faults.

2 Limits of Existing Approaches

To show in detail the nature of the reflective blindness problem, and why existing methods
do not solve it, I use artificial immune systems (AIS) as an example. A survey of immune-
system inspired models can be found in [3]. Typically a database of “normal” patterns is
used to define “self”, which is collected in advance by running the system in isolation (in a
“protected” environment). This database contains characteristic patterns produced by the
execution of all legitimate programs and may be called the “signature” of the system being
protected. Clearly, this has a statistical nature since there will be many isolated or rare
patterns (e.g. a compiler with a non-typical set of directives or the processing of an unusual
set of commands). There are many possible forms of recording such activity, e.g. file access
patterns, system call sequences. In the “real” environment, the immune system continually
compares actual patterns produced by currently active programs with the system’s signature.
If there is any significant deviation, a “nonself” has been detected. For details, including the
definition of “significant”, see [4].

To distinguish between self and nonself, an algorithm must ensure that the comparison
between sets of patterns is carried out in the intended way. We call this algorithm the
meta-level R. To my knowledge, existing AIS always have such a meta-algorithm. Even if
the architecture is based on distributed pattern detectors e.g. [7]), a meta-algorithm must
“manage” the detectors and ensure that recognition of nonself occurs as intended.

But if the underlying algorithm R of the anomaly-detection process behaves anomalously
as a result of an intrusion, there is nothing that can sense this state in current AIS systems.

Simply including the pattern produced by the meta-algorithm R within the signature
does not solve the problem, because this assumes that R will always be intact. If R becomes
compromised then the whole immune system becomes unreliable. Indeed, R could be replaced
by a “disinformation” algorithm which raises false alarms and covers up real anomalies, while
a user may have the impression that the system works normally.

Clearly we cannot just add another meta-level to monitor R since this would lead to an
infinite regress. It follows that there is always a significant part of the system that remains
vulnerable to attack. This weakness has been called the “blind spot” or “reflective residue”
by some in the historical cybernetics community e.g. Kaehr [14], although this has mostly
been in a philosophical context. The notion of “distributed reflective architecture” is inspired
by their work.

Before defining such an architecture in detail, it is first necessary to consider existing
approaches which may address the same issues from different angles and show why they do
not solve the problem.

2.1 Virtual Infinite Towers

Much work has been done in the elimination of infinite regress in the area of reflective
programming, where the meta-levels are of the “implementation” kind. It is important to



ask if they can be applied to a self-monitoring architecture where the meta-levels must detect
anomalies in their object levels.

The most well-known programming architecture for avoiding an infinite regress is 3Lisp
(Smith, [32]). The idea is to provide an environment which behaves as if there were an
infinite tower of implementation meta-levels (in this case language interpreters). A typical
application is the exploration of possible language extensions. If a developer is inspecting
a program at a base level Ry, and it is being interpreted at meta-level R;, it is possible to
modify its interpreter, so that the program behaves differently or makes use of some new
features. In this case a new meta-level R, is “spawned” in order to make the details of R;
available for modification. The user may wish to repeat the process with the interpreter
at level Ry and so on. The term “interpreter” is actually very general and applies to any
program which specifies how its object program is to be executed (e.g. what logical operators
are available and what are their effects).

This means that any meta-level can be inspected on demand, giving the appearance that
the reflective blindness problem is overcome. The most interesting language in this respect
is RbCl (Reflective based Concurrent language) [13], which allows user modification of all
aspects of every meta-level, up to the restrictions imposed by the operating system and
hardware. What is normally a fixed kernel in systems such as 3Lisp is made into a user-
modifiable structure, meaning that the language mechanisms such as memory management
and reflective mechanisms can also be changed.

To apply this to autonomous agent architectures, the user’s privilege of inspection and
modification of meta-levels must be transferred to the agent. For example, the SOAR archi-
tecture may be described as a potential infinite tower of implementation meta-levels (Rosen-
bloom et. al. [28]). The first (or “base”) level contains the initial description of the problem
in terms of a state space and operators for changing from one state to another (e.g. move
right). The first meta-level contains mechanisms which implement the operators (e.g. how to
move right) using a production system and mechanisms for selecting operators (preference).

An “impasse” may occur either in the selection of an operator (e.g. two operators are
equally preferred) or in an operator application (e.g. impossible to determine the state
resulting from “move-right”). Then a subgoal is generated and a search takes places in a
newly generated problem space on the first meta-level (e.g. find an alternative way of moving
right which produces a desirable state).

During the search on the first meta-level, a second impasse can occur which results in
a new subgoal being generated and a search through a problem space on the second meta-
level. If there is not enough knowledge available to generate useful problem spaces, impasses
may occur repeatedly, producing an infinite regress of meta-level activations (in the form of
repeated recursive calls). To prevent this situation, SOAR has a mechanism for detecting
when there is insufficient knowledge available to proceed further, which results in it reverting
to a “default” behaviour.

Thus, the problem of giving an agent self-reflection can apparently be solved provided that
there is some mechanism to prevent an infinite recursion of successive meta-level unfoldings
(i.e. there must be some way of “bottoming out” the infinite regress).

2.1.1 Virtual Infinite Towers are Sequential

These virtual infinite tower systems do not satisfy our requirement because there is always a
“current” meta-level which is not simultaneously an object level. Although any meta-level R;
in the infinite tower can be inspected on demand, another meta-level R;,; must be activated
to do this. But at that point, R; ;1 is not being inspected by anything within the system. It
only has the potential to be inspected. In other words, there is only a sequential role-switching



between meta-level and object level.

While a SOAR type agent is modifying a particular meta-level (e.g. it is searching for a
new implementation of an operator on the base level), the agent itself will not be able to detect
any interference with the meta-level above it, i.e. the level that is doing the modification.
Therefore we need a concurrent model, where meta- and object levels simultaneously coexist.

I do not know of any reflective programming systems which provide the required kind of
concurrency. Where concurrency is present, it tends to be entirely within a single meta-level,
An example is [22] where the object which comprises a meta-level is not a single thread but
is instead a “group” of processes. At each level, the concurrency pattern in this group is
preserved (i.e. each member of the meta-level group R;;1 is an implementation meta-level
for each member of R;).

However, the desired form of concurrency would probably have limited usefulness for typ-
ical reflective programming applications and may only introduce difficulty, e.g. modification
access to an object level becomes a non-trivial problem (see later).

2.2 Self-Monitoring Meta-levels

An architecture which may allow a meta-level to run concurrently with its object level is
Kornman’s SADE [17]. This is not a virtual infinite tower but instead incorporates a meta-
level (of the “declarative” type) for monitoring patterns of execution of an object level (in
this case rule firing).

SADE is divided into three levels: a base level (M0), a meta-level (M1) and a meta-meta-
level (M2). The task of M1 is to detect possible loops in M0 and to correct them. M1 detects
a loop as a particular pattern of rule firings. It then interrupts M0 and selects a “loop repair
remedy” (e.g. modify the situation that brings it about). However, if M1 is not successful
in repairing M0’s loop, it may go into a loop itself. E.g. it may repeatedly select the same
unsuccessful remedy. But the possible ways in which looping can occur in M1 are known.
Therefore the second meta-level M2 can then be designed so that it can always detect and
repair M1’s loops without going into a loop itself. Thus an infinite regress of monitoring
levels is avoided.

This is much closer to the sort of architecture we are looking for, since it may detect
intrusions or deliberate damage. Its two limitations are as follows: First, it only works for
detection of known failure patterns; it cannot be used to detect anomalies because an anomaly
occurs when something is not a known pattern.

Secondly, although the different levels can run concurrently, the architecture is “open” in
that it not provide for the monitoring of M2.

2.3 Organizational Closure Model

A model which incorporates the required relationship between meta- and object levels is that
of Kaehr and Mahler [15]. They attempt to formalise the autopoiesis concept of organizational
closure using a somewhat obscure notation invented by the late German philosopher Gotthard
Gunther [11], [12]. The idea is to provide a framework for multiple parallel descriptions of
the world, all of which are true in their own way, but which would result in contradictions
if they were fused within a single description. (Although Giinther’s notation is sometimes
called a “logic”, it cannot be understood as a logic in the Al sense of fuzzy or modal logics).

As regards computational interpretation, a key idea is that something which is an opera-
tor may also simultaneously be an operand, i.e. a process P2 operates on an independently
running process P1 which is simultaneously operating on another process P0, forming a kind
of reflective tower, with the difference that each meta-level is a concurrent thread. “Operat-
ing” may include code modification (not just passive reflection). This would correspond to



an interpretation of Kornman’s architecture where the meta-levels run concurrently. Orga-
nizational closure is then implemented by making the code for process P2 the same physical
thing as the code for P0.

As it stands, Kaehr and Mahler’s model does not fit into the framework of autonomous
agents. It is merely a “chaotic” model of computation written in ML. However, their overall
idea is one of the main inspirations for the distributed reflection concept described here.

The closest practical concept to that of distributed reflection is that of a “society” of
agents, where agents simultaneously observe each other (although they do not modify each
other’s code). We therefore look at current approaches to distributed control and diagnosis.

2.4 Decentralised Systems

Decentralising the control of an agent is normally not done for the purpose of improving
reflective coverage. Advantages of decentralisation mentioned in the literature usually relate
to issues such as agent specialisation and teamwork (e.g. [18]) or resource management and
load balancing (e.g. [23]), although they also mention fault-tolerance in a more general sense.

The most interesting approach is called “social diagnosis” (Kaminka and Tambe [16])
based on agent tracking (Tambe and Rosenbloom [33]). The idea is that agents observe other
agents’ actions and infer their beliefs to compensate for deficiencies in their own sensors. E.g.
if an agent is observed to swerve, it can be inferred that something exists which it wishes
to avoid, such as a hole in the road. In particular, an agent may discover a fault in its own
operation by observing the reaction of other agents.

However, for our problem, such models are unnecessarily restricted by the “society”
metaphor (although it is useful up to a point). In a society, the internal operation of agents
are not included in the observed world. It follows that such a multi-agent network can only
be a distributed reflective network in a very weak sense (only insofar as an agent A; can de-
tect faults in its own external behaviour by observing As’s external reaction, hence the term
“social diagnosis”). There is however the possibility of introducing multiple perspectives into
such a model (i.e. different representations of the world), where one perspective may include
features that are unknown in others.

Pell et. al. [27] address the issue of multi-perspective fault diagnosis of internal compo-
nents of an autonomous spacecraft, but they include only the monitoring of hardware in their
present model.

The following sections suggest a method for overcoming limitations of these models, while
making use of some of their features.

3 Distributed Reflective Architectures

The aim is to use distributed reflection to provide coverage of those components which are
the most critical to the operation of the whole system, thus compensating for the most seri-
ous reflective residues. In order to explore designs for distributed reflection, we require some
working definitions.

We will say that a current description of an entity X is a combination of two things: the
expected state of X according to a model of X’s behaviour, along with X’s actual state as
shown by sensors. (We shorten this to “description” if there is no ambiguity). If X is the
agent making the description, the description of X becomes a current self-description.

In a distributed reflective architecture, we can say that the self-description of a network
is distributed over multiple “perspectives”. To illustrate this, we consider two agents A;
and A which should be each other’s meta-level. Then the network self-description from the



perspective of A; is Ap’s description (model predictions and sensor values) of Ay and vice
versa. In other words A; has a model of Ay and sensor access to patterns caused by As’s
actual activity, thus enabling it to detect anomalies in its behaviour.

3.1 A Generic Agent Architecture: RML

We now define a “node” of the distributed network. This is a generic agent architecture
and is inspired by the concept of “meta-management” (Beaudoin, [2], Sloman [29] and the
anticipatory agent architecture of Ekdahl et. al. [8]. The agent may optimise some feature
of the world or it may simply be homeostatic (ensuring that the world is maintained in an
acceptable state). The architecture may be divided into four layers:

R: Reflective mechanism (meta-level)

M: Model-driven reasoning mechanism (in particular anticipation)

L: Low-level processing (e.g. low-level perception) and “instinctive” reactions.
S, E: Sensors and effectors.

L may be regarded as a reactive layer. I use the term “reactive” here to mean the kind
of processing which is sensor-driven and where the result is immediately available (i.e. no
search required). The result may be an external action or an update to memory. For example,
evaluating the quality of something can be reactive (E.g. a sensory impression may produce
a fearful anticipation but no external reaction).

M may be regarded as “deliberative” in that it makes predictions based on an internal
model. The model may be a set of inference rules, possibly with certainty values (e.g. if a
dark cloud appears then it will probably lead to rain). We will use the simplest form of this
architecture where M is used for anticipation only, and not for planning or decision-making.
This means that all actions are either determined within the reactive layer as “routine”
actions or they are “emergency” actions taken by R in the event of an anomaly associated
with danger (alarms - see Sloman [30]).

The reflective layer R compares sensor values with model-predicted states and takes action
in the event of an anomaly (e.g. focus attention on the problem to get more information, and
re-direct the operation of M and L and S/E).

Interaction between the three layers is shown very schematically in figure 1 (a). Sensors
and effectors are omitted for space reasons. The large arrow labelled “1” indicates the relation
“meta-level for ..”, the small arrow labelled “2” indicates model-driven effects on the reactive
level. E.g. the anticipation of being late causes an agent to move faster instinctively. The
small arrow labelled “3” indicates “data-driven” processing when the actual current state is
used to calculate the next state, since it may involve small refinements to the predicted current
state (which are usually non-anomalous). If we suppress this arrow, we get “simulation” (i.e.
we use the predicted next state as if it were the actual state).

3.1.1 TImplementation Levels

There are actually three “micro-levels” within M. Level 1 is the implementation of the
reasoning mechanism, e.g. a rule interpreter. Level 2 is the model itself, which is interpreted
by the level 1 mechanism and level 3 is the actual prediction made by the model at any given
instant. Thus if the model is “run” without taking account of sensors we have a sequence of
predicted states. In accordance with 1.3 we ignore level 1 at this stage. 1 assume that it is
reasonable do this for exploring conceptual designs (for an argument in support of this e.g.
Sloman [30]). This means that M can be viewed as being the model instead of something



that “applies” it. The agent’s current description of an object is then a combination of the
model-predicted next state and the actual sensor observations on the object.

3.1.2 Single-Agent Reflection

We can define the degree of single-agent reflection by considering what to include in its
current description. This reflection is minimal if the agent’s description includes the external
world only. Then R simply compares model predictions about the world with sensor values.
Reflection may take the form of “diagnosing” where the model of the world has failed. But
since the agent has no explicit model of the “correct” behaviour of M, it cannot detect
anomalies in its own reasoning mechanism, but only in the world (e.g. many dark clouds
are seen which do not lead to rain). Note that an anomaly in the world will mean that any
“repair” action will operate in reverse (i.e. the model should normally be changed and not
the world), while normally a model of the “correct” behaviour of an internal component is
the way we want it to behave, and any deviation means that it should be repaired and not
the model.

Single-agent reflection is non-minimal if its description of the world also includes some
aspects of M, L or S/E. In other words, the world for the agent includes not only the
external world but also its own operation, including the status of its sensors and effectors.
Then R can detect an anomaly in the operation of the other components by comparing
their actual performance with their predicted behaviour. For example, it is possible that the
knowledge encoded in the model was correct but the inference process was faulty; e.g. there
may be an additional rule stating that dark clouds seen from a distance often do not lead to
rain, but because of an unauthorised modification of a condition, this rule never fires (there
may also be a software fault in the interpreter but we exclude this problem since it belongs
to level 1). Similarly, if the sensors are faulty, a cloud may be perceived as dark when it is
not. Ways of introducing non-minimal reflection will be introduced later.

3.2 Exploring Design Space

We now specify how to get from a single node to the desired multi-agent architecture as a
series of incremental transformations. The “broad and shallow” approach is used to explore
possible overall designs [29]. The starting point is the generic agent architecture which we
call Dy (for first design) followed by D1, Do, .. etc. The sequence may be called a trajectory
in design space. From D; onwards it becomes a multi-agent system where each participating
agent is a variant of Dj.

3.2.1 Minimal Solution: Mutually Observing Agents

The first stage D; is composed of two agents A; and Ay and there is a task T' to be achieved
by A,. For example, T' may be file management. Then, if the file manager behaves anoma-
lously (e.g. it may allow deletion of a file by someone other than the owner) the unusual
activity can be detected by Ai. A is then a meta-level for Ay. But additionally A, should
independently monitor A1, since A; itself may behave anomalously. D; may be specified as
follows:

A1 (Meta-agent): checks that the actual activity of As does not deviate from its normal
activity.

Az (Object-agent): carries out 7' and checks that the actual activity of the anomaly-
detection program A; does not deviate from its normal pattern.
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If we look closely, this architecture has the same form as Dy with the addition of the sec-
ond function of Ay in bold face, which enables the object level to become simultaneously
a meta-meta-level, i.e it “closes” the network. In Dy, this network effectively “collapses”
to a single agent with meta-level A; and object level Az (where A; corresponds to R, As
corresponds to M/L/S/E and R has a non-minimal reflective capability as defined above).
In D;, however, the terms “meta” and “object” are rough guidelines only and do not have
the crisp definitions they have in Dy. Note that D; requires that both agents monitor each
other’s anomaly-checking activity. We will show later how this can be implemented.

3.2.2 Requirements-based Architecture

One serious problem with Dy is that any anomalous pattern will be treated as hostile, result-
ing in “allergic” reactions if new software is introduced (using the immune system metaphor).
The next stage (Ds) looks as follows:

A1 (meta-agent): checks if the operation carried out by Ag satisfies its requirements (i.e.
does it continue to fulfil task T satisfactorily and does it check for anomalies satisfactorily?

Ao (object-agent): carries out T and checks if the anomaly-detection program A,
satisfies its requirements.

To be rejected as nonself, a pattern anomaly must also be associated with an undesirable or
dangerous situation, which is defined here as a sudden non-fulfilment of the critical require-
ments. Determining whether requirements are met or not requires a utility function which
will be defined later when we introduce a specific scenario.

(a) | DO (b)| D3: A1 D3: A2
R
1
1 R1 R2
1 1
1
M
% ¢3 M1 M2
1 E E
L1 L2

Figure 1: Transition from hierarchical to distributed reflection

3.2.3 Load-Balancing Architecture
If the load is balanced between the two agents, Do is transformed into the following specifi-

cation (Ds3):

A1: Meta/object-agent: carries out 77 and checks if the operation carried out by As sat-
isfies its requirements (i.e. does it continue to fulfil task T3 satisfactorily and does it check
for anomalies satisfactorily?)
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Ag: Meta/object-agent: carries out Ty and checks if if the operation carried out by A;
satisfies its requirements (i.e. does it continue to fulfil task 7} satisfactorily and does it check
for anomalies satisfactorily?)

Now the architecture is symmetrical and T is subdivided into subtasks 77 and T5. A schematic
diagram of the transition between an Dy type architecture and an D,, architecture (n > 0) is
shown in figure 1. (a) shows the generic agent architecture; (b) shows a symmetrical version
of distributed reflection similar to D3. Each agent in Dj is a version of Dy. An agent’s meta-
level R now has the function of monitoring the other agent in addition to its monitoring of
its own operation and of the external world. (Interfaces to the external world are not shown
here for space reasons). The design space we have explored is summarised in figure 2, which
also shows the design trajectory from Dy to D3. Another design (Dy) is shown which would
correspond to a load-balanced architecture with pattern-based anomaly-detection only.

Note that D, (n > 0) satisfies our definition of meta-level closure, but it becomes open
if we remove one of the thick arrows between A; and A; (there is now a meta-level which is
not an object level).

Requirements-  Requirements-
based, | based,
asymmetrical load-balanced

Pattern-based,
asymmetrical

Pattern-based,
load-balanced

D1 D4

Figure 2: A simple design space

4 An Example Scenario

The aim is to approximate the design D3 (in the upper right quadrant of figure 2). To define
more precisely how agents can be each other’s meta-level, we specify a scenario to simulate
the kind of interaction we require. We do not completely eliminate global meta-levels at this
stage, since we are relying on a simulator to ensure that the agents work as intended. But
we use it as “scaffolding” to build the desired kind of system on the virtual level.

We use a modification of the “nursemaid” scenario [36] originally designed to simulate
motivation and emotional states in a nursemaid which is taking care of a number of babies.
The reason for selecting this scenario is that it is suitable for exploration of architectures
where agents should represent the “values” of users; i.e. the agents’ autonomy should be
centred around those things that the user is most concerned about. One can say that the
agents should be “concerned” on behalf of users. I will return to this later when considering
design constraints for reflective coverage.
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In contrast to the original minder scenario, we are simulating a collective “self-minder”,
where the babies also participate (albeit in an unusual way) in the “minding” process (there
is another collective minder architecture which uses a different concept [5]). We call our
scenario “minder3”. We start with two agents only. Each agent is a specialisation of the
above-defined generic architecture Dy (i.e. A; becomes the nursemaid and As becomes the
baby). Their tasks (defined below) are homeostatic and do not involve any scheduling or
planning at present.

We intend to simulate a distributed control system. Therefore the agents are components
of a larger body which is moved around the virtual world as a single entity. For convenience,
we call this the “vehicle” (although applications are not restricted to mobile vehicles or spa-
tial worlds - see below). The agent software is embedded into this (simulated) hardware. For
our purposes, the relevant hardware components are the sensors and effectors. The internal
components of the vehicle (hardware and software) are called the “network”. This includes
the software of both agents, the separate processors on which they run and internal intercon-
nections between them. (Alternatively we can think of the nursemaid always accompanying
the baby).

It is assumed that there is a human user whom the agents are acting on behalf of (i.e. the
tasks represent the user’s goals) and that any detection of an anomaly is accompanied by a
report to the user.

4.1 External World

The homeostatic aspect of each agent is simulated using a 2D virtual world which contains
the following:

e A static energy supply (similar to the battery charging point of the original minder
scenario),

e 3 ditch, which the vehicle might fall into
e various treasure stores near the ditch which the baby finds interesting.

The baby’s task is to find as much treasure as possible in order to maintain its level of
interest, which falls rapidly in the absence of anything new. The baby seeks out the treasure
stores and collects treasure from them (although in practice this only means that it remains
stationary until its interest level falls off). The nursemaid’s task is to maintain the energy
level and safety of the whole vehicle. Normally the baby has control of the vehicle but it may
be taken over by the nursemaid at any time.

Depending on the amount of redundancy built into the design, an agent can take over
another’s task in a failure situation. However, the ability to do this is limited since the
nursemaid is intended as a “specialist” in energy and safety while the baby is a “specialist”
in treasure.

In addition to these primary tasks, the agents should detect anomalies in the external
world and in each other’s activity. In an enhanced version of this scenario, the treasure stores
could appear spontaneously and decay after a certain time period. A snapshot of the external
world is shown in figure 3.

4.1.1 Enemies

Enemies are agents which have destructive effects on the baby or nursemaid. The following
are different forms of destructive interference:
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Figure 3: The modified nursemaid scenario.

1. Direct damage: damage to any of an agent’s software components (controlling its
sensing, acting, decision-making, perception etc.) by deleting, corrupting or otherwise
modifying its code (e.g. by inserting a virus).

2. Weakness exploitation: present the agent with a situation that its software cannot
cope with; i.e. give it an “unsolvable” problem that causes it to behave stupidly, crash
or go into a loop. E.g. an enemy moves the treasure further away as soon as the agent
gets near it.

3. Resource blocking: prevent the agent from achieving its goal by stealing, blocking
or diverting its resources. E.g. continually distract the nursemaid with anomalies
which are apparently associated with “dangerous” states and must be investigated
immediately.

If the baby’s control system is interfered with, the nursemaid should detect this and try to
repair it.

An “enemy” can also be a random event in the environment: e.g. the ground around the
ditch occasionally becomes slippery.

4.2 Meta-level Closure

In accordance with D3, the nursemaid/baby relationship must be non-hierarchical and there-
fore we give the baby the ability to independently detect anomalies in the control software
of the nursemaid. The baby is therefore “gifted” (actually “unevenly gifted” as we shall see
later). If we refer back to the immune system metaphor, an enemy will leave an anomalous
pattern which is collectively recognised as “nonself”. In this scenario, “collective” means that
either the nursemaid or baby does the recognition (or both simultaneously).

4.2.1 Observing an observation process

One of the most important requirements of D3 is that both agents must detect anomalies in
their respective anomaly-detection software. This may be called “observation of observation”
or “meta-observation”. Furthermore, the observation on both sides must be independent, in
the sense that agents do not use the same method of observation. The preliminary solution
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adopted here is in two parts:

(1) monitor patterns associated with the anomaly-checking activity using signature tech-
niques similar to that already outlined for immune-system models.

(2) couple this with quality of the agent’s actions in the “external” world according to the
utility function.

Thus a change in pattern does not necessarily indicate problems unless it is coupled with
a change in external behaviour which looks “worrying”. E.g. if the nursemaid’s control soft-
ware has been modified and produces an anomalous trace, it may still continue to maintain
the energy level. It would look problematic only if the nursemaid ceased to act at all or acted
in a destructive manner.

In the remainder of this report, I will use the following convention: sensors which monitor
the state of the virtual world will be called “external”, while those concerned with program
signature patterns (dynamic or static) associated with the control system of an agent are
called “internal”. Each agent has a unique description of both the external world and the
internal state of the whole network itself.

Meta-observation requires an internal world and internal sensors. An architecture of type
D3 with those components is shown schematically in figure 4. The external world is labelled
“EW?”. The internal world (“IW”) is divided into nursemaid (N) and baby (B) and includes all
their hardware and software. Their different components Sg (external sensors), Er (external
effectors), Sy (internal sensors) and E; (internal effectors, e.g. error-recovery) are assumed
to be low-level software in which the high-level agent software C' (for control) is embedded.
The IW is actually embedded within the vehicle which is in turn embedded in the EW. The

EW °

W
sl s, N Se
l i

Ec=1 Cc r=E Ec=<1 Cc =
S, S,

Figure 4: Internal and external interfaces
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meanings of the term “sensor” or “effector” include not only the boxes in the diagram but
also their input and output connections shown by arrows. Incoming arrows to a control
system are sensor values while outgoing arrows are effector activations. The arrows to/from
the control system typically contain more abstract data while those to/from the environment
will have a more physical nature but we need not be concerned with those issues. For space
reasons, only the set of connections to A,’s internal sensors are shown.

4.2.2 Concurrency

If agents are to act as each other’s meta-levels they should monitor and evaluate each other
independently and not according to any centrally coordinated method. The observing agent
and the observed agent should run concurrently. This is similar to observation in nature,
e.g. measuring room temperature does not involve “interrupting” the thing being measured.
Nor does it involve waiting for it to reach a certain state (although one might wait for the
measuring device to stabilise).

4.2.3 Notation

For any agent A;, its world model may be written M (7) and its sensors S(7). Since we are
ignoring implementation (such as a rule interpreter) M (i) is identical to the layer M of the
generic architecture for 4;. In general, we use the following convention: predictions made by
the model about an object X are written M (7, X) which could be read as “M (i) applied to
X”. For example, M (i, W) means “predicted next state of external world”. In contrast M (7)
is the set of rules, declarations or other representation which is the mechanism of prediction.
The subset of those rules that make predictions about X may be labelled M (7). X.

The same applies to sensors: if A; uses a sensor S to observe some feature of an object X,
(e.g. its temperature) then the values produced by the sensor is indicated by S(i, X), while
the operation of the sensor is written S(i). The former is equivalent to asking “what’s the
temperature?” while the latter means “how does the thermometer work”? If A; is a generic
agent architecture, its reflective layer R detects discrepancies between M (i, X) and S(i, X).

We also use the following convention: in any mutually observing agent pair, the subscript ¢
indicates the observing agent and the subscript j is used for the observed agent. This increases
clarity later when discussing implementation.

A;’s model and sensor observations of A; may be written as M (i, j) and S(i, j) respectively
and each of these in turn may be further subdivided into internal and external partitions.
The partition M;(7, ) is an expectancy about the internal operation of A; while Mg(¢, j) is
an expectancy about A;’s effects on the environment (e.g. how will it change position). 4;’s
prediction of the internal state of A; is further partitioned into predictions about its different
components. All partitions are summarised in the Tables 1-4 overleaf.
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Table 1: External model partitions:

Partition of Mg(i, W) | object being modelled
MEg(i,7) external actions of A;
MEg(i,U) inanimate objects

Table 2: Internal model of A;:

Partition of M;(i,7) | object being modelled
MI(z' C(4)) control system of A;
My (3, S1(5)) internal sensors of A;
M (i, SE(4)) external sensors of A;
M;(i, E1(5)) internal effectors of A;
M;i(i, Eg(y)) external effectors of A;

Table 3: External sensors:

Partition of Sg (i, W) | object being observed
SE(i,7) external actions of A;
Sp(i,U) inanimate objects

Table 4: Internal observations of A;:

Partition of S;(7,j) | object being observed
SI(i C(7)) control system of A;
S1(7,S1(5)) internal sensors of A;
S1(i,Se(4)) external sensors of A;
S1(i, Er(j)) internal effectors of A;
S1(i, Eg(3)) external effectors of A;

Notes:
(1) C(j) is the control system of A;. This includes the layers R, M and L of A;.

(2) We assume that the only model of inanimate objects (e.g. rain) is external and this
means that Mg(i,U) is identical to M (i,U) and Mg(i, W) is identical to M (i, W) where the
latter includes external effects of agents. (“U” means “uninterested” because these objects
have no motives or interests.)

(3) When sensors are being modelled or observed, the pattern of their operation is being
studied and not their values (see notational distinction above). Otherwise there would be a
problem with S7(7, S7(j)) which corresponds to the sensor used by A; for meta-observation.
If the two agents interact according to D3 and we “evaluate” the Sy(j) component, we get
an apparent infinite regress:

Sf(ia SI(ja SI(Z" Sf(ja )))
However, this need not occur in an implementation. If we apply our definition of inde-

pendence above then there are two concurrent threads monitoring each other: Si(z, Sr(j))
which is part of the execution cycle of A; and S(j, Sr(¢)) which is part of A; (if we imagine
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for simplicity that each agent’s “execution” is a sense-decide-act cycle). A;’s thread does not
wait to evaluate the content of S;(7,...), as this would lead to a deadlock situation. Instead
A; monitors the pattern of operation of Sr(j,...). The result is A;’s specific way of describing
S1(7). Later, I will outline how this can work in practice. For illustration we can imagine a
thermometer T whose operation is monitored using a device D (e.g. by ensuring that there
is mercury in it). But D can only work at a certain temperature, which in turn needs to be
monitored using T.

(4) At this stage I have not explicitly included models and observations about A;’s mod-
els. This would be equivalent to asking: “does the mechanism for predicting the next state
of X operate normally?”. The mechanisms for those models are all included in C(j). It is
not necessary to partition this into different components at present, since they can all have
the same form. Later we will see how the monitoring of R can be treated separately from
that of M and L since R has a higher degree of “importance” (because it is a meta-level).

4.3 Non-minimal Single-Agent Reflection

It is important also to define single agent reflection so that it can be compared with distributed
reflection. Single-agent reflection is non-minimal if the agent can detect anomalies in its own
operation (see 3.3). It requires that the agent has a model of its own components and can
observe them in operation, i.e. M (7,7) and S(4,4) exist and can be compared. They can be
similarly partitioned into M; and Mg, but some of them are redundant (see later).

M;(i,i) is encoded in the same ontology as Mj(i, j) and together they form A;’s model of
the “internal world”. However, M (i, W) is expected to be different because it is modelling
different phenomena, such as the trajectory of an agent in the spatial world. We can say that
an agent is mazimally reflective if M (i,7) and S(4,4) contain all the information in M (i, j)
and S(i,7) except that which would lead to infinite regress (example given later).

4.4 Assumptions and Special Constraints

For the scenario, the following are simplifying assumptions listed in approximate order of
realism.

1. An anomaly in the internal world is assumed to be a failure, but an anomaly in the
external world may be evaluated positively or negatively. E.g. if a ditch has some new inter-
esting features.

2. Only one component can fail or be damaged within a specific time period. E.g. an enemy
cannot attack the nursemaid and baby simultaneously. Components are those elements listed
in the tables 1-4. E.g. an internal sensor is a component, and a control system is a component.

3. Either the nursemaid or the baby has “control” over the vehicle at any one time. In
an emergency, one agent can disable the effectors of the other and take over control, e.g.
the baby is in the danger area of the ditch and is still moving towards it. The problem
of conflict resolution will not be addressed here; we simply assume that the disabled agent
“submits”. Due to the minimum time period between failures, the disabling agent cannot
be damaged while it is taking over control, and there is therefore no reason to “question” its
actions. (However, the kind of scenario that is ultimately desirable is a kind of cooperation
or symbiosis between the two agents, e.g. cooperative repair).

4. The agents do not initiate any repair actions (except when this is trivial). Instead, a
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suspected fault is reported to the user.

5. An enemy can only inflict direct damage on an agent’s components (by deleting, cor-
rupting or otherwise modifying its code), e.g. there is no deception or diversion of resources.

4.4.1 Minimal Scenario: Special Constraints

For the first stage of the implementation the following special constraints apply:

(1) Inanimate objects are static:

There is one ditch and a constant number of treasure objects. They are static and cannot
be moved. They do not grow or decay spontaneously. The baby does not “collect” them
but instead looks at them for several cycles, gets “bored” and proceeds to the next nearest
object. This means that Mg(i,U) is trivial.

(2) All external objects are visible:
The agents do not have a limited field of view; everything in the 2D grid is visible.

(3) Damage to control system only:
There can be no damage to sensors, effectors or internally stored data in the initial version.

(4) Limited External Anomalies:
The only external anomaly that can occur is that the ground around the ditch becomes more
slippery than expected. This is also done by an enemy.

(5) The effect of the ditch is predictable:
If the vehicle falls into the ditch, exactly one part of it will be damaged. In the initial version
this is restricted to the control system C' of the baby or the nursemaid.

The first two constraints are not realistic for even a minimal simulation of a physically situated
agent. However, the problem we are addressing here is independent of these considerations.
Therefore these constraints may still apply in non-minimal versions.

The problem of meta-observing control systems is difficult and will be investigated on its
own initially. However, anomaly-detection in sensors and internal data is fundamental to
the problem of distributed reflection as a whole. Therefore constraint (3) should be lifted in
non-minimal versions.

An enemy is simulated by a random number generator which determines when the baby or
nursemaid should be attacked or when the ground around the ditch should be made slippery.
These are the only dynamic things that happen in the environment. However, in later versions
it is possible to design a third agent to act like an enemy and leave an “intruder trace”.

4.5 Minimal Requirements for each Agent

We are now in a position to state the minimal requirements and the subjective quality of the
world from the perspective of each agent. This is necessary for D3 which is a requirements-
based architecture.

The requirements for the minimal version are the homeostatic maintenance of energy level
and level of interest.
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A summary of each agent’s requirements is in the following tables:

Table 5: Requirements of baby:

‘ Condition ‘ Action
NOT at treasure move to nearest treasure
near ditch move round it
at treasure collect treasure
AND NOT bored
at treasure move to next treasure
AND bored
in ditch do nothing
damage to nursemaid | try to repair

Table 6: Requirements of nursemaid:

‘ Condition ‘ Action ‘
energy level low | move to energy supply
too near ditch move away from ditch

in ditch pull out of ditch
damage to baby | repair
otherwise do nothing

The nursemaid takes over control if the baby leads the vehicle into a ditch, or is danger-
ously close to the ditch. Both these situations can only happen in the event of an anomaly
(the vehicle overshoots the expected position due to slippery ground). Pulling out of the
ditch not only results in damage but also uses more energy. Although the nursemaid knows
what to do in these situations, they are anomalous because they contradict its model of the
environment.

4.5.1 Quality Evaluation

How does an agent A; ensure that the other agent A; satisfies the requirements for its task?
To do this we can introduce the concept of quality of the world from the perspective of an
agent. This is simply the task requirements of A; as “seen” by the observing agent A;. That
is, A; will conclude that A; satisfies the requirements if the minimal quality of the world from
A;’s perspective is not violated (although there may be some details of the task that do not
affect the environment as seen from the observing agent’s perspective).

If we assign the tasks 71 and T mentioned in D3 to the baby (B) and nursemaid (N)
respectively, then N evaluates B’s performance of T; by its perception of “quality” of the
world and conversely for B’s evaluation of N.

While N is observing the way that B controls the vehicle, it concludes that the minimal
requirements for B’s task are violated if one of the following happens:

1. B remains stationary for more than ¢ cycles (where ¢ is much longer than the longest
“observation” period). If this is accompanied by an internal pattern anomaly then N con-

cludes that B’s software has failed. Otherwise it reports a possible fault.

2. B is within the danger zone of the ditch. N takes over control of the vehicle (since it
is a specialist in ditches) and reports a possible fault. If this is accompanied by an internal
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pattern anomaly then N concludes that B’s software has failed.
3. B is in the ditch and is now damaged (because of special constraint (4)).

In any of the situations where N concludes a definite failure, it takes over control of the
vehicle and tries to repair the fault or damage. Taking over control in the event of certain
failure means that it may also attempt to do some of B’s work depending on the amount
of redundancy we want to build into the system. Full redundancy would mean that N has
the potential to do the job of B as well as B itself can and vice versa. The tasks would
then be allocated according to the principle of load-balancing only. However, because we are
assuming that the agents’ software is developed independently according to different perspec-
tives, the agents generally do not have the ability to do each other’s tasks equally well (E.g.
B is motivated by the need to maintain its “interest” level but N is not). However N can
take over the treasure-collecting task if it finds that it cannot repair B (but in the present
implementation, it can repair B - see later).

We now consider the situation from B’s viewpoint. It detects that the minimal require-
ments are violated if one of the following happens:

1. At least u cycles have elapsed since N took over control for the energy supply task
and the energy level still has not been recharged. If the energy level is becoming dangerously
low or there is an internal pattern anomaly then N concludes that B’s software has failed.
Otherwise it just reports a possible failure.

2. N moves away from the energy supply before the vehicle is recharged. If this happens
when the energy level is very low, or it is accompanied by an internal pattern anomaly then
N concludes that B’s software has failed. Otherwise it reports a possible failure.

3. The energy level has dropped to the danger level and N has not yet taken control. B
takes over the task of N in this case and concludes there is a failure.

4. N moves the vehicle towards the ditch. If it moves into the danger zone or there is
also an internal pattern anomaly, B takes over the task of N and reports a failure.

If B detects that N is damaged, it attempts to repair N. During its repair attempt, it is
“cautious” i.e. it stops being interested in treasure, moves into the vicinity of the energy sup-
ply and stays there, replenishing its energy level as soon as it drops below the “high” level.
This is because energy has the highest priority (both agents are dead without it), followed
by safety and interest in that order. (In non-minimal versions, the degree of “caution” may
be a variable parameter - for example, a more “adventurous” baby may still like to explore
the treasure without the nursemaid). If B is successful in its repair of N it goes back to its
normal state.

The occurrence of external anomalies may appear superfluous (why not just make “slip-
pery ground” a known condition?). However, any dynamic change in the external world is
anomalous in the initial scenario simply because the initial world model should be kept sim-
ple. This situation is very similar to that in real-world software where it may be better to
design the system to deal with unforeseen situations rather than attempt to represent every
possible failure in a model.

Moreover, the architecture should be “broad and shallow” and provide slots where future
research can plug in “narrow and deep” components. One of those slots is the pre-programmed
action “move out of ditch” which may be replaced with a search for a contingency plan (find

7
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a way to get out of the ditch). Another slot is the point where an anomaly is detected and
reported; in addition to merely detecting the anomaly, the model of the environment could
be revised using exploration-driven learning.

5 Implementation

I will now describe in detail how the minimal version is to be implemented. This is where
only the control system of an agent can be damaged, and not its sensors and effectors.

5.1 The SIM-AGENT Environment

The SIM-AGENT environment provides generic object classes which may be specialised into
agents or inanimate entities. Each agent class has its own database and rulebase (called a
rulesystem) which is composed of modules known as rulesets (among other things). Agents
and objects are represented graphically in a 2D world. A scheduler “runs” each agent by first
updating the agent’s sensors with the current state of the world, then using a rule interpreter
to run its rulesystem, and finally updating the spatial world according to any external actions
required by the rules. Normally each agent is run once in a single time-slice. during a single
agent run, some of its rulesets may be run several times (ruleset cycles).

5.2 Implementation of an Agent Control System

The architecture of an agent A; is its control system C(z) along with external and internal in-
terfaces as outlined in figure 4. The control system is implemented as a rulesystem. (Sensors
and effectors will be discussed later). Each layer of the generic architecture is implemented
by a partition of the rulesystem (one or more rulesets). The execution of the rulesystem
can be divided into two phases A (initialisation) and B (normal). It is expected that rules
for predicting the next external state will require a sequence of initial snapshots before a
prediction can be made (exploratory implementations have shown this). During initialisation
this history is collected, but otherwise the agents react as normal. They will simply not be
able to detect an external anomaly during the initialisation phase. In each cycle of a phase,
control is passed between the different architectural layers. The sequence of steps in a cycle
looks as follows:

Stage(A) Initialisation: collect an initial history.

L: sense and interpret data;

R: check internal state against predictions;

M: predict next external state if enough information is accumulated;
L: act on environment as necessary;

Stage(B) Normal: next external state is predicted.

L: sense and interpret data;

R: check external and internal state against predictions;
M: predict next external state;

L: act on environment as necessary;

Both phases are effectively a sense-interpret-act cycle L with the addition of anomaly-

detection R and anticipation M. “Emergency” actions initiated by R in the event of an
anomaly are not shown for space reasons. The scheduler runs one cycle per agent. There
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is no concurrency within an agent rulesystem, but there is (coarse-grained) concurrency be-
tween agents which should be adequate for our purposes at present. One can think of each
layer R, M, L as distributed over multiple perspectives and multiple concurrent threads. The
predicted internal state is known in advance (defined later).

5.3 Implementation of Meta-Observation

The control system of an agent is its rulesystem. Meta-observation requires that the control
system be monitored. This can be met using (at least) two mechanisms. The first (to be used
by the nursemaid) is to have a copy of the static pattern (i.e. the code) of the rule system,
as it should be (corresponding to M;(i,C(j))) and regularly compare this with the actual
state of the rulesystem Sy(z,C(j)). Note that in this case the model is “trivial” in that there
are no prediction rules; the predicted next state is just “there” as a static value. Effectively
the model mechanism M;(%) is an implicit rule which says: “the next state will be the same
as the current state”. However, the model will become more complex if we allow authorised
modification of rules (e.g. during learning). A second method (to be used by the gifted baby)
is to monitor the dynamic pattern associated with rule firing (to be defined later).

To determine which rules should be monitored (or whether they all should be), we have
to subdivide the observed rulesystem C(j) into subcomponents:

R(j):
(a) Rg(j): detect external anomalies: Rg(j,7), Rr(4,1), Re(j,U).
(b) Rr(j): detect internal anomalies: Ry(4,7), Rr(j,1)

M(j):
(c) Mg(j): make external predictions: Mg(j,7), Mg(j,i), Mg(4,U).
(d) M;(j): make internal predictions: Mj(j,7), M(4,1).

(e) L(j): all other processing in C(j).

Many of these subcomponents are redundant as we will see later. Some of them are not
really rules but segments of data which have the effect of implicit rules (such as the copy
of the “correct” rulesystem, M;(j) as explained above. According to initial constraints the
contents of an agent’s database cannot be damaged. However, in later versions this should
be taken into account, as it can be damaged by unauthorised modification, causing a non-
existent anomaly to be detected (as the reality would be compared with an incorrect model).
Such a problem can be detected by recording modification patterns of internal data, and
should be simple in the case of something that should not be modified.

5.3.1 Selective Monitoring

In the case of static patterns, it is fairly simple to monitor the whole rulesystem. However,
monitoring dynamic firing patterns for the whole rulesystem may be unnecessarily complex.
We therefore require a design strategy.

To select the first design step, two principles are applied:
(1) identify the segment(s) of the rulesystem which are most critical to the operation of the
system as a whole and include only the monitoring of this segment in the initial design. Ad-
ditional monitoring is added only when necessary.
(2) the first design should be the simplest possible and should be expanded only when nec-
essary, i.e. the simplest form of monitoring should be used initially.
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Applying principle (1) leads to the choice of R(j) as the most critical component, i.e. seg-
ment (b) of the rulesystem. This follows from the fact that R;(j) is the only component
whose failure cannot be detected by R;(j) itself, even with maximal single-agent reflection.
Le. it is the reflective residue pointed out in section 1. (Unless R;(j) has a microstructure
which is also a distributed reflective architecture, which is not he case in this implementa-
tion). The failure of any other component in the control system can in principle be detected
by R;(j). For example, it may detect failures in its reactive layer L.

Thus a minimal solution will certainly require the monitoring of (b) and the initial design
should only include this. Then it will become clear what other kinds of monitoring are also
required.

5.3.2 Internal Meta-Observation

For the initial implementation, we start with the most critical problem, namely the internal
monitoring of internal monitoring. This problem has the same form as the internal sensor
problem mentioned earlier, except that we are modelling the control system (which uses the
sensor). The partition of C(j) we are interested in is its meta-level R;. Using our notation,
R;(i,X) means “Ry of A; detects an anomaly in X” (using M;(i, X) and S;(i,X)). Then
internal meta-observation can be written as:

Rl(ia RI(j’ Rl(ia )))

which again appears to lead to an infinite regress, but as we have seen in section 4.2.3, the
agents do not wait for the results of each other’s anomaly-detection but run as concurrent
threads, making independent observations of each other.

5.3.3 Rule Firing Patterns

We can now consider in detail how we can implement the monitoring of rule firing patterns,
which was the second monitoring option. The meta-observing agent (in this case the gifted
baby) will observe one of three classes of patterns. First, there are two patterns indicating
“correct” activity: the recognition of a normal situation (which will happen most of the time)
and the recognition of an anomaly (which will happen occasionally). We may label them as
“no” and “yes” patterns respectively. The simplest way to do this is to observe the decision
made at the end of the comparison procedure

In order to detect anomalies in the observed agent’s anomaly-detection mechanism, it
must be possible for the observing agent to detect a pattern which does not fall into the “no”
or “yes” categories. This is possible by monitoring the firing pattern of rules. A list of data
items is used, each one recording a rule firing (i.e. an item is added every time all conditions
of a rule matched the database). Each item is a list of the following form:

[time-slice, ruleset-no, cycle-no, rule-no]
e.g. [2,5,1,3] means that in time-slice 2, rule 3 fired in cycle 1 of the execution of rule-
set 5. In the nursemaid’s rulesystem, there is one rule which should always fire. Its action is

a call to a procedure “compare-rulesystems”. The result of this comparison (true or false) is
added to the nursemaid’s database as shown in table 7.
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Table 7: Possible “normal” actions of observed rulesystem:

‘ Rule-no: ‘ Conditions ‘ Actions
1 true compare-rulesystems;
add result to database
2 rulesystems are different | anomaly procedure;
EXIT ruleset
3 otherwise normal procedure;
EXIT ruleset

In any time slice ¢, ruleset r should be run once and the possible patterns are as follows:
1. Trace contains [4,7,1,3] :
2. Trace contains [i,7,1,2] :

3. Trace does not contain [¢,r,..,..]: indicates an anomaly in the nursemaid’s monitoring
(which may be due to unauthorised removal or modification of a rule).

5.4 Sensors and Effectors

A summary of sensors and effectors is shown in the following tables:

Table 8: Baby’s sensors:

nursemaid is normal and has not detected an anomaly

nursemaid is normal and has detected an anomaly

‘ Sensor ‘ function
Sg(B, B) | vehicle position
vehicle energy level
own interest level
SE(B,N) | whether N is in control
vehicle position
vehicle energy level
SEg(B,U) | nearest treasure
other treasure positions
ditch - position and dimensions
Sr(B,B) | current state of own rulesystem
Sr(B,N) | current state of N’s rulesystem

Table 9: Nursemaid’s sensors:

‘ Sensor ‘ function
SE(N,N) | vehicle position
vehicle energy level
SE(N,B) | whether B is in control
vehicle position
vehicle energy level
SE(N,U) | position of energy supply
ditch - position and dimensions
S1(N,N) | current state of own rulesystem
S1(N,B) | current state of B’s rulesystem
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Table 10: Baby’s effectors:

‘ Effector ‘ function ‘

Eg(B,W) | move-to (new position)
collect treasure
Eg(B,N) | take control from N
E;(B,B) | none at present
E;(B,N) | none at present

Table 11: Nursemaid’s effectors:

‘ Effector ‘ function ‘

Eg(N,W) | move-to (new position)
recharge vehicle
Eg(N,B) | take control from B

E;(N,N) | repair own rulesystem

E;(N,B) | repair B’s rulesystem

Notes:

(1) Sk(i,j) are sensors of A;’s effects on the external environment. Note that energy level,
interest etc. are defined as “external” environmental states because they are values being
regulated by A; as part of its homeostatic task being simulated in the virtual world.

(2) Sg(N,N) has values only when N is in control, i.e. it records its own effects. If B
is in control, this information is detected by Sg(N,B). The same applies to B’s sensors,

meaning that there is some redundancy.

(3) Eg(i,j) are the effectors for changing A;’s effects on the environment. The one pos-
sibility to do this is to stop it and take over control.

(4) Eg(i,i) (i = N or B) is excluded unless there is a reason why an agent should cor-
rect its own (faulty) effects on the environment, e.g. by shutting down a move effector (e.g.

engine) and starting a backup.

(5) Repairing of own rulesystem should probably be disallowed (included here only for com-
pleteness).

(6) The nursemaid knows nothing about treasure or level of interest; it regards the trea-
sure objects as obstacles.

(7) B cannot repair rulesystems in the initial implementation; it can only report problems.
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5.4.1 Simulation of Sensors and Effectors

Sensors and effectors are simulated as shown in the following table:

Interface Implementation

External sensors | SIM-AGENT sense update procedure
External effectors | SIM-AGENT do-action procedure
Internal sensors user-defined procedures

Internal effectors | user-defined procedures

External sensors and effectors are simulated by built-in procedures in the SIM-AGENT de-
velopment environment. During each scheduler time-slice the rulesystem of an agent is “run”
once. At the beginning of each run, the agent’s sensors are updated and it is up to the rulesys-
tem to fetch and interpret the sense data. At any time during the run (although normally at
the end), the SIM-AGENT procedure “do-action” can be called, which simulates an effector
action (although the scheduler does some additional management of actions to ensure equal
treatment of agents). To monitor the operation of sensors and effectors, these procedures
should leave observable traces corresponding to normal operation. This will probably involve
the use of trace mechanisms within the procedures, but the exact method will be determined
from the results of the minimal version.

5.5 Implementation of Models

The nursemaid and baby must have models of each other. In a non-trivial environment, this
model may be learned by repeated observation.

5.5.1 Model of External World

Medium-level sensor view (low-level would be pixels). Snapshot of the world is a list of the
positions of all objects at that time instant. A single data “unit” is a history of snapshots
(effectively this is the trajectory of the vehicle while it is under the observed agent’s control).

(1) Mg(N,U) - Model of the external world with no other agent present. This contains
two components:

(a) what the world normally does spontaneously, e.g. treasure always seems to appear near
a ditch and decays within a certain time period.

(b) what the world does in response to various actions.

In the minimal version, both these components are trivial and do not need to be learned. For
example in case (b), the agents have an effector move-to(x,y) and the “model” only states
that the new position should be at (x,y). Slippery ground near a ditch would lead to an
anomalous new position which overshoots the expected one. In the initial version, recharging
energy or “collecting” treasure only increases the energy or interest level respectively.

(2) Mg(N,B) - The nursemaid’s model of the baby’s external effects on the world. This
model consists of rules for predicting the behaviour of the vehicle under the baby’s control.
For example, if there is treasure nearby it will move towards it; if it is too near a ditch it will
move away etc. An example of an anomaly would be the baby suddenly moving away when
treasure is nearby. Such a model m be more accurate if it is generated by a rule-induction
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component and the resulting rules are statistical (i.e. have certainty factors). However, it is
possible to handcraft a simple version.

(3) Mg(B,N) - The baby’s model of the nursemaid’s external effects. This is the converse
of the above, but is expected to be simpler because the trajectory of the vehicle under the
nursemaid’s control can only be a motion towards the energy source or out of the ditch.

(4) Mg(B,B) and Mg(N,N) are redundant. To show the redundancy, we can consider
Mg (B, B), which involve B observing its own behaviour externally and generating an ad-
ditional set of rules to make predictions about its behaviour (similar to asking :“how will
this part of me react when X happens?”). However, there is no fundamental difference be-
tween Mg (B, B) and another model of B generated by an additional observing agent A, i.e.
Mpg(A, B). The only difference is in the SIM-AGENT implementation in that Mg (A, B)
would be inserted into the rulesystem of A instead of B. If it were to be inserted into B’s
rulesystem, the new extended rulesystem would look as follows (where R1 and R2 are two
collections of rules):

R1: monitor R2’s performance externally: predict its actions and detect anomalies.
R2: normal rulesystem of B

If each collection of rules is developed independently (as they should be for independent
monitoring), this is the same pattern that already exists between agents. In the same way it
may be possible to include mutually observing rulebases within the same rulesystem, in which
case the whole distributed reflective architecture would be embedded within a single SIM-
AGENT agent. At present I do not see any advantage in including this kind of monitoring
within the SIM-AGENT definition of an agent. It would only be important if we wished to
have this kind of single-agent reflection without a concurrent, independent meta-level in order
to investigate the significance of introducing concurrency (see later).

5.5.2 Model of Internal World

The model of the internal world (i.e. the network from the viewpoint of a participating agent
A;), is divided up into M;(%,%) and M;(4, 7). In the initial version, M(i,%) is excluded due to
the infinite regress problem (see below).

M;j(N, B) is an implicit expectation that the static rulesystem pattern of B will remain
unchanged. M;(B,N) is an expectation that the dynamic rulesystem trace of B will include
one of the two normal patterns defined in 5.3.2.

In the minimal version, M (N, N) is specifically concerned with the static pattern of R;(N)
which shows its comparison of patterns stored in its database with the actual rulesystem,
leading to an infinite nesting of this part of the rule system. (In later versions, however an
alternative method of representation may be considered which could overcome this problem).
It is interesting to note that if both N and B were to use the same method of observation
(and representation), then the distributed architecture would also not overcome the infinite
regress problem (it would be an infinite recursion with an additional level of indirection).

M;(B, B) is excluded since it cannot be an independent thread observing its own execution,
and we are not including concurrency within a rulesystem at present.

5.6 Limits of the Simulation

In a simulation like the one presented here, we cannot have true independent monitoring
of activity patterns in the way that this is possible in the real world (e.g. observation of

28



customers entering and leaving a bank). Instead the production of activity patterns must be
simulated. The simplest way to do this is to enable tracing within the rule interpreter and
in the procedures. Since this involves the insertion of code that would otherwise not exist, it
is not really independent monitoring,.

However, for the purposes of conceptual exploration, an artificial tracing mechanism does
not present a serious problem. If an intruder were to disable it, an anomaly should be imme-
diately detectable (because the trace output would suddenly stop). The intruder may replace
the tracing mechanism with disinformation (simulating a “healthy” trace while modifying the
actual code). However, this is difficult in a load-balancing architecture where there are also
other sources of information, such as worsening of the external environment. For example,
an apparently normal trace may be associated with negative effects on the environment of
the sort defined in section 4.5.1.

In an effective immune system, the intruder itself should leave an anomalous trace. This is
a problem of making the internal sensor data comprehensive enough. This may be attempted
in an enhanced version of this implementation, but only if it turns out to be necessary for
the solution of the problem.

6 Comparative Analysis

We now have to define more precisely what “the problem” is in terms of the scenario just
introduced. We will say that an architecture has solved the distributed reflection problem if
it can detect and report any failure or possible failure as defined in section 4.5.1. The whole
network (macro-level) is being tested and not the individual agents, which are just “modules”
of the distributed control system. In this way, there should be a collective detection of
“nonself” (in immune systems terminology) albeit in a very rudimentary way in the initial
implementation due to its unrealistic constraints.

Which architectures are to be compared? The research question focuses primarily on the
problem of meta-level closure (agents being each other’s meta-levels). We therefore compare
closed architectures with non-closed (open) architectures.

Figure 5 shows four different configurations. C1 and C3 are open networks, while C2
and C4 are closed. The arrows correspond to different methods of observation (and repair if
applicable). The initial implementation introduced in the last section is a minimal version
of C2 where the arrow labelled “a” corresponds to the monitoring of the static rulesystem
pattern along with the external effects of B. The arrow labelled “b” represents the monitoring
of N’s rule firing patterns together with its external effects. The design space introduced in
section 3 (D; to D4) contains versions of C2 only. C3 would involve the introduction of
another baby (or nursemaid) which would specialise in a different subtask (e.g. certain kinds
of treasure), but no new kind of monitoring would be necessary. C4 requires an additional
form of monitoring represented by “c” (which may focus on a different type of rule firing
pattern). For the primary question, the three most important comparisons are: C1/C2,
C2/C3 and C3/C4. The difference involved in each of these involves only the addition or
the redirection of a single arrow. For example, to get from C1 to C2 we simply add the
monitoring capability that makes the baby “gifted”.

A secondary question concerns the significance of independent and concurrent monitor-
ing. This is the same as the difference between single-agent reflection (where there is no
concurrency or independent perspective, as explained in section 5.5.2), and the open form of
distributed reflection (C1). Since C1 can be “collapsed” into a single agent with a concur-
rent meta-level, this is effectively a comparison between two single-agent architectures. This
question will only be investigated in detail if it turns out to be important for the primary
question.
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Figure 5: Open and closed network configurations

7 Evaluation

The main objective is to produce an architecture which can solve the distributed reflection
problem as defined in 1.6, the hypothesis being that an architecture with meta-level closure
can be developed and can overcome the inadequacies of the same kind of architecture without
meta-level closure. If an architecture is found, an analysis of why it works will be given, along
with its limitations. If the above hypothesis could not be confirmed, (e.g. because a closed
architecture was no better than a non-closed one, or there were unexpected difficulties in the
development of the architecture), the reasons for this should be given.

The second objective is conceptual clarification: The methods used in this work are largely
informal and explorative, i.e. there are no very precise formal definitions to begin with;
instead the concepts should become gradually more precise during the iterative process of
design, implementation, testing, modified design, etc. The main concept to be explored and
developed more precisely is meta-level closure. The original definition (organizational closure)
relies on an imprecise notion of “meta-level”. In the initial implementation described here,
a “meta-level” for an object is defined as something that can detect anomalies in the object.
Therefore the following question should be answered: can the first objective (producing an
architecture which solves the problem) be achieved using this minimal definition of meta-level
(and hence meta-level closure) or do we require a more complex definition?

I am also aiming to answer the following additional questions (for both open and closed
architectures):

e What difference does the number of agents make: what are the advantages of more than
two? It would appear that three agents would be more reliable. For example, if agents
detect failures in each other’s anomaly-detection, an additional agent must determine
which one has actually failed. Is there a scaling up problem - and if so, how will it scale
up?

e Design redundancy vs. wersion redundancy: what is the difference between agents
based on the same design and those based on independently developed designs (as for
example in [26]. It would seem that independent designs are more robust. However, this
makes it more difficult for agents to repair each other’s code. Similarly, the agents will
generally not have the ability to do each other’s tasks equally well (E.g. B is motivated
by the need to maintain its “interest” level but N is not).

e Load distribution vs. specialist monitoring agents: should there be agents whose sole
task is to monitor other agents? In the present implementation, both agents switch
attention between their monitoring tasks and their “normal” tasks. Quality evaluation
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of the performance of a specialist monitoring agent is difficult (as it is mostly a passive
observer).

The thesis is particularly successful if the new concepts gained can be applied to agent
architectures in such a way that progress on the autonomy problem can be made which
would otherwise not have been possible. This is the subject area which the work will focus
on. However, it may also make an indirect contribution to cognitive science, in particular in
the area of underlying architectures thought to give rise to “high-level” cognitive capabilities.
E.g. what role does low-level (unconscious and massively parallel) anomaly-detection play in
the high-level state of being surprised, anxious etc?

8 Provisional Timetable

The following timetable is a summary of work planned in the next two years.

Time period ‘ Actions

Jun 1999 - Aug 1999 | Implement minimal version with two agents
Determine which changes are necessary
Sept 1999 - Oct 1999' | Attempt non-minimal two-agent version
Attempt comparison (1)

write report 4

Nov 1999 - Jan 2000 Further work on non-minimal versions
as necessary

Design three-agent version
Feb 2000 - May 2000 | Implement three-agent version

Attempt comparisons (2) and (3)

Write report 5

Jun 2000 - Sep 2000 Further implementation work as necessary
Attempt comparisons (1), (2) and (3)

Oct 2000 - Dec 2000 Write first thesis draft

Write report 6

Jan 2001 - Mar 2001 Further work as necessary

Apr 2001 - Jun 2001 Write second draft of thesis

2

3

Notes:
INormally this should be December, but an attempt will be made to synchronise with other
thesis group meetings.

20nly possible if the required design changes are not too radical, in which case the actual
implementation may not have begun by report 4.

30nly possible if there were no significant problems with the two-agent version. Other-

wise the problem should be investigated to determine what can be learned from it. Further
experiments will then be planned as necessary.
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