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Abstract

The objedives of thisthesis are to elucidate alaptive cdange from a design-stance, provide a
detail ed examination d the concept of evolvability and computationally model agents which
undergo bah genetic and cultural evolution. Using Sloman's (1994 design-based
methoddogy, Darwinian evolution by natural seledion is taken as a starting point. The
concept of adaptive diange is analysed and the situations where it is necessary for survival
are described. A wide aray of literature from biology and evolutionary computation is used
to suppat the thesis that Darwinian evolution by natura seledion is not a cmpletely
randam process of trial and error, bu has medchanisms which produce trial-seledivity. A
number of means of creding trial-seledivity are presented, including reprodictive,
developmental, psychdogicd and sociocultural medhanisms. From this discusson, a richer
concept of evolvability than that originaly postulated by Dawkins (1989 is expounded.
Computational experiments are used to show that the evolvability producing mecdhanisms
can be seleded as they yield, onaverage, ‘fitter’ members in the next generation that inherit
those same medhanisms. Thus Darwinian evolution by natural seledion is siown to be an
inherently adaptive dgorithm that can tallor itself to seaching in dfferent areas of design
space A secmnd set of computational experiments are used to explore atrgjedory in design
spacemade up d agents with genetic medianisms, agents with leaning medanisms and
agents with social mechanisms. On the basis of design work the amnsequences of combining
genetic and cultural evolutionary systems were examined; the implementation work
demonstrated that agents with bah systems could adapt at a faster rate. The work in this
thesis suppats the @njedure that evolution involves a diange in replicator frequency

(genetic or memetic) through the process of selective-trial and error-elimination.



‘I believe it was Plato who said that good judgement consists equally in sedng the
differences between things that are similar and the similarities between things which are

different.” (Brian MageeConfessions of a Philosophegr. 138)
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1. Introduction

Consider this brief and very simplified description d the history of the universe. After the
Big Bang the matter and energy which had been produced began to interad and become
organised into dfferent structures. Elementary particles were aeded and dfferent
combinations formed further particles. Atoms combined into dfferent elements and
compounds. Chemicd ‘evolution’ led to the aedion d different moleaules. Eventualy,
these moleaules were combined into the first life forms. These organisms changed through
time by a processof biologicd evolution. Some life forms changed so that they developed
from single cdls into multi-cdlular structures. Organisms evolved the aility to lean which
made it possble for further changes to occur within their lifetime. Some multi-cdlular
organisms devel oped a spedali sation which amplified this potential for behavioural change:
a nervous g/stem. Later an area of the nervous g/stem becane spedalised - the brain -
allowing an even greaer degree of behavioura plasticity. Further organisms evolved the
cgoability of observing other organisms and modifying their behaviour acwrdingly, and
some organisms were produced that were ale to instruct one ancther as to how to behave
and hav not to behave. In this description there ae many references to change, to structures
being modified through time. Some of these dhanges are cdl ed adaptive and it isthese forms
of change which are the focus of this thesis.

In this thesis the following questions are asked: What is adaptive change? How is it
possble for an agent to adapt to its environment? What medhanisms are invalved in this
process? Are some of these medhanisms common to adaptive changes in dff erent domains?
In the rest of the introduction | will state the objedives of this thesis, the intended audience,

and give an outline of the structure of this document.

1.1 The objectives

The objedive of this thesis is to examine the concept of adaptive dange, the medanisms
invalved in ore instance of adaptive change - biologicd evolution - and the gplicability of
these mecdhanisms to ather domains. The ideathat biologicd evolution could form a part of
an explanation d other adaptive phenomenais nat a new one. While Charles Darwin, T.H.

Huxley and Herbert Spencer al alluded to the generality of evolutionary theory, it was redly



Willi am James in an essay in 1880that first thoroughly applied the Darwinian processto
explaining what went on in cther domains (Plotkin, 1995. Since that paint in time there
have been many different writers who could be cdled evolutionary epistemologists, for
example, Baldwin, Campbell, Dennett, Piaget, Popper, Lorenz, Skinner, and Simon. The am
in this thesis is to examine through conceptual analysis and design exploration the ideas of
the evolutionary epistemologists and poduce mmputational models which can give insight
into the generdity of the mecdhanisms involved in adaptation. Note that this reseach aims to
test and refine theories through design work and computational modelling, na develop
computer programs of the sort produced by evolutionary computation researchers.

In this research | have:

» provided an analysis of the concept of adaptation and wsed the concepts of design space
and riche space(Sloman, 1994 to provide adomain-independent framework for asking
guestions about adaptation

» analysed the requirements of different niches and designs which would leal to a need for
adaptive mechanisms

» addressd the question d how adaptation is posshle and examined in detail one possble
answer: the process of biological evolution by natural selection

» examined the mechanismsinvalved in hiologica evolution and asked what their essential
properties are, independent of the implementation details

» considered which variables influence the rate of adaptation

» examined Darwinian and neo-Darwinian theories from a computational perspective

» considered the role of development and reproduction in the evolutionary process

» used computational experiments to demonstrate that a Darwinian process can seled the
kind d reproductive medhanism which leals to the fastest rate of adaptation d their
products in a given situation

» used design work to ouline atrgjedory in design spaceof agents with dfferent adaptive
capabilities and examined how this can affect their ability to adapt

* used computational experiments to quantify the relative differences in the rates of
adaptation between these agents in the scenario used

» considered the requirements, costs and benefits of different adaptive mechanisms



» speculated what additional capabilities could improve the adaptability of a design

1.2 The intended audience
In writing this thesis | have had to carefully consider the badkground d the audience who
would be reading it. A biologicd medanism is taken, described from a mmputational
viewpoint and applied to explaining cetain problems in phlosophy and psychology.
Therefore, the main dsciplines this work contributes to are biology, computer science, Al,
psychology and philosophy.

Phil osophers going bad to Plato and beyond have mnsidered how things change and
what differences there ae between dfferent types of change. Both these isaues are central to
this thesis with work being dore to distinguish the different kinds of change and provide a
framework for asking questions about adaptive change. Other phil osophers - epistemologists
- areinterested in what it iswe can knowv and hov we can know it. Some of the later work in
this thesis examines the views of the evolutionary epistemologists who try to answer
guestions abou epistemology in the light of evolutionary theory. Computational models are
used to formalise the evolutionary epistemologists' theories and to al ow testing of some of
their clams, for example, the daim that the Darwinian process of natural seledion is a
sufficient mechanism to produce adaptive change within the lifetime of an individual.

In recent yeas with the alvent of the field of evolutionary computation, taking a
computational approad to evolutionary theory has become very popudar. This type of
approach has two main advantages. firgt, it forces a predse formulation d the mechanisms
independent of their biologicd base; second, it provides a means of testing the properties of
these mechanisms, often in ways impaossble in the red world. This work produces an
algorithmic formulation o evolutionary theory which takes into acourt the work dore by
different medhanisms in contributing to the rate of adaptation. Computational experiments
are used to test the power of medhanisms which would alow an agent to influence
subsequent generations, for example, medhanisms alowing imitation and instruction d
other agents.

Psychologists have paid much attention to the phenomena of leaning and
psychologicd development. Some reseachers have postulated how different forms of
adaptation may be linked (Baldwin, 189§ or are of a similar form (Skinner, 1969 Piaget,



1980. Thiswork will be of interest to psychologists who are interested in haw evolution can
inform psychoogicd systems and hav leaning can inform or even usurp the place of
biological evolution.

Finally, computer scientists and Al researchers have been looking at many of the same
guestions as the psychdogists, bu from the information-processng perspedive. As | have
already mentioned, there has recently been an increasing amourt of work on biologicdly
inspired models of adaptation. These reseachers will be interested in this work as it shows
the cntribution d different medanisms to the alaptive processand warns against ignoring

the effect of sociocultural environments on the intelligence of certain kinds of agents.

1.3 An overview of this thesis
This thesis is divided into six chapters (including this one) and two appendices, and is
structured as follows:

Chapter 2 concentrates on phlosophicd matters to do with the study of adaptation.
There ae two main aims of this sdion: first, to lay out and justify the methoddogicd
approad taken in this thesis - the design-based approach (Sloman, 1994, and, se@nd, to
analyse the concept of adaptation. A model based onthe @mncepts of design space ad riche
space (Sloman, 1994 will be described to faalit ate the discusson d adaptive diange in
different domains and to help in the process of asking meaningful questions abou what is
driving adaptive change.

Chapter 3 and 4 povide an analysis of the medchanisms of biologicd evolution. The
am is to provide apredse formulation d an adaptive medhanism, its requirements and
properties. Chapter 3 describes Darwin’s origina theory and the subsequent neo-Darwinian
formulation. In these dapters natural seledion is fiown to be a domain-independent,
adaptive dgorithm whase properties arise from its logicd structure. The Darwinian process
will be described as an agorithm, its properties will be given, and the different abstrad
formulations of evolution will be discussed. Furthermore, to help avoid passble
terminological confusions the concepts of heredity and self-replication will be examined.

The second Helf of chapter 3 deds with the heredity mecdhanisms otherwise cdled the
genetic medhanisms. Again the focus of this sdionisto show that it isonly the logicd form

of the mechanisms and nd the material out of which they are made that is important. This



discusson will include, for example, an examination d whether the genetic code is an
arbitrary code (Hofstadter, 1986 with certain properties, such as digital (Maynard Smith,
1997. The oncept of the gene will be analysed as there ae different senses in which this
word is used (Dawkins, 198%). Finaly, genetic dgorithms will be discussed as they have
led to the production d the Schema Theorem (Holland, 1994, a mathematica theory which
allows insights into the role of different genetic operators in genetic search.

Chapter 4 focuses on the ntributions of development and reproduction to the
evolutionary process First, in the sedion on avelopment the cncept of the genatype-
phenotype mapping will be wnsidered from an information-processng perspedive.
Understanding what the genotype denotes and the role of self-organisation in evolution is
esentia to understanding the cnstraints ading on adaptation. Dawkins' (198%, 1996
computational work on embryologies is simmarised to ill ustrate how development can be
described as an algorithm and what effed different types of developmental programs have
on adaptability. Next Herbert Simon's (1982 work is described on hav a hierarchicd
structure could affed the rate of evolution and have cetain implications for the mmplexity
of what could be evolved. The fina part of this dion is a discusson d recent work in
evolutionary programming that has developed a technique cdled ‘automaticdly defined
programming’ which provides an implementation d Simon's ideas. The overall aim of this
section is to evaluate the importance of development to evolution.

The work described in the second Helf of chapter 4 focuses on the role of reproduction
in the process of evolution. Computational experiments caried ou in this reseach will be
discussed which compare the performance of different types of reproductive medhanisms
operating in arange of popuation sizes on arange of different correlated fitnesslandscgpes.
The am of this sdion is to explore how the evolutionary process can seled the
reproductive mechanisms which leal to the fastest rate of adaptation in a particular situation.
These experiments demonstrate that certain kinds of reproduction give rise to faster
adaptation, relative to aher reproductive medhanisms, in spedfic contexts and that the
fastest mechanisms can be selected by the evolutionary process.

Chapter 5 describes the design explorations caried ou in order to investigate the
requirements of agents which have Darwinian processes operating between and within them.

The design dedsions and implementation detail s for these ayents are discussed along with



the wsts and benefits associated with the different medhanisms. In describing the diff erent
agents | have borrowed Dennett’s (1986, 1995, 1996naming convention - Darwinian and
Skinnerian creaures - while ading the names Dawkinsian and Vygotskian creaures to the
scheme.

The first type of agent, the Darwinian creaure, is an agent whose behaviour is fixed at
the point of credion and then adapted by genetic evolution. The seand type of agent, the
Skinnerian creaure, has medhanisms allowing a cetain amount of trial and error leaning
within the lifetime of the agent. Dawkinsian credures are cgable of imitating other agents
and thus have asemnd heredity system: the memetic system. The final type of agent, the
Vygotskian credure, is cgpable of instructing other agents and thereby biasing what is
inherited. The performance of these ayents in adapting to an abstrad task is quantified and
compared. These experiments demonstrate how different kinds of agents - agents with
different mecdhanisms based on the Darwinian process - can adapt at different rates. The
implementations elucidate the requirements of these medianisms and suggest how they can
function to increese the rate of adaptation. In the discusson the wsts and benefits of the
different medhanisms are analysed. At the end d this chapter the implicaions of adding
other mecdhanisms - for example, an internal model of the world - are wnsidered and a
scheme is outlined for formally speafying the different implementations that satisfy the
requirements of Darwinian evolution.

Chapter 6 concludes this thesis by summarising its main pants, oulining areas for
further research, and stating the main contributions of this work.

The gpendices include adescription d the computer programs written in the curse
of this work. Too large an amourt of code has been developed to be included here in its
original form. Therefore, it seemed more pradicd and appropriate to give just a functional
overview of some of the main procedures. The locaion d the mde on the University of
Birmingham, Schod of Computer Science omputer network is given to alow further
inspedion. Appendix 1 describes the mde used in the computational experiments described
in chapter 4, appendix 2 describes the @mde developed for the computational experiments

described in chapter 5.



2. A design-based study of adaptive dhange

2.1 Introduction

‘In philosophy,” Bertrand Russll once remarked, ‘what is important is not so much the
answers that are given, bu rather the questions that are asked’ (Rusll, 1959, p19). The
late phil osopher Karl Popper suggested that when reading a pieceof work the first question
you shoud ask is ‘What problem is he trying to solve,” and nd ‘What is he trying to say’
(Magee 1990, p67). These two qudes identify the am of this chapter: to clarify the
guestions being asked. Thus the first objedive is to examine and preasely formulate what is
meant by the questions: What is adaptation? and How is adaptation passble? The second
objedive is to identify what would be an acceptable answer to these questions and what
methoddogicd approach will give such answers. In fad these objedives are aldressed in
reverse order, starting with identifying the type of explanation keing sought. The nowel
contribution to reseach in this chapter isto provide adetail ed examination d the cmncept of

adaptive change and an outline of a methodology and ontology to help in studying it.

2.2 Different answers: types of explanations

Many philosophers have wrestled with the problems of what an explanation is and what
types of explanation are possbhle. It is beyond the scope of this thesis to consider these
guestions here. However, aseledive acourt of thistopic is given to emphasise that diff erent
disciplines ®ek different kinds of explanation and to spedfy the type of answers ought in
this thesis.

A good pace to start is with Aristotle. He identified four questions he wanted
answered about anything - the four causes. These caises are redly four different types of
explanation (Nusshaum, 198§. Consider, for example, the question: Why is a flower as it
is? One posshble explanation would describe the materials that make up the flower. Thisis
an example of amaterial explanation - Aristotle’s material cause. Another answer would be
that the flower is as it is becaise it has that structure, that particular form. This Aristotle
cdled the formal cause - aformal explanation. There is athird type of explanation caled the
efficient cause - the dficient explanation. This answers the question o why a flower is as it

is by referring to the flower’s genesis, where it came from originally. Aristotle’ slast causeis



cdled thefinal cause - the final explanation. The final cause aldresses the purpose or goal of
the flower.

Since Aristotle philosophers have agued over and added caegories to the diff erent
types of explanation. The standard classficaion d explanations given in text books of

philosophy is (Sloman, 1996b):

causal (both deterministic and probabilistic)

 functional (both in biology and in connection with artefacts)

* purposive (involving intelligent agents and their intentions)

» genetic (i.e. historic)

* hermeneutic (i.e. interpretative: e.g. explaining the posture of a figure in an allegoricd
painting)

 logico-mathematicd (e.g. answers to questions like ‘Why are there infinitely many prime

numbers?’)

However, phlosophers do nd universaly agree on this list of explanations. In fad, it is
often na clea which explanations fall into which categories or if cetain explanations are
possble in cetain cases. The ceitral point of this description is that reseachers from
different disciplines often seek different kinds of answers and unrecessary arguments can
arise if this is not redised. Freud, for example, used historicd explanations to answer
guestions abou people's behaviour, whereas modern medicine seeks answers to question
abou abnamal behaviour in terms of neuroanatomy and reurochemistry - causa (material)
explanations.

Let us briefly consider how these diff erent types of explanations have been used in two
of the aeas of sciencerelevant to this thesis. In ethology, the biologica study of behaviour,
Tinbergen (Manning and Stamp Dawkins, 1992 identified four questions that shoud be
asked abou behaviour. These ae the questions of causation, development, evolution and
function.

Manning and Stamp Dawkins (1992 describe the escgpe behaviour in cockroadhes to
ill ustrate Tinbergen's four questions. The question d causation refers to the medanisms
inside the mckroadch and the stimuli ading on it from the outside that enable it to deted it is



abou to be dtadked and allow it to scuttle avay succesdully. The seand question, the
question d development, asks whether the escgpe behaviour is innate, leant or some
combination d the two. Evolutionary and developmental questions are similar as they both
refer to the drondogicd record o the amergence of structure, bu evolutionary questions
refer to how behaviour emerged over spedes-time, while developmental questions refer to
changes that occur within an individua’s lifetime. In the cae of the ackroad, for example,
what was the behaviour that evolved into the escgpe behaviour we now se€? The fina
guestion, the question d function, asks the ultimate function d the behaviour: that is, what
would happen if that capability were not present? In ethology, for example, final questions
refer to how a behaviour contributes to an animal’s survival and reproductive success.

The types of answers ethdogists ek are, acording to the philosophers, causal,
historicd (Tinbergen's developmenta and evolutionary questions) and functional
explanations. In cognitive science and Al, however, the focus of explanation hes been
slightly different. Daniel Dennett (1986, a philosopher and cognitive scientist, proposed
three stances. the intentional, the physicd and the design stance To ill ustrate the design
stance Dennett (1986, p4) gives the following example, ‘If one knows exadly how the
computer is designed (including the impermanent parts of the design: the program), ore can
predict its designed resporse to any move by foll owing the computational instructions of the
program’. The esentia feaure of the design stance is that we can make predictions lely
from knowledge or assumptions abou the system’s functional design, irrespedive of the
physicd constitution a condtion d the innards of the particular objed. Thus, the different
design stance predictions rely on the notion of function.

In contrast to the design stanceis the physicd stance where our predictions are based
onthe adual physicd state of the particular objed and are worked ou by applying whatever
knowledge we have of the laws of nature. Only using the physicd stance, acwrding to
Dennett (1986, can we predict the malfunction d systems - unlessa system is designed to
malfunction after a cetain time, in which case malfunctioning in ore sense beames part of
the proper functioning. However, if you understand the design and the design has bugs, then
you can use that knowledge to predict some malfunctions.

Acoording to Dennett, when interading with certain systems it is best to adopt the
intentional stance for instance when playing chess against a wmputer. Adoption d the



intentional stance depends on the situation, for example, for the purpose of a designer trying
to improve a tess computer, the design stance is more gpropriate. Dennett argues that
cetain systems are too complex to be gproached from ether the physicd or the design
stances. By making two assumptions - 1) that the madiine will function as designed, 2) that
the design is optimal, for example, a chess computer will choase the most rational move -
one can try to predict the behaviour of a madine by treding it as an intentional system.
However, this assumes that we can work out what the rational move is going to be and in
general thisis not feasible: sometimes the rational move is not even well defined, like when
goals are in conflict.

The intentional stance presuppases rationality. Dennett is not the only reseacher who
felt the neal to introduce the concept of rationdity into explaining certain systems. The
computer scientist and artificial intelli gencereseacher Alan Newell (1982, 19921994, also
described threelevels: the knowledge level, the symbadl level and the achitecura (physicd)
level. The knowledge level, like the intentional stance, presupposes rationality.

Dennett’s (e.g. 1995, p. 23pPlater descriptions of the intentional stance stresstreding a
system as if it were aproduct of a reasoned design development, with a series of choices
among alternatives, in which the dedsions reated were those deaned best by the designers.
By doing this Dennett (1995 has blurred the distinction between the design and intentional
stances, favouring the design stance.

To summarise Dennett’ s position, hs dances relate to the phil osopher’ s diff erent types
of explanations as foll ows:. the design stance relates to functional explanations, the physicd
stance to causal explanations and the intentional stance to puposive and hermeneutic
explanations.

The precaling discusson hes outlined the diff erent kinds of explanation. It is now time
to relate these to the work in the rest of this thesis. The main aim of this reseach was to
investigate a ¢ass of adaptive achitedures. An architedure is a set of functiona
mechanisms with causal li nks between them (Sloman, 1994. Architedural descriptions of a
structure ae defined in terms of its organisation and functioning: that is, in terms of formal
and functional explanations.

An architedure is a description d a madiine, the forma equivalent of which is an

algorithm (the logic underlying the dynamic of a macdine, regardiess of the details of its
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material construction (Langton, 1989) or a set of agorithms. There has been a growing
interest in algorithmic explanations of things, for example, in the fields of evolutionary
computation and artificial life. While computer modelling is now common in the natural
sciences, the role of computation as a framework for describing the medanisms underlying
natural systems is on the increase (Bed¢wal, 1996).

One of the obvious advantages of agorithms is that it is possble to run them on a
computer. This provides a means of testing the theory emboded in a subset of architedures
and exploring their properties. Furthermore, the processof science has often been described
as one of building models - simplified and abstraded descriptions - of natural systems (e.g.
Belew et al, 1999. Models can be defined more predsely as forma expressons of the
relationship between defined entities in physicd or mathematicd terms (Jeffers, 1982.
While traditionally models have been mathematicd, the development of the mathematics
emboded in computer programs - algorithms - has alowed the caturing of complicaions
that are difficult to trea with traditional mathematicd models. For instance mathematicéa
models are typicdly limited to describing aggregate charaderistics of a system rather than
individual interactions (Belewt al, 1996).

For scientists the essential property of modelsis that they give rise to predictions. For
example, Williams (1996 gives the following acount of the discovery of Troy. The
archaeologist Heinrich Schliemann propaosed a theory of the narrative history and spedfic
geography of the aty of Troy on the basis of the Homeric epics and classca schaarship. In
the 1870s Schliemann caried ou archaeologicd investigations at the western end d the
Dardanelles and verified his prediction of the location of Troy.

Many phil osophers of science (cf. Loss, 1993 have enphasised hov models giverise
to predictions and that these predictions can be compared to empiricd phenomena. This
provides a basis of discriminating between models. one model can be regarded as better than
ancther if it more accrately predicts the phenomena that it models. Unfortunately,
discriminating between models is not that simple, for example, problems arise when models
predict different overlapping phenomena. Thus, computational models not only provide a
way of formalising models, but also of examining their predictions.

An important corollary of using agorithmic descriptions of architedures is that in

many cases they provide adomain-independent description d the medchanisms involved. Just
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as mathematicd models can be gplied to a wide range of different phenomena, so can
algorithmic models. If certain condtions of these simplified and abstrad models are met,
then the model can be used to explain different types of phenomena.

To summarise, the explanations given in this thesis are of terms of function -
functional explanations - and form - forma explanations. Furthermore, algorithmic
descriptions are used because they provide a domain-independent formalisation d the

theories examined and a means of testing the model’s behaviour.

2.3 The methodology: the design-based approach

The am in this dion is to describe the methoddogicd approadc taken in this thesis and
not to give an exhaustive justificaion d it. The design-based approach (Sloman, 1994
combines requirements analysis from software engineaing, conceptua analysis from
philosophy, and introduces certain concepts - for example, designs and riches - to give a
comprehensive methodology for studying actual or possible systems.

The design-based approach has five main steps acwrding to Beaudan (1995. These
steps can be exeauted iteratively or in paralel. The first step involves gedfying the
requirements of the system in question in any order. These requirements may be explicit in
an engineering project or implicit in biological evolution (Sloman, 1994).

The secnd step invalves propasing designs which satisfy the requirements given in
thefirst stage. A design isadescription d an architedure (seepage 10) - that is, comporents
with causal links between them - and its mechanisms. Step three invalves implementing
these designs. Building computer simulations or hardwired machines can urcover
inadequades in the origina design and the redisation d additional requirements and
constraints. Thus the design-based methoddogy does not have to be followed in a linea
manner, jumping between stages is allowed.

Step four involves an analysis of bath how well the design meds the requirements and
how well the implementation embodes the design. This analysis can be dore both
mathematically or by experimental testing of the implementation.

The final stageis an investigation o similar designs to the system in question. To fully
understand a design requires an understanding of the implications of changes to that design,

for example: What changes would have no effed onthe design’s functionality? What impad
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would changes in requirements have on a design? What are the mnstraints and trade-offs in
the design? What further cgpabiliti es could the system have if the design were dlightly
different? Thus, as Sloman (1995 wrote, ‘Full understanding [of a system], therefore,
requires an analysis of the similarities and dff erences between adual and passble systems'.
This process is referred to as exploring a neighbourhood in design space.

However, implementing complex systems is often a daunting task. Sloman (1994
suggests a number of useful smplifications which can assst in spedfying requirements and

exploring designs. For example, these three simplifications were used in this thesis:

1. simplifying the environment and the agents’ interface with it
2. focusing on complete, but very simple agents with relatively few capabilities
3. exploring designs with a wide variety of functions, but with shallow implementations of

these functions

The third simplification is often referred to as *broad bu shallow’ implementations (Bates et
al, 199)). Theideais very simple: if progressin understanding is to be made, then, initially,
the complexity of most problems requires certain simplificaions. The standard problem
solving approach is cdled ‘divide and conquer’, that is, bregking down a problem into sub-
problems and solving those problems individually. However, an equally important task is to
understand hav comporents interrelate. For this purpose Bates and his coll eagues suggested
a broad bu shallow approach. If an agent with a range of cgpabiliti es is dudied, in order to
make it possble to implement all the caabiliti es, the different medanisms are smplified.
Broad bu shallow agents are obviously not the ided, bu merely a starting placewith the
intention d deepening the implementation d subsequent models. However, a mnsequence
of the broad but shallow approach shoud be noted: that is, it necessarily leads to an ededic
literature survey where the breadth of topics beaomes more important than the depth in a
single topic.

To summarise, the design-based approad is an engineaing methoddogy which uses
techniques developed in computer science and phlosophy. The gproach aimsto: 1) spedfy
concepts in relation to designs - producing theory-based concepts; 2) explore the problem -
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spedfying the niche; 3) explore the possble solutions - exploring design space The

concepts of designs and niches are central to this thesis and are analysed in the next section.

24 The ontology: designs and niches

The term ‘ontology’ refers to the things present in a given damain, ‘the cdalogue of what
exists (Dennett, 1995. The concepts denoted by the words ‘designs and ‘niches are
fundamental to the subsequent discussons in thisthesis. The am of this sdionisto clarify
what is meant by these two interrelated concepts. However, the analysis in this sdion
attempts to provide useful terms, it is beyond the scope of this thesis to produce an

exhaustive, philosophically justifiable ontology.

2.4.1 Designs

In this thesis the term ‘design’ is used to refer to the abstrad description d the functional
architedure of both red or posgble systems. The notion d a design is not restricted to
human artefads - for instance, evolution can be thowght of as a designer. Sloman (1995
gave ageneral definition o ‘design’ as a spedficaion d a working system. Designs,
however, are dosely linked to certain environments. An implementation d a biologicd
design - for example, afish - could na be described as a working system if it was found on
the moon. Thus, the implementation d the fish design orly works in environments with
certain properties.

A better description d a design is as a posshility transducer (Sloman, 199&). A
design, in this ®nse, is a structure which onreceving a set of inpus gives a set of outputs,
with the structure of design ading to constrain the relationship between the inpus and the
outputs. Thus a design links two sets of posshbiliti es sich as, properties of objeds, events or
proceses. Sloman (1996) gives the following example of a possbility transducer: ‘[a]
pieceof wire can be seen as atransducer from one range of posshiliti es (passble voltages)
to another range of posghilities (possble airrents) with the aility to constrain the
relationship between inpus (voltages) and ouputs (currents). That ability is its eledricd
resistance.’

The relationship between resistance and sets of paosshilities is just one of many

examples of properties linking sets of posshiliti es (Sloman, 199&). A wire will have other
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properties which ad as possbility transducers - a moduus of éasticity, for instance The
extent to which dfferent temperatures change the dasticity is an example of a second-order
posshility transducer. Thus a design can ad as more than ore paosshility transducers and
consequently fit a range of niches. The set of niches a design fits can be cdled its ‘niche
span’.

To summarise thus far, a design is a spedficaion d which an inpu-output device
linking various sts of posgbiliti es is an instance The rest of this sdion will addressthe
following questions: How are designs implemented in the physicd world? Are dl design
feaures equally important to a design’s functionality? Why do designs in the natural world
often appea to be hierarchicdly organised? In what sense can some designs be non
physical? Each of these points will be considered in turn.

Aristotle agued that the concept of form - what something is - is related to its order or
structure, na its material constitution. He believed this for threereasons (Nussaum, 1989.
First, in the cae of aliving system, matter is always going in and ou, it is always changing.
Semnd, so long as the functional structure of something remains the same, repladng a piece
of matter would na change one thing into something else. Finaly, ‘[Aristotle] argued that
matter isjust nat definite enough to be what athing redly is. Matter isjust alump o heg of
stuff, so we could na say you are some stuff or other: it’s only when we have identified the
structure the stuff constitutes that we can even go onto say something intelli gent about the
stuff itself’ (Nussaum, 1988, p44). Aristotle was arguing that it is the form, the organised
set of functional cgpabiliti es, which defines a thing. In describing a design it is what the
thing does - its functional architedure - not how it doesit - the implementation cetail - that is
important. More recently Chris Langton (1989 has propaosed that the aility to separate the
‘logicd form’ of an organism from its material basis of construction is the principa
assumption of artificial life.

Aristotle dso observed that certain changes can be made to a thing which do na
change it into something else. Repladng the human heat, for example, with a medanicd
heat will have anegligible dfed on the functioning of the human bod;. To explain this
Aristotle postulated two types of properties (Dennett, 1999: essential properties - the
goldnessof gold; and acadental properties - the weight, size, or shape of a particular nugget.

Consider, for example, aruler. The essential property of aruler - that of aff ording measuring
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- is the necessary property of all rulers. However, a wooden ruler, becaise it is made of
wood, tes the acedental property of being an insulator of eledricity; a meta ruler has the
acddental property due to its material constitution d being able to condwct eledricity. Thus
red world instantiations of designs have awhode set of properties, with a multitude of
accidental properties arising naturally out of that particular implementation.

So how are designs implemented? In the red world designs are made up d other
designs and so on and so on. Herbert Simon (1982, p.199 ill ustrates this paint in the
following passge: ‘Taking the cdl as the building block, we find cdls organised into
tisaues, tisaues organised into organs, organs into systems. Within the cel are well defined
subsystems - for example, nucleus, cdl membrane, microsomes, and mitochondia.” Simon
cdls such structures ‘hierarchic systems' - systems compaosed of interrelated subsystems.
The same idea is referred to by Plotkin (1995) as a structural hierarchy.

As described ealier, ead design has an assortment of properties linking sets of
posshiliti es. But as Sloman (1996) writes, ‘they are separate sets [of posshiliti es]: passble
currents in ore pieceof wire (W1) are different things from posdble airrents in another
piece of wire (W2). Normally, the properties of W1 do na constrain the posshiliti es
asociated with W2, orly the posshiliti es asociated with W1, Simon's example of the
hierarchicd arrangement of the human bod/ ill ustrates how new links between sets of
passhiliti es can be aeaed by combining physicad objeds into larger structures, in this case
cdls into tissues, tisuues into organs, etc. Thus as Sloman (1996a) writes, ‘a cmplex
macdhine is creaed from simple mmporents by linking them in such a way that the
asciated passhilities are dso linked, and thus we get large scde cnstrained behaviour
that is useful to us, and emergent capabilities such as telling the time and providing shelter’.

The examples of implementations of designs given so far have involved physicd
properties. However, designs can also be nonphysicd (Sloman, 1994. With the alvent of
computers we have begun to explore how some physicd madines can implement virtual
madhines - like programming languages, for instance At the level of bit manipulation a
computer can perform three ations: set a bit, zero a bit, or flip a bit (Harel, 1987%. These
operations are wmbined to form different designs in a hierarchicd structure which produce

the madines that we ae familiar with, such as, word procesors and video games.
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Furthermore, virtual madines fadlit ate cetain types of self-modifiability - for example, the
rapid structural reorganisation observed in learning.

A reaurring feaure in this discusson is the moduar property of designs. The
partitioning found in herarchicd systems is explained by Simon (1982 as due to
intracomporent linkages being generally stronger that intercomporent linkages. Simon
(1982, p.217) writes, ‘This fad has the dfed of separating the high-frequency dynamics of
a hierarchy - invaving the internal structure of the comporents - from the low-frequency
dynamics of a hierarchy - invalving the interadion among the comporents.” Simon cdls
such systems nealy decomposable systems. The moduar thesisis developed in chapters 3 &
4 (see sedions 3.3.3 4.2.1, & 4.2.4 where further reasons for expeding moduarity are
examined.

At the start of this dion a design was defined as a spedfication of a working system
- that is, a description d athings functional architedure. If a design has no redundancy - if
no asped of its gructure can be inferred from any other - then it is its own simplest
description. Hierarchicd systems, however, can doften be described in more eonamicd
terms. Simon (1982 identifies three forms of redundancy: 1) hierarchicd systems are
usually composed of only a few different kinds of subsystems in various combinations and
arrangements; 2) hierarchicd systems are often nealy decomposable - only aggregate or
average properties of the parts enter into the description d the interadions of those parts; 3)
by appropriate ‘reaoding,’” the reduncancy which is present but not obviousin a structure can
be made explicit, for example, moving from a state description - a blueprint - to a process
description - a recipe or algorithm.

To summarise, the mncept of a design refers to a description o the functional
structure of a macdiine which is resporsible for linking sets of posshiliti es. The form of a
macdhine can be astraded from its matter and the logic underlying its dynamics described as
an algorithm. | have described hov new designs can be made out of other designs by linking
sets of passhiliti es constrained by properties of the cmporents of the design. Finally, the
description d designs can dften be simplified by taking advantage of redundancies implicit

in the system.
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2.4.2 Niches

A natural environment has a number of dimensions, including such physicd and chemicd
fadors as temperature, humidity, salinity, and axygen concentration, and such hiologicd
fadors as prey spedes and resting badkgrounds in which an individual may escgpe detedion
by predators. It was the eologist G. Evelyn Hutchinson in 1957 (Ricklefs, 1990 who
suggested that idedly ead of these dimensions could be thought of as a dimensionin space
The niche of ead spedes occupies a part of this n-dimensional volume that represents the
total resource space aailable to the community. Sloman (1994 generalised the biologicd
concept of a niche to be a set of requirements.

There ae two types of requirements. functional and nonfunctional. Flying is a
functional requirement, whereas gravity is a nonfunctional requirement - a cnstraint. Non-
functional requirements limit what designs are possble. Some nstraints - for example,
gravity - are implicit within the environment; other constraints arise out of ealier design
decisions - for instance, size and shape affects what can and cannot fly.

Some requirements are necessary, such as a biologica organism’s need to transform
energy to keeo it out of equili brium with the physicd forces of gravity, hea flow, diffusion
and chemicd readion. There ae, however, a number of sufficient means of aaquiring
energy. For example, organisms can use phaosynthesis or ed other organisms. Requirement
satisfadionis nat a simple matter of finding a single design, bu a matter of finding one of a
number of functionally equivalent designs which, while being equivalent in some respeds,
may differ in others.

To fully understand a design requires an understanding of the design’s niche. As
previously mentioned, the physicd environment alone does nat determine an eclogicd
niche. Animals can live side by side in the same environment and have completely diff erent
sets of requirements. For example, a bee ad a flower may exist in the same setting, bu
different requirements are relevant to their designs.

A complicaing fador in spedfying sets of requirements is that niches change. As an
ewmlogicd niche is partly defined by the designs whaose instances exist there - bees partly
define aflower’s niche and flowers partly define abe€s niche - if those designs change, then
the requirements ading on aher designs can change. So if a prey spedes develops better

escape strategies, for example, this changes the requirements of predator’s capture strategies
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As aniche is made up d a set of requirements, there ae often cases of conflict. The
efficiency of a design can be cdculated by certain benefits being divided by certain costs
(Dawkins, 1996. A design may be ale to go faster - the concord, for example - but the st
of this additional speed may outweigh the benefit. Anather ill ustration d this would be when
designing a house which has to be both safe and aff ordable. These requirements will | ead to
certain compromises if the safest house is prohibitively expensive.

Exad solutions to large (and dynamic) optimisation problems are often na achievable
in pradice and so ‘good enowgh’ (satisficing) aternatives have to be used instead of the
optimal designs (Simon, 1996. Designs do nd necessarily have to be the global optimum to
survive, they just have to be better than those designs aroundthem in their niche. Note dso
that this means that designs do nd even have to be alocd optimum in design space
Newtonian medhanics was the best theory of medanics until Einstein's theory of relativity
came dong, and even now it is dill used. Neither theory can clam to be a omplete
explanation - the optimal solution.

Furthermore, because aniche is defined by both physicd and ewmlogicd fadors, the
cost-benefit analysis of different designs is dependent on the other designs present. Maynard
Smith’s (cf. 1979 work on ‘evolutionarily stable strategies describes the same
phenomenon that is, in situations charaderised by a conflict of interests, the best strategy to
adopt depends on what others are doing.

Requirement satisfadion is not necessarily an al or nothing thing. The passenger
aircraft niche, for example, is partially satisfied by a range of different designs. Different
aircraft have diff erent sizes, shapes, ranges, speals, maximum altitudes, etc. To evaluate one
design as better than ancther requires a basis of comparison (Sloman, 1969. For example, it
is possgble to buld faster cars, bu the @st outweighs the benefit making the slower car in
some senses ‘better’ - safer, more eonamicd, etc. Thus it is only possble to say that one
design better satisfies a niche's requirements than ancother design in relation to a basis of
comparison.

As with designs, some niches can be described as hierarchic. Thisisill ustrated by the
foll owing example: as energy tends to disperse, if a dynamic structure is to remain stable, to
cohere in time and space then it requires a @ntinuows flow of energy through the system

(Atkins, 1999. There ae many ways natural designs can dothis - there ae many ways of
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making aliving. For instance, a design could ea planktonin the seg ea grassonthe land a
cach inseds on the wing. The dhoice of niche leals to dfferent sets of requirements ading
onadesign. The viscosity and censity of water requires that fish be streamlined acarding to
restrictive hydrodynamic design principles if they are to be both efficient and swift.
Respiration in water requires a design feaure to extrad oxygen from the water, excretion in
water is relatively easy compared with land die to the ad of diffusion d water products in
the surroundng water. As ome design dedsions are made, other requirements arise and so
on until the design is specified.

Different design feaures are only diredly linked to certain aher structures, which
leads to a structural decomposition. The ideaof a requirement having requirements can be
illustrated by considering the g/e. If a design requires a distance sensor, then the g/e can
fulfil that role. The e/e has its own set of requirements, the lens must be transparent and its
shape ajustable, the retina must be sensitive to light of certain frequencies. Each of these
design fedures is a design which fits in a niche aeaed by other designs. A design is nat
directly connected to all other designs, so a partitioning of structure can occur.

To summarise, niches consist of physicd constraints - such as thase enboded by the
laws of physics - and emlogicd constraints - as defined by coexisting designs. Niches are
dynamic and because they consist of sets of requirements, numerous trade-offs have to be
made. Finaly, as environments provide multiple means of satisfying requirements, designs

move in niche space seeking ‘better’ regions.

25 What is adaptation: conceptual analysis

When asking a question it is important to consider the implicit assumptions being made in
that question. Consider, for example, the question: How did spedes originate? This assumes
that the ncept of spedes refers to adua things in the red world. However, this
presuppdasition reed na be true (Emmet, 1997, for example, questions can be asked abou
dragons and fairies even though they do nd exist. In this thesis the main question being
addresed is. How is adaptation pcssble? This begs the question d what the term
‘adaptation’ refers to. Does the term refer to a speadfic kind d thing or to a whale lot of
different things? How can the concept be related to the previous discusson d designs and

niches?
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One strategy in analysing concepts, suggested by Sloman (1978, is to examine the
definition foundin a dictionary. The Collins English dctionary (1994 gives the following

definitions for the words ‘adapt’ and ‘adaptation’:

adapt vb. 1.(often foll. by to) to adjust (someone or something, esp. oreself) to
different condtions, a new environment, etc. 2. (tr.) to fit, change, or modify to

suit a new or different purpose.

adaptation n. 1.the ad or process of adapting or the state of being adapted,
adjusted. 2.something that is produced by adapting something else. 3. something
that is changed or modified to suit new condtions or needs. 4. Biology. an
inherited or aaquired modificaion in arganisms that make them better suited to

survive and reproduce in a particular environment.

The first point to make is that the term ‘adaptation’ can be used to describe bath a
process and a product (Dunbar, 1982. However, it can be very confusing when the same
term isused in bah cases. Firstly, adaptation can refer to the processes whereby an organism
comes to fit a cetain environment, for example, the processof biologicd evolution. But also
adaptation can refer to functional feaures of an arganism, such as eyes or wings. From this
point on, to avoid confusing the processwith the product, the processwill be referred to as
adaptive change.

Plotkin (1995 analyses the mncept of adaptation and relates it to the concept of
knowledge. He identified two properties common to al adaptations. The first of these
properties is the goal-driven o functional asped of these structures. In the dictionary
definitionthisis expressed by the phrase ‘to fit, change, or modify to suit a new or different
purpose’. The other property Plotkin emphasises is that of ‘organismic organisation’ in
relation to ‘environmental order’ - ‘to adjust (someone or something, esp. oreself) to
different condtions, a new environment, etc.’ Thus an adaptation is a functional structure
which is coupled with an aspect of the environment.

Plotkin argues that both adaptations and knavledge - asit is generally understood- are

spedal cases of biologicd knowledge. If ‘to know’ is to incorporate the thing known - nat
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literaly - into the knower, and if adaptations are forms of incorporation d the world into the
structure and aganisation d living things, then adaptations are instances of (biologicd)
knowledge.

Dennett (1995 also makes the point that adaptations are aform of knowledge. He
writes ‘any functioning structure caries implicit information abou the environment in which
the function “works.”’ For example, seagulls embody the principles of agodynamic design
which implies that the aedure is adapted for flight in a medium having the spedfic density
and Jscosity of the amosphere within a thousand meters of the surface of the Earth.
Holland (1995 cdls such knowledge, which agents use to anticipate cetain aspeds of their
environment, an internal model. Thus another way of regarding the processof adapting is as
a process of building and refining a pragmatically useful model.

Thus functional fedures, adaptations, are design feaures which satisfy certain niche
requirements. The process of adaptive diange invaves moves in design space which
produce this ort of design feaures. To describe adesign as adaptable suggests that a
design’s dructure can be changed in such a way that it improves or usefully expands its
capabilities which may in turn allow it to access other niches.

Plotkin's (1995 analysis of adaptations can be suppdemented by Holland's (1994
propcsed formal framework for discussng adaptive change. Holland (1994, p.3) observes
that ‘ adaptation, whatever its context, involves a progressve modificaion d some structure
or structures.” The set of fadors which are invalved in this change in structure Holland cdls
‘the adaptive plan’. Thus the adaptive plan determines just what structures arise in respornse
to the environment, and the set of structures assessable by applying all the possble operators
delimits the adaptive plan’s domain of action.

Holland (1994 identifies three key comporents asociated with adaptive change: 1)
the environment, E, of the system undergoing adaptive dhange; 2) the alaptive plan, T,
whereby the system’s dructure is modified to effed improvements, 3) a measure of
performance, W, i.e. the fitness of structures in the environment. Holland's general
framework for discussng adaptive dange @mbined with Plotkin’'s analysis of the
consequences of adaptive dange, adaptations, provide a domain-independent way of

discussing both adaptive change and adaptations.
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Sloman (1978 suggests that when analysing a concept it is useful to consider alist of
instances of the cncept and d nonrinstances which are in some way similar. Here is a short

list of examples:

. water adapting to the shape of a bowl

. the epiglottis stopping you breathing food

. a termite nest’s maintaining a certain temperature
. a lizard moving out of the sun

. an egg developing into a chicken

. a child learning to walk

. the evolution of a species
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. progress in science

The next task is to try to sort out the instances of the ancept from the norrinstances.
Some of the items on this list are examples of moves in design spacewhich can lea to the
formation d adaptations: examples 6, 7 & 8. Evolution d a spedes is the paradigm case of
adaptive thange. The processes and medhanisms involved have been elucidated ower the last
hundred years (see chapters 3 and 4).

A number of parallels have been pastulated between spedes evolution and individual
leaning (e.g. Skinner 1969 Piaget, 1980Q. However, aleaning medanism can also be seen
as an adaptation which allows the individual to explore regions of design spacefor those
designs which best med the individual’ s neals. Leaning is also aform of adaptive dange -
searching for moves in design space which improve niche satisfaction.

Example 8 is an example of conceptual evolution, ancther case of adaptive dchange
(James, 188Q Campbell, 1974 Popper, 1986 Hull, 1988l). The problem forms the niche
which a design (solution) has to fit. Different designs make different sets of predictions
which can be tested against those fads observed in the red world. These designs are
implemented in natural language or logico-mathematicd terms. Different designs - theories -
can via a basis of comparison (Sloman, 1969) be deemed better than other theories.

The examples 2, 3 & 4 refer to adaptations, that is, functional design fedures.

Adaptations come in many forms - for instance, physiologicd, structural and behavioura
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(Plotkin, 1995. The eiglottis (example 2) is an example of an internal structural adaptation.
Its function is to prevent animals from breahing their food. The termite nest (example 3) is
an external structural adaptation. The termite nest has a number of functions, the main ore
being protedion from predators and the dements. The structural organisation d the termite
nest causes it to maintain a cetain environment - temperature, humidity, etc. Thus the
termite nest creates and maintains a niche different from the surrounding niches.

The lizard moving out of the sun (example 4) is an example of a behavioura
adaptation. Furthermore, this behaviour is, like the termite mound, an example of niche
seledion. The lizard changes its short-term niche from a sunry, ha one to a dark, cod one.
By seleding a different short-term niche, the lizard has changed the requirements to fit the
design. Adaptive change does nat have to involve canges to the design, bu can instead
involve changes to the niche where the design is found.

Biologists going bad to Darwin have, in studying adaptations, identified a number of
origins other than adaptive change which can lead to adaptations (cf. Eldridge, 1995. Some
changes are the results of allometric efeds - for example, an elephant has a big brain
becaise it is a big animal - or developmental and architedural constraints. Ancther class of
design feaures has been cdled pre-adaptations (Dawkins, 1995 or exaptations (Gould and
Vrba, 1989). These design fedures use functiondlity different from the design fedure's
original purpose. For example, swed’s original function was to cod an animal down, bu
due to swea’s snell it has come to be used as a signaling device in many animals
(Dawkins, 1996. The fad scent glands are pre-adaptations can be shown by examination
under a microscopic where they can be seen to be modified swed glands (or in some caes
sebaceous glands) - in some animals the unreconstructed glands can still be found. Thus
catain adaptations may be adieved by using design feaures for things other than their
original purpose. This may in turn allow accessto dfferent niches. For example, one theory
of the origin of flight propases that wings were originally devices for knocking inseds out of
the ar (cf. Dawkins, 1996; subsequent modifications alowed birds to move from ground
based to airborne niches.

Biologists dudying adaptations have developed general techniques for distinguishing
functional design feaures from acdadental design fedaures. One indicaion that something is

an adaptation is convergence of design - homologies (Ridley, 199Q Eldridge, 1993. If a
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design feaure can be foundwhich has arisen separately in many diff erent lineages, then this
adds weight to it being an adaptation. For example, estimates at the number of times the eye
has evolved vary between forty to sixty (Dawkins, 1996. However, this argument is an
inductive agument and daes not leal to certain knowledge. Anyway, for the purpose of this
thesis the origin of a functional design feaure is not as important as its role in a design’s
functioning.

Returning to the examples, the development of an egg into a dhicken is an interesting
case. This example doesinvolve moves in design space One design changes through a series
of designs and dten ends up in aradicdly different area of design space In the cae of a
human, for example, a single cdl, in a speaaly creaed niche - the womb - grows into a
neonate which can survive in the open, abeit with alot of parental suppat, and continues to
mature into an adult. But is this an instance of adaptive dhange or is it an adaptation? |
would argue it is an adaptation, a property of a design which allows it to modify its gructure
to take advantage of certain nichesit could na diredly access In chapter 4 development is
examined in more detail.

The final example - water adapting to the shape of its container - is an example of
change, bu is it an example of adaptive dhange? Adaptations are the cnsequence of
adaptive dhange. The water changes its ape under the influence of gravity, minimising its
potential energy. It is hard to see what could be regarded as an adaptation. The water is
changed to med new condtions, bu this change does naot redly suit a new or different
purpose as water has no identifiable needs.

To summarise, the concept adaptation can refer to two things. Firstly, it refers to
catain design feaures which satisfy certain niche requirements, and secondy, to the
proceses which produce these design feaures by changes to the design o niche.
Adaptations are a o©nsequence of adaptive dange. Adaptations have two properties:
functional - they serve apurpose - and relational - they link design fedures to niche
requirements. There ae different forms of adaptations. structural, physiologicd,
behavioural, etc. Adaptations can have different origins: evolution, leaning, science It has
been argued that adaptive changes can be aeded in dfferent ways. for example, moves in
design spaceor moves in niche space Certain ather changes are not adaptive, for example,

changes which do na affea the functional organisation d a design such as the danges
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brought about as sde dfeds of many physicd processes, like an engine of a ca getting hat
after a long drive.

The process of adaptive change can be split into two caegories. firstly, the
inventior/discovery of new cgpabiliti es, for example, flight; and secondy, optimising the
performance of design feaures, for example, flying faster. The previous discusson o
designs and pcsshility transducers described how a particular implementation linked more
sets of passhiliti es than its functionality required. The @nsequence of this is that existing
designs can be used in new ways to perform new functions: pre-adaptations or exaptations.
A side dfed of pre-adaptations is that this may link two dfferent functions to the same
design fedure prodwing an architedural constraint which affeds the subsequent

optimisation of those features.

2.6 Why adapt: requirements analysis

The process of requirements anaysis, also cdled requirements definition a problem
anaysis, involves gedfying the requirements and constraints of a system. A requirement is
a spedficaion d what a system must do; a constraint or nonfunctional requirement limits
the possble implementations of a system (Lamb, 198§. In this dionthe am isto consider
the condtions which require agents to be adaptable. The requirements of an actual adaptive
mechanism will be cnsidered in chapters 3, 4 and 5. Two constraints are asumed for the
purpose of redism: 1) that designs have finite cagabiliti es; 2) that niches have finite
resources.

I will argue that there ae a least three caes when adaptive processes bewmme
necessry: 1) in dynamic environments, 2) where designs are incomplete; 3) in competitive
environments. Let us gart by considering competition. Designs do nd necessarily optimally
fit their niches. In al but the simplest of designs there is room for improvement, ways in
which the benefits can be increased and the sts cut. Furthermore, designs do nd either
start with innate caabiliti es or start from scratch with the aility to adapt. Todd (1996
describes the similarly false dichotomy of having innate knowledge and leaning from an
initial complete asence of knowledge. Thus a design cgpable of adapting could improve on

its initial capabilities.
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In aresource-boundworld, designs which are eonamicaly more successul relative to
other designs are favoured. The measure of econamic success and the caise of econamic
success are ontext-dependent, bu the result in dfferent domains is the same: a relative
emnamic successis necessary to survive. The first argument for having adaptive processes
is that they can improve your eaconamic success If other designs have this cgpabilit y, then it
can become necessary just to keep up with them.

The second requirement for adaptive processes is that a design may be incomplete.
This may be due to constraints ading on the processes which produced the design. For
example, biologicd designs are the result of inductive processes and are thus nat based on
catain knowvledge. Also there is often a lag-time between spedfying a design and
implementing it. Either of these fads can lead to information being wrong, for instance, due
to incorred generalisations. Processes which corred the knowledge and keeo it up to dete
will range from useful to essential.

Limitations on the information that can be imparted to a design can also lead to
designs being incomplete. In hologicd evolution, for example, genetic information
influences the structure, physiology and kehavioural charader of an organism. However,
because ‘greaer amourts of genetic material are more susceptible to the randamising effeds
of mutation' (Johrston, 1982, p.33P the larger the genatype, all things being equal, the
more arors are made @pying it. Large behavioural repertoires transmitted by the genotype
would require very complex and expensive apying mecanisms as well as medanisms for
initially coding the repertoire. A compad behavioural-repertoire aguiring medianism may
be a more wmst-effedive solution to this problem. Such leaning medanisms have the
additional consequence of helping compensate for the ‘uncertain futures problem’ (Plotkin,
1995) - that is, that the initial design may be out of date by the time it is implemented.

The third class of requirements for adaptive processes arises out of environmental
changes. From the point of view of designs with finite cagabiliti es, change can be split i nto
those that are predictable and those that are not (Plotkin, 1995. Changes which are
infrequent and passbly caastrophic - for example, meteor strikes - are hard to predict. In
such cases aurviva is largely due to chance Other forms of change may be unpredictable,
but occur frequently enough to be cdered for. For example, the winter temperature is nat
predsely predictable, but it can be gproximated. The fina kind o change is predictable
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change. This caegory includes all the sorts of change which have occurred with sufficient
frequency that they can be compensated for.

Plotkin (19995 suggests that ‘predictable unpredictabilities’ is the mre @ncept in
understanding the evolution d intelligence & an adaptation. In cases where situations are
partialy predictable - for example, what can be eaen may be known, bu nat where to find
it, or that faces can be told apart by different feaures, bu not which faces are friends and
foes - adaptive processes can compensate for incomplete information by aaquiring new
knowledge.

In afinite world, popuiations of designs can be in competition for the resources. If this
competition aceurs, then the designs better able to aayuire the resources will partialy define
the niche requirements. Thus, a design may be sufficient to oltain the resources only if other
designs are not present. This escdation d requirements is often termed an ‘arms race. For
example, if the biggest organism wins the fight and starts to reproduce, then a requirement
for reproduction will be based on the size of organisms present at that moment in time.

In summary, as both designs and riches change through time (see sedions 2.4.1 &
2.4.2, then if a design is to stay fitted to a niche, it has to change too. Designs, for one
resson a ancother, can come into the world incomplete, and adaptive processes are needed to
complete such designs. Finaly, competition for resources will cause designs capable of
improving on their performance to be favoured and thus change the niche requirements.

There ae many fedures in the natural world which lea to the need for an adaptive
process For example, if an organism is to reproduce, it has to survive urtil it can reproduce
that is, survive through development and maturation, survive locaing the necessary
resources to maintain its gructure and produce anew structure, and survive long enouwgh to
find a mate. Survival is necessary for reproductive successand it depends on the quality of
the alaptations a design can deploy. Designs with adaptive processes which refine dready
present adaptations and invent new adaptations will assst the design in its drugde for
existence.

Holland (1994 identifies five spedfic obstades to an adaptive process 1) the spaceof
passble structures, S, can be very large and solutions largely distributed; 2) the structures in
S may be complicaed so that it is difficult to determine which substructures or comporents

are resporsible for good performance 3) the performance measure may be a omplicaed
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function with many independent parameters; 4) the performance measure may vary over time
and spaceso that given structures are only advantageous at certain times and daces resulting
in many structures having to be foundand stored for use when needed; 5) the environment
presents © much information to the plan that it must be filtered and sorted for relevance
These obstades are requirements for the alaptive process which lead to a @mpetition

among adaptive processes for the one which can produce the fittest products (sed)xhapter

2.7 Summary

There ae many different types or kinds of explanation. In this thesis two kinds of
explanation are sought: 1) functional explanations - what a design must do; and 2 formal
explanations - how a design can do it. The latter explanations will be described as
algorithms, that is in terms of the logic underlying the dynamic of a design, separated from
the material construction.

The design-based approach is a methoddogy which aims to provide the types of
explanation sought. In this approac an engineeaing stanceis taken and systems are analysed
in terms of the functional requirements and pasble implementations which satisfy those
requirements. This is combined with the philosophca technique of conceptual analysis
which helps to provide predse, theory-grounced concepts and so avoid terminologicd
confusion.

In the design-based approadh the set of functional requirements for a particular
problem is cdled the niche. Spedficaions for structures which med the requirements are
cdled designs. The design fedures which med functional requirements are cdled
adaptations. These feaures can be the mnsequence of adaptive dange and can be produced
by moves in both design and niche space.

There ae anumber of condtions which make an adaptive process beneficial or in

some cases necessary:

» designs have finite capabilities and are thus limited in what they can predict
» designs may be incomplete solutions and may need processes to finish them off
* niches have finite resources, thus there can be a @mpetition for resources which change

the requirements
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* niches are not static, but they change in time which affects the fit of the designs

» designs may develop, acawmulate resources and seek mates, which requires an array of
design features to perform these actions

» there may be adelay between design spedfication and implementation in which time the
requirements change

» there may be limitations to what information is available to the ‘designer’ (design
process) and subsequently to the design itself

» designs can also be resource limited

The cetral questions in this thesis are: What is adaptation? How is adaptation
posshble? These questions can be refined in the light of the discusson in this chapter. The
question d what adaptive dhange is, can be rephrased as what processes produce functional
design feaures which improve adesign’s fit to its niche. Adaptive change relates to certain
moves in design spacewhich produce functional design feaures or moves in niche spaceto
areas where niches are better satisfied by the design. The question d how adaptive dhangeis
possbleis partly answered by the variety of quality of fit between designs and nches which
leads certain designs to be, in some sense, fitter.

Holland (1994 describes what can be regarded as the minimally sufficient universal
adaptive mechanism: the enumerative plan. The order in which structures are tested in the
enumerative plan is unaffeded by the outcome of previous tests. Thusit generates gructures,
preserving the fittest ones as it goes. Whil e the enumerative plan works in principle, in many
cases the size of the spaceof passble structures makes it uninteresting in pradice What is
needed is seledivetria-and-error (Simon, 1982, where brute-force seach is replaceal with a
combined system of search and ‘reason’ thus eliminating a substantial amourt of trial-and
error from the seach process The next two chapters describe an adual design which is
cgoable of producing adaptations: biologicd evolution. The evolutionary process and its
mechanisms will be described from an agorithmic perspedive and its essential properties
examined. The am of the next two chapters is to describe the mecdhanisms which usefully

constrain the evolutionary trial-and-error process.
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3. Abstract evolution

3.1 Introduction

Since Darwin propcsed his ideas of evolution in 1859,there has been much controversy
surroundng them. Many of the aguments against Darwin have been religious or paliti ca
and some scientists remain urconvinced - John Von Neumann and Fred Hoyle to name but
two. The am of this sdion is to describe some of the esentia evolutionary concepts in a
logicd form, na to give an exhaustive review of evolutionary thinking. It is hoped that by
describing the evolutionary theory in a different form, some of its feaures that have
confused people can be avoided. In the next two chapters the role of development,
reproduction and behaviour in the evolutionary story will be explored.

The structure of this sdion follows from an olservation by Willi am James (1880).
James differentiated between the caises which ariginaly produced a peadliarity and the
causes that maintained it after it had been produced. James pointed ou that Darwin had
separated the causes of production, unar the title of ‘tendencies to sportaneous variation,
and confined his attention to the causes of preservation: seledion. In the first half of this
chapter Darwin's original idea - the caises of preservation - will be described in an
algorithmic form. In the second relf of the dapter the caises of production will be
examined as described in the neo-Darwinian formulation.

Algorithmic formulations of evolutionary processes are not new - they have been
extensively used, for instance in the disciplines of artificia life axd evolutionary
computation. There ae d least three avantages of agorithmic descriptions: firstly, they are
a type of formal description which is more predse than natural language description;
seondy, such descriptions can be run on computers, which allows predictions deduced
from the model to be tested using computational experiments; finally, because dgorithmic
descriptions derive their power from the logicd structure and nd the material makeup o a
thing, they allow the application of the ideas to other domains which are logically equivalent.

The novel contribution to research in this chapter is to provide a ©mprehensive
description d evolution from a cmputational stance and wse this to start to elucidate the

concept of evolvability.
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3.2 The Darwinian process: Darwin’s dangerous idea

The founcitions of modern evolutionary thinking were laid by Charles Darwin (18091882
and Alfred Russell Wallace(18231913 with their joint communicaions on the theory of
evolution by natural seledion presented in 1858and pubdi shed subsequently in the ‘ Journal
of the Procealings of the Linnean Society’. In November 1858, Darwin pubished his book
On the Origin of Spedes by Means of Natural Seledion, a The Preservation d Favoured
Races in the Srugde for Lifein which he set out hisideas in full. The essence of Darwinian

thinking is succinctly summarised at the beginning@lod Origin of Species

‘As many more individuals of eat spedes are born than can passbly survive;
and as, consequently, there is a frequently reaurring strugge for existence it
follows that any being, if it varies however dightly in any manner which is
profitable to itself, under the complex and sometimes varying condtions of life,
will have abetter chance of surviving, and thus be naturally seleded. From the
strong principle of inheritance, any seleded variety will tendto propagate its new
and modified form.” (Darwin, 1859, p. 68)

This has led to the standard textbook description d Darwin’sidea & arising from a series of
observations and deductions (cf. Williams, 1995. Darwin’'s first observation was that
individuals give rise to many more offspring than is necessary to maintain a cnstant
popuation size. Darwin was influenced by the eonamist Thomas Malthus who had
suggested, many yeas ealier, the inevitability of popudation explosions due to the
geometricd growth o popuations, and the inevitability of famines due to popuations
growing too large for the available resources. However, as Darwin observed, popuation
sizes do nd grow exporentialy. From this Darwin deduced that becaise of a competition
for resources there wastauggle for existence

Darwin's mnd puported olservation was that there is sgnificant variation within
popuations. From his dudies of natural and artificial popuations, Darwin thought it was
highly probable that variation had occurred that was useful to an individual’s welfare. From
the competition premise and the variation premise, Darwin deduced that if any advantages

were enjoyed by any of the contestants, then this could bias the sample that reproduced.
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Darwin’s third observation was that ‘like produced like' - that organisms produced na
only the same type of organisms, but organisms which were more simil ar to themselves than
to ather members of the spedes. The fad that ‘like produced like' Darwin cdled ‘the strong
principle of inheritance. Dennett (1995, p. 4) describes this principle in the foll owing way:
‘if off spring tended to be more like their parents than like their parents' contemporaries, then
biases creded by advantages, hovever small, would become amplified over time, creaing
trends that could grow indefinitely’.

Darwin’s final deduction was that if variations useful to the individual do accur, then
these individuals will have the best chance of being preserved in the struggle for life. These
individuals will viathe strong principle of inheritance tend to produce off spring of a similar
charader - that is, with the useful variations. This principle of preservationis cdled natural
selection

Darwin summarised hisideas as aformal argument - if the condtions are met, then a
ceatain oucome is asaured (Dennett, 1995. This point is made by Dawkins (19830 and
referred to as Universal Darwinism: if the condtions are met anywhere in the universe, then
the ansequence will be the same - natura seledion will occur. Some reseachers (cf.
Dawkins, 1983h have speaulated that the Darwinian law may be & universal as the grea

laws of physics.

3.21 The algorithmic nature of the Darwinian process

Darwin had two oljedivesin the Origin of Spedes. the logicd demonstration that a cetain
sort of processwould necessarily have a cetain sort of outcome (see sedion 3.2, and the
empiricd demonstration that the requisite andtions for that sort of processhad been met in
nature (Dennett, 1995).

Darwin’s first objedive was to give, what would be cdled today, an agorithmic
description d the processof evolution. An agorithm is aformal processthat can be curted
on logicdly to produce a ceain sort of result whenever run a instantiated. Computer
scientists ometimes restrict the term agorithm to programs that will terminate (Dennett,
1995, p.50) - that have no infinite loops in them, for instance Many programs in the red
world are nat agorithms if the termination restriction is used, for example, prime number

generators, bu their subroutines - which terminate - would be cdled algorithms. The
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termination restriction is ignored in this ®dion: that is, a program does not have to
terminate for us to call it an algorithm.

Dennett (1995 described threekey feaures abou algorithms which are relevant to the
Darwinian process The first fedure is aubstrate neutrality. The power of the procedure is
due to its logicd structure, na the causal powers of the materials used in the instantiation,
just as long as those causal powers permit the prescribed steps to be followed exactly.

Dennett’s seond key agorithmic feaure is underlying mindessiess Each constituent
step, as well as the transition between steps, is utterly smple - a breskdown o the process
into dead-simple steps, requiring no wise dedsions, delicae judgements or intuitions on the
part of the dgorithm foll owing madine. The processforms a number of steps which can be
easily mechanised.

The third agorithmic feaure Dennett identifies as important to the Darwinian
algorithm is that it produces a guaranteed result. An algorithm will, if exeauted corredly,
always produce the same output in the same circumstance.

As Dennett (1995 points out, any finite processcan be described as an algorithm. The
main advantage of describing the Darwinian processas an agorithm is that it explains how
impressve products, like dl the different forms of animals and dants, can be produced by a
‘set of individually mindless $eps succealing eat ather withou the help of any intelli gent
supervision’ (Dennett, 1995).

The Darwinian processis a type of algorithm computer scientists cdl probabili stic.
Gould (1997, p.36) has argued that, ‘The events of our complex natural world can be
divided into two broad redms: repeaable and predictable incidents of sufficient generality to
be explained as consequences of natural laws, and uriquely contingent events that occur, in a
world of both chaos and genuine ontologica randomnessas well, becaise cmplex historicd
narratives tend to urfurl along the pathway acually foll owed, rather than along any of the
myriad equally plausible dternatives.” The Darwinian algorithm can be described as
probabili stic for two reasons. first, due to unpedictable environmental change - such as a
meteor strike to most organisms; seand, due to the genetic mecdhanisms - such as randamn
mutation (seesedion 3.3.3. Whil e fitnessbiases siccess it alone does nat determine it, for

example, fitness now is no guarantee of fitness in the near future.
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The Darwinian process is aso a member of a dass of agorithms that computer
scientists cdl anytime dgorithms: that is, an algorithm that produces a result whaose quality
is a function d the time spent runnng. Anytime dgorithms can be dassfied as either
contrad or interruptible (Zil berstein, 199§. Contrad algorithms only produce aresult after a
contraded time period; interruptible dgorithms will produce aresult at any time, the quality
of the result being afunction d the time before interruption. The Darwinian algorithm is an
example of an interruptible dgorithm. How well a spedes fits a niche is partly afunction d
the time it has gent in that niche and also a function d how friendy the niche is: the
requirements of some niches are more spedfic than ahers, for example, Antarctic tundra
versus rain forest .

To summarise, the evolutionary process is a probabilistic, anytime dgorithm.
Furthermore, nate that the Darwinian processis a parale processin two senses: first, a
number of organisms of the same type ae ‘tested’ at one time - for example, same or similar
spedes competing for the same niche; seand, a number of different types of organisms are

‘tested’ at one time - for instance, entirely different types competing for different niches.

3.22 Abstract formulations of the Darwinian process
A number of abstrad formulations of the Darwinian process have been produced. In this
sedion we will consider two of them. The American hiologist R. C. Lewortin (1970

proposed a formulation of the Darwinian theory comprising three principles:

1. Different individuals in a popuation have different morphdogies, physiologies, and
behaviours (phenotypic variation).

2. Different phenotypes have different rates of survival and reproduction in dfferent
environments (differential fitness).

3. There is a rrelation between the fitness of parents and the fitness of their offspring

(fitness is heritable).
Lewontin’s formulation explicitly charaderises the evolutionary processas a genera,

medhanism-independent process This general description daes not mention a number of

things. 1) the medhanisms of inheritance or variation; 2) reasons for differential success
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3) the spedfics of the individuals and popuiation involved. Furthermore, as Lewontin (1970
points out, it is not necessary that resources be in short supfy for there to be astruggle for
existence For example, natural seledion accurs even when two baderia strains are growing
logarithmicdly in an excessof nutrient broth if they have diff erent division times (Lewontin,
1970. The logicd conclusion is that any popuation where these three principles hald will
undergo transformation through evolution.

However, there is a potential misinterpretation o Lewontin’s third principle: that is,
that self-replication is necessry for natural seledion. Consider the following thought
experiment described by Braitenburg (1994. In his <enario there ae numerous diff erent
roba vehicles which are cgable of movement and d sensing their surroundngs. These
vehicles are placal onatable in front of a human roba-builder and allowed to move @ou
the table top. The roba-buil der regularly picks, at randam, a vehicle from the table top and
makes a @py of it; however, the processof making a mpy is not exad and small mistakes
are made. Robas that fall off the table ae deamed deal and are never copied by the roba-
builder.

In Braitenburg's <enario, Lewontin’sfirst two principles are dealy observed - that of
phenatypic variation and dfferential fitness Furthermore, the third principle is also observed
- fitnessis heritable. However, the vehicles are obviously nat self-replicaors. The @pying
medhanism has been centralised, in this case in the form of the human observer. The
important point is that Lewontin’s third principle does not only apply to self-replicaing
entities, it also applies to other forms of replication.

The procedure followed by the human roba-bulder in Bratenbug's <senario
Campbell (1974 cdls ‘the blindvariationseedive-retention pocess. Campbel’'s
formulation o the evolutionary processis smilar to Lewontin’s, with a slight change of

emphasis. It also comprises three principles:
1. a mechanism for introducing variation

2. a consistent (explanation follows) selection process

3. a means of preserving and/or propagating successful variants
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The first principle, a need for generators of variation, is the same & Lewortin’s first
principle. The seand pinciple enphasises the neeal for a cetain degreeof stability in the
environment: the rate of change in the environment neals to be slow enough so that the
successul propertiesin ore generation are related to the properties found wseful in the next
generation. The fina point, preserving and/or propagating variants, emphasises that
succesdul (acording to the seledion procesy variants need to be maintained in the
population to achieve a cumulative advantage.

The blind-variation-seledive-retention pocess is aso cdled the generate-test-
regenerate (GTR) heuristic or procedure (Plotkin, 1995. The GTR procedure ad
Lewontin's three principles are domain-independent descriptions of the same alaptive
algorithm. Certain fedures are left unspedfied, for instance, the variation poducing
medhanisms and the fitness evaluation mechanisms, bu essentialy, if these wndtions are
met and the procedure is followed, then evolutionary change will occur.

As mentioned in the dapter introduction, James (1880 pointed ou that Darwin's
scheme emphasised the independence of the variation produwcing mechanism from the
seledion medianism. This distinction can be related to the exploitation-exploration
distinction in search algorithms. Natural seledion provides the exploitation mechanisms and
the heredity medhanisms discussed in the second Felf of this chapter provide the exploration
mechanism. To ill ustrate the generality of this formulation Lewortin's principles and the
GTR procedure will be applied to explaining change in learning and science.

The reinforcement theories of Skinner, and Thorndike before him, viewed
reinforcement as an extension d natural seledion. It isinteresting to nae that Thorndike did
his famous work ontrial-and-error leaning in cas as a student of Willi am James, in James
basement (Schull, 1996. James (1880 was the first to explicitly argue that mental life was
governed by the same principles of variation and seledion as biologicd life. If we regard
behaviours as the basic unit, then phenctypic variation requires there to be differences
between behaviours. Differential fitnessrequires abasis of comparison, agoal - for example,
getting food a finding a mate. If different behaviours produce different effeds and if some
of these behaviours are useful by adiieving certain goas in cetain contexts, then the

behaviours known to achieve goal satisfaction should be used.
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The final principle, that fitnessis heritable, is often the hardest to demonstrate in a
particular process However, as we have seen, variants do nd need to be self-replicaors for
fitnessto be heritable. If the forms of the new variants are informed by the fitter variants of
the previous generation, then fitness can be regarded as heritable. If, for instance, when
trying to solve aproblem you uili se information gleaned from previous trias, then this third
principle can be regarded as stisfied. All that is now required for adaptive dhangeis that the
GTR heuristic is followed. Thus a Darwinian process is a sufficient medchanism for
producing at least some types of learning.

One view of science has been to describe it as a Darwinian process(e.g. Popper, 1986
Hull, 1988l). In this Darwinian process the basic units are @nceptua structures with
phenatypic variation referring to, for example, the different predictions of the theories.
Differential fithesscould be asses=d in relation to the empiricad validity of the predictions
of different theories. Again the problem arises with heredity. Is there a sense in which
theories are informed by previous theories? Both of Simon's (1996 forms of seledivity can
be observed: past theories are used to guide the search for new theories and analogous cases
often provide information abou possble solutions. Again if the GTR heuristic is foll owed,
then evolutionary change will follow.

As gdated at the start of this sdion, thisis nat an exhaustive view of the evolutionary
theory, bu an overview with a spedfic purpose: to show that the evolutionary processis an
algorithmic process with a cetain logicd form and certain limitations. In the Origin of
Spedes Darwin described the set of condtions which he agued were sufficient and
necessry for evolutionary change to occur. Since then a number of theorists have produced
abstraa formalisations of the process (e.g. Lewontin, 197Q Campbell, 1974. The astraa
formulations of the Darwinian processallow it to be used to explain aher areas of adaptive

change: for example, learning and science.

3.3 The heredity mechanisms: the neo-Darwinian formulation

In the 19405 evolutionists and geneticists reconciled Gregor Mendel’s origina findings on
heredity with the theory of evolution described by Darwin. This ‘modern synthesis
acournted for the origin of genetic variation as mutations in DNA as well as for the

rearangement of structures in a processcadled recombination. Subsequent discoveries abou

38



the nature of DNA and the adility to manipulate this moleaule, even to the paoint of inserting
foreign genes into animals and changing their form and behaviour, justified the pasition
taken in the modern synthesis.

Biologists distinguish between the genatype and the phenotype of an organism. The
genotype is the genetic code which, when interpreted, produces a phenctype. The phenctype
refers to the agent produced by the interadion d the genotype and environment during
development. Natural seledion, as described in the previous fdion, ads on arealy present
phenotypic variation. In this section the origin of this variation is examined.

There ae two main oljedives in the next two sedions. The first one is to show how
the genetic code is an arbitrary, digital code (arbitrary in the sense that the mapping between
the genotype and the phenaotype is just one of many possble mappings which could have
evolved). The seaond oljedive is to examine the mecdhanisms which operate on the genetic
code and produce variation. By showing that the genetic code is an arbitrary, digital code, it
follows that the theorems produced from work dore using bit strings in the evolutionary
computation reseach community (described in sedion 3.3.2 are diredly applicable to

biology.

3.31 The genetic code
The genetic code is often described as arbitrary (e.g. Ridley, 1990: that is, the mapping is
one of a set of posgble mappings, bu due to ahistoricd acadent it has the spedfic mapping
foundtoday. One mnsequence of this arbitrarinessis to uphdd Popper’s (1986 theory of
irreducibility and emergence & the fad that the mde is arbitrary meansit is only one of a set
of codes and thus only one of the possbiliti es which can be derived from chemistry. It
shoud be noted that some biologists do nd agreethat the ade is arbitrary, thinking instead
that the aurrent mapping is logicdly necessary. However, | think the evidence - described in
this sdion - suppats the first pasition. In this ssdion Hofstadter’s (1986 demonstration d
this is discussed. Note that it is nat necessary to be familiar with the technicd biologicd
terms in the next two paragraphs to understand the agument of why the genetic code is
arbitrary.

The genetic code forms a mapping between two mutually unrelated damains. In the

biologicd world bah damains are made up o chemica units: the nucleotides and the anino

39



adds (proteins). The nucleotides are passve aents, like words on a page. The proteins are
the adive aents cgpable of expressng genes. Ribosomes, present in every cdl, are
resporsible for trandating between the two languages. In a process cdled transcription,
messenger RNA (mMRNA) copies a sequence of DNA. Then in a process cdled trangdlation,
MRNA binds to aribosome bringing ead ‘word’ of mMRNA together with its complementary
transfer RNA (tRNA), which in turn codes for a single amino acid.

The important point is that the DNA incorporates coded versions of al the tRNA
moleaules, al the necessary enzymes and the detail s of the ribasomes. This means mutations
in the DNA can alter the decoding apparatus, changing the interpretation d the mde - hence
the code is arbitrary even as far as its own interpretation mechanism is concerned.

The mde is now known to be made up d 64 nuwleotide triplets which map orto 20
amino adds and a punctuation mark. Furthermore, the ade gpeas to have some aaptive
feaures (Maynard Smith and Szathmary, 1997%: 1) chemicdly similar amino aads tendto be
coded for by similar codors'; 2) amino adds are @ded for by between ore and six different
codors, with amino adds commonin proteins tending to be spedfied by more codors. These
adaptive feaures of the genetic code can be explained by natural seledionading on dfferent
initial codes when the amino acid-nucleotide mapping was assigned.

One reason for mistakenly thinking the genetic code may not be abitrary was that the
same @de is used throughou the natura world: from humans to baderia However,
Darwin’s theory of descent with modification predicts auch hamologies. structures inherited
from an ealier form, for example, the pentadaayl limb. But why has the amde nat changed?
This is probably becaise, while it may be useful to change the assgnment of one triplet to
ancther (changing the amino add it codes for), it would probably be a disadvantage to
change dl of the assgnments in a particular genotype (Maynard Smith and Szathmary,
1997. What is important abou the genetic code being arbitrary is that, as other codes are
possble, the code can change dbeit rarely and with dfficulty in nature (Maynard Smith and
Szathmary, 1997).

The genetic oode is not only arbitrary, it is digital like the cdes of computers and
compad discs (Dawkins, 1995. However, whereas computers and compad discs use a

binary digital code, DNA implements a quaternary code. A digital code leals to the
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observations noted by Mendel: namely, inheritanceis in a sense discrete (particulate) and nd
continuows (blending). However, while the genetic code is discrete, the dfeds can be
continuous due to the interaction of enzymes and environmental factors.

There ae functional reasons for presuppasing a digital code would be used in
evolution (Dawkins, 1995 Maynard Smith and Szathmary, 1997. The dternative type of
code is an analogue @de, like that used in the old telephore exchanges. However, messages
encoded in continuowsly varying symbals rapidly decgy into ndse a they are transmitted
from an individua to an individual (Maynard Smith and Szathmary, 1997. The Darwinian
processrequires many copies of the mde to be made and hgh fidelity isrequired if like isto
produce like. A property of digital codes is that high fidelity copying mechanism are eaier
to obtain and that digital codes are more susceptible to analysis and manipulation.

Having identified the genetic code & an arbitrary, digital code another question can be
asked: namely, why have a ©de in the first place? It is presently believed that in the ealy
stages of the origins of life, the RNA moleaules invaved were both the genotype and the
phenatype (Maynard Smith and Szathmary, 1997. Also much o the work in evolutionary
computation has used simple one-to-one mappings between the genotype and the phencotype
(Ackley and Littman, 1994. This fad, however, pants to a functional reason for having a
code: that is, the convenience of applying the genetic operators. In ather words, the code is
symbadlic - one domain denates smething in the other - and changes made to ore domain

can lead to changes in the other.

3.32 Genetic algorithms and the Schema Theorem

In the last sedion the genetic code was shown to be an arbitrary, digital code. In this edion
we will focus on the role of the genetic code in the production d variation. One of the first
mathematicd analyses of natural seledionwas provided by Fisher (1930. Fisher’s treament
of natural seledion was concerned with the rates of change of individual genes in
popuations over time (Bonrer, 1980. However, Holland' s (1995 acourt of his Schema

Theorem will be described in this ®dion for three reasons: first, it is an extension to

! Coding unit of messenger RNA compromising a triplet of nucleotides
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Fisher's results as it focuses on coadapted sets of aleles with epistatic’ interadions
(Holland, 1994; secondy, agorithmic descriptions are sought in this chapter and Holland's
work is agorithmic by nature; thirdly, because Holland's results can be nealy summarised
to show the function and roles of the different genetic operators in the prodwction d
variation.

Before antinuing with an exposition d Holland s work, let us briefly consider what is
meant by the term ‘fitness in this context (cf. Dawkins, 1983, chapter 10). Fitnessrefers to
an asped of a design’s relation to a niche, such that the better the design meds the niche's
requirements, the greder the design’s fithess this, | think, was Darwin's origina idea
fitnessas-niche-satisfadion. If fitnessas-niche-satisfadion kases reproduction, then this
leads to Williams (1966 view of fitnessas-reproductive-success However, while
reproductive success is a cnsequence of fitnessas-niche-satisfadion and measuring the
relative numbers of offspring allows ‘fitness to be quantified, dwe to contingency effeds
fitnessas-niche-satisfadion is not a sufficient condtion for reproductive success Note, in
genetic algorithm research the term ‘fithess’ usually refers to fithess-as-niche-satisfaction.

Let us gart by considering the biologicd case before astrading and analysing it
mathematicdly. The cdrromosomes which make up the genotype ae made up d strings of
genes. Each gene can have a number of different forms, cdled aleles. The standard
approach to assessng the fithess contribution d a particular alele is using the techniques
developed in clasgcd mathematicd genetics. In this approad it is assumed that eat alele
contributes something positi ve or negative to the overal fitnessof an organism. The fitness
contribution is estimated by looking at the average fitnessof al the individuals carrying that
alele. The overal fitness of a genatype would be a sum of the cntributions of its
constituent building blocks (Holland, 1995. However, as Holland indicaes, there ae two
major difficulties with this approacd: first, different al eles have different effedsin dfferent
environments, seoondy, aleles interad. Thus the fitnessin a given environment is a non
additive function of the alleles present.

Holland (1994, 199% suggests a way of thinking abou building blocks made up o

multiple dleles. If a chromosome is a string of length L, made up o a series of genes, eat

2 Interaction of non-allelic (allele = representatives of the same gene pasition - locus) genetic dements or their

products
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with ore of two aleles, then there ae 2 possble strings. A building block - schema - is a
number of alleles at different positions on the string: 1%, 2'¥ and 5" pasitions, for instance
The only data @dou fitness relates to the fitness of a whale string. The heuristic for
cdculating the fitness contribution d a schema, suggested by Holland, is to caculate the
average fitnessof strings with the schema present and dvide this number by the mean string
fitness.

Evolution implicitly caries out a similar caculation as reproduction is biased by
fitnessas-niche-satisfadion. This can be shown in a simplified mathematica scenario. In
this enario the fithess of a string diredly determines the number of offspring and the
average string fitnessis 1. If there ae threeinstances of one schemain strings with strengths
1, 0 and 1, then the schemd's fithessis 2/3. In ancther case aschema is in strings with
fitnesses 2, 1 and 2 and thus has a fitnessof 5/3. Above arerage schemata will i ncrease in
the popuation, kelow average ones will be removed. Mathematicaly, this can be postulated
as (from Holland, 1995):

M(b, t + 1) = S(b,)M(b,1)

Where M(b,t) is the number of instances of schema b at time t and S(b,t) is the average
fitnessof b at t. As Holland pants out this is exadly the result required: that is, increase in
the number of fitter schemata (those with the biggest fithess contribution).

However, there is a serious limitation in this <enario. As the length o the string
bewmes bigger, there is an exporentia increase in the number of possble strings  that
sorting through all the strings becmes an intradable task. Also this enario islimited to the
initial population of schemata as there is no mechanism for introducing variation.

Crosover can recmbine schemata without grealy disturbing the desirable outcome of
increasing the frequency of the fitter schemata in the popuation. In crosver arandam point
is picked. In the mathematicd form, if L is the length of a string and L(b) is the length of
schema b, then L(b) / (L - 1) is the probability that crossover will fall within the outer limits
of b,and 1- L(b) / (L - 1) isthe chancethat crossover will not fall with the outer limits of b.
If we asume that every crosover falling within the outer limits adualy disrupts the
schema, then 1-L(b)/(L - 1) is the dhance that the schema will not be disrupted. For
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example, in a string of length 10, a schema vering 4 genes has a probability of being
disrupted of 4/(10- 1) = 4/9 and a probability of not being disrupted of 5/9. Thus for
schemab of length L(b) in a string of length L the chance of b entering the next generation

is:

M(b, t+ 1) = [1 - L(b) / (L - 1)]S(b,))M(b,t)

Longer schemata have ahigher chance of being broken up, bu if they are made up d
small er, fitter schemata, this is nat such a problem. If two parents have identica copies of
the same schemata, then crossover canna disrupt them. It foll ows that recombination rarely
disrupts longer schemata that are made up o combinations of shorter, above average
schemata. If some of these long schemata ae @owve average, then they will spread through
the population.

However, in this enario when an alele no longer occurs in the popuation, the adion
of reproduction and crossover cannd replaceit. Under these drcumstances the dleleis said
to have gonre to fixation. Eadh time this occurs in a string where eat gene has 2 possble
alleles the seach spaceis reduced by %2. Point mutation can be viewed as away of injeding
variety bad into the system - an ‘insurance palicy’ against premature fixation. By randamly
flipping a bit, new schemata ae aeaed and can be subsequently tested. The chance of a
schema increasing in the popuation where Pryi(b) is the probability a mutation will modify

schema b becomes:

M(b,t+ 1) =[1-L(b)/ (L - 1)][1 - Ru(b)]S(b,t)M(b,1)

Before ansidering the dfeds of combining reproduction, crossover and mutation |
want to mention a @mnsequence of point mutations. The phenomenonin question is cdled
‘randam drift’. Randam point mutations in finite popuations can lead to dfferent
charaderistics fluctuating by chance The smaller the popuation, the greder the fluctuations
are in frequency until ultimately one type can become fixed (only avail able type) by chance
alone. For example, Maynard Smith (1994 mathematicaly shows the dfed of randam drift

in an asexua popuation d N indviduas, with separate generations. If the number of
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offspring produwced by an individual has a Poison dstribution, then the number of
generations until al individuals are descended from the same individual is 2N, with a
standard error alittl e greaer than N. The important point is that a cetain amount of randam
change is a consequence of the Darwinian process due to point mutations.

Returning to the previous discusson, reproduction, crosover and mutation can be
combined with the following results: reproduction hased by fitnessas-niche-satisfadion
causes an incresse in above-average, fitness contributing schemata in the popuation.
Crosover generates offspring which are different from their parents by recombining
schemata passed onin reproduction. This process can dsrupt schemata, bu tends nat to if
the schemata ae ather short or made up d above-average short schemata. Mutation ads as
an ‘insurance palicy’ to prevent aleles becoming fixed under the dfeds of differential
reproduction and recombination. Furthermore, mutations produce hill -climbing search which
is very good at locd, myopic optimisation, while recombination provides ‘genetic seach’
which is particularly good at obtaining evidence dou what confers fitness from widely
separated pants in the seach space(Hinton & Nowlan, 1987. Combining these operators
produces a more effective search algorithm than just having the operators alone.

Combining recombination and mutation also avoids a problem that has been dubled
‘Muller’s ratchet’ (cf. Cohen & Stewart, 1995. J. H. Muller pointed ou a serious problem
with asexua reproduction - that is, with heredity and mutation alone - becaise successve
mutations tend to degrade the quality of the product. This foll ows from the observation that
most mutations are bad, thus subsequent mutations are more likely to be bad than reverse
previous bad mutations, and degradation accurs. However, recombination provides a way of
bath bringing together good sets of schemata and eliminating bad schemata & crossover can
combine the good sets from two individuals or produce individuals with bad sets which are
subsequently selected against.

Holland (1999 writes, ‘ The most important feaure of a genetic dgorithm is its ability
to cary on this ophsticaed manipulation d building blocks by ading only on whale
strings’. While the whale string operations (reproduction, crosover and mutation) do nd
diredly ded with schemata and carry out no explicit computations invalving them, genetic

algorithms ad as if such computations were being made and exploited. The aility to
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manipulate large numbers of schemata implicitly through the eplicit manipulation d a
relatively small number of strings Holland calls ‘implicit parallelism.’

There ae some simplificaions implicit in this description o genetic seach. One
simplificaion is that the dfeds of other genetic operators have been ignored: for example,
inversions, deletions and dugicaions. Inversions occur when ‘a piece of chromosome
detadhes itself at both ends, turns head ower heds, and redtadies itself in the inverted
pasition’ (Dawkins, 1989b, p. 3L Inversions may have the following function (Dawkins,
1989h Holland, 1994: Holland's Schema Theorem has down that the distance gart of
different all eles affeds their chances of being transmitted together into the next generation,
the inversion operator functions to seledively increase the linkage (deaease the length) of
schemata. Holland (1994 showed mathematicdly that inversion can deaease the length of
schemata exhibiting above-average performance, and it does this in an intrinsicdly parall el
fashion. The genetic operators of deletion and dupi cation are considered in the next chapter
(see sectiod.2.9.

Ancther fedure of the genotype, which has been ignored in this discusson, are the
large stretches which do na appea to code for anything. These stretches could play a
functional role in bah recombination and inversion. First, in recombination these stretches
could help separate sequences, which means that there would be alarger number of possble
crosover points which will not disturb schemata. Seaond, these non-coding stretches could
stop inversion from destroying the important sequential information reeded in crosover:
that is, if inversion has moved the genes abou in such a way that crossover between
genotypes leals to a resulting genotype with two sets of some genes but nore of others, then
this will probably cause problems for the offspring. The noncoding buffer areas would

allow some rearrangement without disrupting the sequential information.

3.33 Abstract formulation of the mechanisms

An dternative to the Lewontin-Campbell formulation (see sedion 3.2.2 of the Darwinian
processis to focus on the entities involved rather than the process of seledion itself. This
sedion starts with an examination o Dawkins (1982, 1988, 19890 replicaor-vehicle
formulation, followed by adiscusson d Hull’s (19883) problem with the term ‘vehicle’ and

finishing with Williams’ (1992) theory of two domains.
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George C. Williams (1966 influenced evolutionary biologists with his sminal
acourn of seledion aceurring at the genetic level. One biologist so influenced was Richard
Dawkins who subsequently postulated that the evolutionary processinvolved two theoreticd
entities: replicators and wehicles (Dawkins 1982, 1983, 1989h. Dawkins (1989b, p. 254
writes, ‘the fundamental units of natural seledion, the basic things which survive or fail to
survive, that form lineages of identicd copies with occasional mutations, are cdled
replicators.” Dawkins identifies three dtributes of good replicaors: 1) longevity - they must
be long-lasting; 2) fidelity - capable of making good copies of themselves; 3) feaundty -
fertile in making as many good and long-lasting copies of themselves as possible.

Dawkins (1982, 1983, 19890 regards repli cators as anything in the universe of which
copies are made. For example, Cairns-Smith (1991 put forward a hypothesis abou the
origin of life which involved an inorganic replicator: clay crystals. Crystals dropped into a
solution d the same chemicd will replicate their atomic structure. Also the growing crystal
will from time to time bre& into pieces under its own weight. This processinvolved a kind
of heredity: for example, flat crystals will produce flat crystals. Note, however, that this
processdoes not involve aseparate genetic code, the day crystal is areplicator or as Cairns-
Smith (1991) calls it a ‘naked organism.’

Dawkins (1982, 1983) distinguishes two classes of replicaing entities: passve and
adive. Active replicaors have influence over their probability of being copied, passve
replicators do nd. Dawkins aso suggests that something which appeas at first sight to be a
passve replicaor - for example, a Xeroxed shed of paper - may in fad be a1 adive
replicaor - whether the pieceof paper becomes Xeroxed depends on what is written onit.
Braitenburg's roba vehicles (seesedion 3.2.2 are a cae of adive replicaors as they have
an influence over their chance of being copied - in this case, if they can stay on the table.

Another subclassficaion d replicaors is into germ-line and dead-end replicators
(Dawkins, 1982, 1988). A germ-line replicaor is the potential ancestor of an indefinitely
long line of descendant repli cators; a dead-end replicator is not. For example, the DNA in a
zygote is a germ-line replicaor, while the DNA in a liver cdl is a dead-end replicaor
(unless of course, the DNA in the zygote and the liver cdl is viewed as the same DNA, the

same type).
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Dawkins (1982, 1983, 19890 propacses the gene & a paradigm case of an adive,
germ-line replicator. However, the term ‘gene’ has two separate uses related to the dual role
of the genatype. Firstly, the genotype is involved in reproduction, in this sense agene refers
to dfferences in charader which can be mapped orto speafic differences in DNA - like
albinism or Parkinson's disease (Cohen, 1995. Sewndy, the genotype is involved in
development and in this context a gene refers to the DNA which codes for a single protein.
Subsequent discoveries have shown some proteins are cded for by pieces of DNA
distributed throughou the diromosomes - hence Dennett (1995 suggested the term ‘virtual
gene’ would be more gpropriate. To avoid termindogicd confusion, it is better to use the
term ‘replicaor’ instead of ‘gene in the evolutionary context, and just use ‘gene’ in the
developmental context. Holland's <hema (1994, 199% discussed in sedion 3.3.2 can
easlly be generalised to richer structures than a linea schema (as is common gdace in
computer science) and provide a more precise description of replicators.

To introduce Dawkins' second theoreticd entity, the vehicle, let us briefly return to
Cairns-Smith’s (1997 clay crystals. Clay crystals have complex surfaces with many needle-
like aystal projedions. Those structures contain irregularities, dislocaions, at which the
regular lattice structure of the aystal is broken. Because aystals grow by extending their
atomic lattices, the dislocéions are repeded. There is even the possbility of mutations:
spontaneous dislocaions. But what has thisto dowith vehicles? Well, if the surfaceof these
crystals provides the right condtions to caayse other chemicd readions and if these
chemicd readions influence the replicaion d that clay crystal - for example, increasing
fidelity, feaundty, or longevity - then those day crystals will have an advantage over clay
crystals without this chemical assistance. This chemical catalyst of replication is a vehicle.

There ae two pdnts | want to make before considering vehicles in more detail . First,
if areplicator arises, it enters a oyclic processwhich will keg ongoing unlessthe @ndtions
change to make replicaion impossble. Kauffman (1993, 199% is at pains to demonstrate
that these autocaalytic sets are likely to arise quite naturally and gute often. Furthermore,
there is no reason a purpose being suggested for this replicaion. The day crystals, for
example, are pure replicators which can have cetain acddental properties that subsequently

influence their rate of replication.
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The seand pont | wish to make relates to what Cairns-Smith (1991 cdls ‘genetic
take-over’. That is, when ore process can give rise to another which would have been
unlikely or impossble to have aisen by itself. Replicating cycles could arise that produce
more and more cpies of a moleaule, even though that moleaule caana replicae unaided.
For example, areplicating cycle of nucleic adds - RNA, or passbly DNA - could get started
by using clay as a scafolding (Cohen & Stewart, 1995. Thereis a distinction here between
order-from-disorder and ader-from-order. By reducing the problem that order-from-disorder
(self-organisation) has to solve, it isthen passble to postulate how this new found ader can
give rise to further order-from-order.

Returning to Dawkins' theoreticd entities, the vehicle is conceived as the survival
madhines which replicaorstravel in. As Plotkin (1995, p. 9% observes, ‘ The vehicles are the
instruments of replicator preservation. More acarately, becaise of seledion, the vehicles are
the instruments of differential replicaor preservation.! There ae two ways to charaderise
evolution (Dawkins, 1982, 1983), bah o which are @rred. Firstly, evolution is the
external and Jvsible manifestation d the differential survival of aternative replicaors,
seaondy, vehicle seledion is the process by which some vehicles are more succesgul than
other vehicles in ensuring the survival of their replicators.

After Dawkins (1989b- first puldished in 1976 defined ‘vehicles in The Selfish Gene
he went onto questionin The Extended Phenctype (Dawkins, 19833 what the term ‘vehicle
adualy refers to and hav discrete an entity a vehicle acually is (Maynard Smith, 1983.
Dawkins takes the position that the vehicle is what seledion ads on and the replicaor is
what is €leded. There ae anumber of possble levels of seledion - that is, a number of
possble vehicles - but in ead case it is the replicaor - for example, the gene - that is
seleded. Thus Lewontin’s (1970 units of seledion are in fad levels of seledion (Dawkins,
1982. For example, an organism is not a replicaor whereas an arganism’'s genome is
becaise dhanges to a replicaor are pased on to its descendants, and in the cae of an
organism this in not true - acquired characteristics are not inherited.

Dawkins (1989b, p. 25Bstates that the central thesis in The Extended Phenatype is,
‘An anima’s behaviour tends to maximise the survival of genes ‘for’ that behaviour,
whether or not those genes happen to be in the body of the particular animal performing it.
... the theorem could apply, of course, to colour, size, shape - to anything'. Natural seledion
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favours thaose genes that manipulate the world to ensure their own propagation. For example,
while many of the members in socia insed colonies do nd reprodwce, the genetic
relatedness between individuals leals to the indired propagation d their own genes.
Another similar example ae the cdlsin an individua: while the mgority of cdls are deal-
end replicators, their genes are identicd to the germ-line replicaors and so they are
transmitted into the next generation. These vehicular co-operatives arise out of self-interest,
as Gould (1991, p.12) putsit, ‘if the world displays any harmony and ader, it arises only as
an incidental result of individuals seeking (promoting) their own advantage’.

Dawkins' formulation hes aroused a lot of interest in bah hiologicd and phlosophicd
circles (Plotkin, 1995 much of which ignores the fad that there ae two ways of describing
the evolutionary process For instance Eldridge (1995 is at painsto pant out that Darwin’s
original description saw that econamic success - obtaining food, for instance - biases
reproductive success and that such an effed inevitably biases the transmisson d heritable
fedures from one generation to the next. As dated ealier, thisis just one of the two ways
the evolutionary processcan be regarded. The point being made by Dawkinsisthat it isonly
those entities which are perpetuated along lineages - that is replicaors - which are esolvable,
changes directly to vehicles are not genetically propagated.

David Hull (1988&), a philosopher-biologist, has emphasised the adive role of the
vehicle. He renames the vehicle the interador: an entity which interads as a mhesive whole
with the environment to produce differential replicator seledion. Hull stresses that the
interadors are not under the sole wntrol of the replicaors and that interadors are caisal
agents in their own right. Interadors are defined in relation to their effed on seledion - if
they do not affect selection, then they are not interactors.

Let us consider how interadors can have caisal power in the evolutionary process
There ae anumber of different types of seledion mentioned in the literature: for example,
artificial, frequency-dependent, kin, netural, niche and sexual. Of these frequency-dependent
and kin seledion can be regarded as consequences of natural seledion, athouwgh kin
seledion can lea to further developments relating to the alvantages of kin recognition.
Artificial seledion was used by Darwin as a model for natural seledion. However, artificia
seledion is more dosely related to sexua seledion. In artificial seledion the seledion d a

mate is caried ou by a human rather than another member of the same spedes. Sexual
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seledion is necessary to prevent individuals trying to mate with individuals of a different
spedes. If, for example, different individuals had dfferent mate seledion strategies and
those strategies were innate, then natural seledion would seled not only individuals that
mated with like spedes, bu those that mated with the fittest members of their spedes.
Sexual seledion is a mechanism at the level of vehicles, a medanism which gives vehicles
causal power in the evolutionary process.

A seacond mechanism which gives avehicle caisal power in the evolutionary processis
niche seledion. There ae avariety of possble niches and vehicles ek ou different niches.
Again this may be due to innate strategies and can leal to natural seledion d the individuals
with the best niche seledion strategies. However, the result of a vehicle seleding its nicheis
that it changes the seledion presaures operating on it and changes the fitness of the
replicaors inside of it. Both niche and sexua seledion povide alditional medanisms,
which with natural seledion, | think, provide a more comprehensive picture of how
speciation could occur.

The main pant which Hull’s (1988) work emphasises - a point made by Dawkins as
far badk as 1976 (1989b, p. 19t ‘Darwinism is too kg a theory to be wnfined to the
narrow context of the gene’ - isto question a theory of evolution solely based onchanges in
gene frequencies. This led Dawkins (19890 to pcstulate anew type of replicator - a meme.
Examples of memes include tunes, ideas, catch-phrases, clothes fashions, ways of making
pots or of building arches.

Willi ams' (1992 theory of two damains, the material and the cdicd, helps to clarify
the nature of a meme. Williams suggests there ae two mutually exclusive domains of
seledion, ore which deds with materia entities and ancther which deds with information:
the codicd domain. The unit of seledion in the adicd domain he cdls a mwdex: a messge
coded in a medium - however, the medium is not the message. Thus it does not matter if a
message is coded in DNA, in the brain o in a book - they al have the potential to be
replicators. The term meme, for example, is used for nongenetic messages

By postulating a seaond heredity system there is the posshility of a new kind d
genetic take-over - that is, a memetic take-over. For example, in the discusson d the caisal
role of the vehicle in evolution, two medanisms were given which were described as relying

on genetic differences. niche seledion and sexual seledion. However, these mecdhanisms
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need na rely on genetic diff erences - the diff erences could be aquired rather than inherited.
Hence if the memetic system produces a faster rate of adaptive change in a particular case,
then the memetic system could ‘take over’ from the genetic system in that situation.

First, Lamarck (1914 argued that it was the habits - the second reture - that formed
the organism nat the other way around that is, behaviour begets form. If, for instance, niche
seledion is aqquired from the parents through imitation, then there need na be any genetic
difference between individuals for them to end upfollowing different life styles. Anather
effead of niche seledion can be seen in what is metimes referred to as habitat tradking
(Eldridge, 1995 - that is, where rather than adapting to changing condtions animals do nd
change, but alter their conditions to find a niche like the original one.

The seaond mecdhanism, mate seledion, can, in many animals, be aquired rather than
inherited. The biologist Hugh Patterson (cf. Eldridge, 1995 postulates that animals have a
Spedfic Mate Reaognition System (SMRS) which has many comporent mecdhanisms:. for
example, meding and reaognising a prospedive mate, adual mating, successul fertili sation,
and the production d viable off spring that will eventually mate and reproduce. Thus changes
to the SMRS can cause individuals to no longer recognise one another reproductively.

Todd (1996, p. 38Pcaried ou a set of computational experiments to investigate the
effea of leant SMRS strategies and he foundthat ‘ mate preference leaning evolves when
leaned preferences give individuals an advantage in finding appropriate mates'. Todds
simulations $howed that parental-imprinting learning was a mechanism which could increase
the rate of adaptive change and that imprinters were better at adapting to evolving popuation
structures. Mate preference leaning in particular is not only sexually seleded, bu it aso
helps promote sexua seledion through the choices it promotes. Mate preferenceleaning in
some sense dlows an individual to say, ‘These ae the kind d charaderistics | want in my
kids,’ and to choose a mate who will provide the genes more likely to produce those
characteristics.

To sum up, Dawkins has postulated two theoreticd entities, replicators and wehicles.
Replicators are messages coded in dfferent media and replicator survival occurs in what
Willi ams cdl s the codicd domain. Vehicles are survival macdines for genes and the sorts of
vehicles we ae familiar with exist in Williams material domain o in ‘virtua-redity’
individuals in artificial life systems. As Hull has emphasised, vehicles can have caisal
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power in the evolutionary process The discusson d niche and sexual seledion hes
demonstrated how individuals coud have phenatypic differences which are leant and
behaviourally passed on to the next generation without involving the genetic system.

Cairns-Smith argues that one heredity system can give rise to and fall foul of another
heredity system, like the genetic system falling foul of Dawkins memetic system, for
example, suicidal cults. Thus Darwin's grong heredity principle - ‘like prodwces like' - need
not be grounded solely in moleaular biology. In the final part of this sdion it was
considered haw such amemetic take-over could be passble, which seriously undermines the
view of evolution as just changes in gene frequency. The memetic heredity system is

modelled in chapter 5.

34 The myopic nature of the Darwinian process

The Darwinian processis often described as myopic becaise seledion works on the basis of
immediate benefits and nd potential, long-term benefits. Thus the Darwinian process can
seled things which are good in the short term, bu are not the best chaice in the long run.
However, anumber of fadors conspire to reducethe dfed of this feaure of natural seledion
and lead me to the belief that this limitation is neither as degp na as problematic asit at first
seems.

Kauffman (1995 suggests in his book At Home in the Universe that partitioning
procedures are well known in many disciplines by a variety of names, from federalism to
profit centres, to restructuring, to chedks and kalances, to pditicd adion committees.
Kauff man cdl's this partitioning procedure ‘patch logic’ and analyses how it can be gplied
to hard combinatoria problems, like esolutionary search. The basic ideais very simple: take
a hard, conflict-laden task in which many parts interad, and dvide it into a quilt of non
overlapping patches, then try to optimise within ead patch. As this ocaurs, the couging
between parts in two patches aaoss patch boundries will change the problem to be solved
by the parts in the ajacent patches. The madaptation o patches relates to coevolution in
biology.

Kauff man (1995 shows that patching reduces the risk of premature wnwvergence The
reason is that if a system is in a locd maximum and it is lit into X patches, then it is

unlikely that al X patches are dso in their own locd maxima. If one of the X patchesis nat
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in alocd maximum, then that patch will start adapting and so change the condtions of the
adjacent patches. The ontology described in chapter 2, where designs fitted in niches formed
by other designs and so on, implicitly incorporates the notion d patches - designs form
patches.

While the patches procedure demonstrates a means of reducing premature
convergence, there ae two types of convergence (Harvey & Thompson, 1996: genetic
convergence - already mentioned in relation to gene fixation (see sedion 3.3.2), and fithess
convergence to an asymptote. Harvey and Thompson (1996 have demonstrated that these
two concepts are not the same, for example, in ore experiment they foundthat while genetic
convergence occurred within 10 generations, fitness continued to rise for 3000 generations.
They have dso shown that genetic convergence occurs through the adion d genetic drift in
the &sence of seledion. But, more importantly to this sdion, Harvey and Thompson's
work demonstrated how ‘neutral networks can affed myopic seledion. An example of
neutral networks discovered by biologists (cf. Huynen et al, 1999 is that it is possble to
transverse RNA spacethrough seledively neutral mutations: that is, the seledively neutral
mutations prevent populations getting stuck in local optima.

A neutral network of afitnesslandscgpeis defined by Harvey and Thompson (1996 as
‘a set of conreding points of equivalent fitness ead representing a similar genotype; here
conreded means that there exists a path of single (neutral) mutations which can traverse the
network between any two pants on it withou affeding fitness. The function d neutra
networks is to provide avenues into ather areas of genotype spacewhere potentially fruitful
mutations are possible: that is, neutral networks act like ‘worm holes’ in phenotype space.

Harvey (1997 gave asimple example of a neutral network: take agenotype, doube it
and add a switch so that only the first or the second relf isinterpreted. In this case, mutations
can ocaur to the uninterpreted half of the genotype which alow subsequent mutations to
move into areas of genotype spacewith pdentialy fitter phenotypes. This example beas
similarities to dploid genotypes. that is, genatypes like our own which have two sets of
genes and a dominance mechanism.

Holland (19949 investigated daminance and concluded that a given minimal rate of
occurrence of alleles can be maintained with a mutation rate which is the square of the rate

required in the asence of dominance and with the dominance-change operator the

54



combination d alleles defining a schema can be reserved o released in a single operation.
Holland' s work describes, what we cdled previously, neutral mutations. Thus the so-cdled
‘junk DNA’ has ascribed to it two roles. 1) functions as £hema memory; 2) alows neutral
mutations - mutations to unnterpreted sedions of the genotype which can be interpreted in
latter generations.

The dfed of neutral networks can be summarised as follows: redundancy can creae
neutral networks which can transform a fitness landscgpe. Harvey and Thompson (1996
give ar example where afitness landscgpe of any ruggedness can be transformed into a
different, bu related, landscgpe with a single global optimum (and thus there ae no locd
optimain which to beame trapped). Unfortunately, Harvey and Thompson (1996 think that
this beneficia effeda will not be true of al landscapes. for instance landscgpes with a single
global optimum only reachable by random search.

As well as patch logic and reutral networks, a number of other fadors can have an
impad on the myopic nature of seledion. For instance, the evolutionary processoccurs in
gpace Space has the function d separating agents and preventing every agent competing
with every other agent. It takes time for changes to propagate through spacewhich gives
other agents a diance to try out other, passbly initially poaer, avenues. Thus gace
functions to restrict the interaction between agents.

Anocther fador, panted ou to me by Aaron Sloman, which can have asimilar effed to
spatial distribution is that an agent only interads with a limited number of other agents:
seledive interadion. An obvious example is e in sexualy reproducing spedes where
individuals can only mate with the oppdasite sex, which means, in most cases, with ony half
of the popuation. In science, while modern communicaions media esentially remove the
effed of spatial distribution, partitioning still occurs because different reseach goes on in
different disciplines and communicaion ketween the disciplines is less on average, than
communicaion within the disciplines. Thus sledive interadion can be due to physicd
constraints - how many interadions are physicadly possble - or behavioura ones - that is,
who agents ‘choose’ to interact with.

An important case of seledive interadion in evolutionary theory is constrained
reproductive interadion: that is, when an individual is constrained as to how frequently it

can reproduce such as females with a limited supdy of eggs. Constrained reproduction

55



would limit the maximum number of offspring an individual could produce and thus the
genetic influence an individual could have on the next population.

To conclude, Kauffman's work on hard combinatorial mathematicd problems has
shown how bre&king up hard combinatorial problems into a series of interrelated sub-
problems - patches - can reducethe risk of becoming caught in locd optima. Certain feaures
of the natural world provide the necessary condtions for patches to occur. Furthermore,
certain condtions - for example, space the physicd landscape and interadion constraints -
may slow down the rate of evolutionin the short term by preventing new forms immediately
taking precalent in a popuation which allows other trgjedories in design spaceto be
explored. However, these anstraints could prevent a good trgjedory in design spacebeing
followed, for example, if seledive interadion pevented individuals mating and producing
what could go onto beaome afit lineage. Finally, work on reutral networks (see page 54)
has demonstrated how fithesslandscgpes can be transformed by seledively neutral mutations

providing avenues of escape from local optima (Harvey, 1997).

3.5 Chapter Summary

The am in this chapter has been to give an abstrad description d the aurrent state of
evolutionary thinking. The first sedion focused on Darwin’'s theory of natura seledion.
Darwin proposed his idess in the form of a forma argument which can be reaily
transformed into an agorithmic description. The dgorithm is of the following form: if
reproduction is biased by the quality of a structure, then greaer numbers of fitter structures
are propagated.

In the second hlf of this chapter the nature of the heredity mecdhanisms was explored.
These medhanisms are resporsible for both heredity and variation. The genetic code is
shown to be an arbitrary, digital code. The fad the mde is arbitrary alows the results
derived from work on arbitrary codes to be gplied to genetics. Differential reproductionis
shown to be asufficient mechanism for adaptive dhange, but with some serious constraints:
firstly, differential reproduction is constrained to the initial variation; secondy, differential
reproduction alone is an exporential time dgorithm - that is, impradicd for large problems.
The genetic operators of mutation and recombination are shown to augment differential

reproduction by adding variation and manipulating schema.
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While the faa that evolution involves cumulative dhange is obvious, ore passble
misunderstanding neals to be ruled ou. Darwinian evolutionis not a processof randan tria
and error, bu of constrained or seledivetria and error (Simon, 1982: that is, evolution is
not a completely randam process there is a seledivity to the trail s generated. Brute-force
seach is replacal with a combined system of seach and ‘reason’ which can eliminate a
substantial amount of trial and error from the search process.

Simon (1982 identifies two basic kinds of seledivity. One form of seledivity is that
as various paths are tried ou, the mnsequences of following them are noted, and this
information is used to guide further search. The second source of seledivity, identified by
Simon, is previous experience of a similar problem, for instance, when the problem to be
solved is analogous to the ones that have drealy been solved. In cases where the future is
like the past, by seleding the paths which led to previous lutions or their analogues, trial-
and-error seach can be gredly reduced o atogether eliminated. In the next chapter the
thesis that development may be one way in which evolution exploits the second type of
selectivity - analogous problem solving - is examined.

To conclude, this description refleds the core of current evolutionary thinking. All the
mechanisms have been abstraded and shown to be logicdly sufficient for the task at hand:
producing adaptive dhange. However, there ae ways in which the theory can be expanded.
Firstly, Darwin described the principle of heredity as ‘like begets like'. With the alvent of
the neo-Darwinian synthesis, heredity medhanisms have beame synonymous with genetics
and evolution is often charaderised as changes in gene frequency. Whil e reseachers would
agreethat genetics is nat the only heredity medianism, the hold of moleaular biology is ©
strong that it leads to language like: ‘al adaptations are the preservation  DNA’ (Hull,
198&. p.31), or ‘the origin of evolutionary novelty is a processof gene mutation' (Maynard
Smith, 1977, p180 or ‘evolution requires genetic change, mutation' (Dawkins, 1989b, p.
262). To be fair, many of these ammments are probably based on oer-spedfic terminology,
and there ae many reseachers who have considered aher kinds of heredity mecdhanisms
(e.g. Bonner, 1980; Plotkin and Odling-Smee, 1981; Dawkins, 1989b; Moravec 1989).

The main points in this chapter are:
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. The basic Darwinian processis atrial-and-error mechanism which involves variation and
seledion. While Darwin focused onthe role of seledion, the role of constrained variation
is fundamental to the understanding of evolution.

. Darwin developed his theory by aformal argument which can be readily transformed into
an algorithmic description. The Darwinian agorithm is a parallel, probabili stic, anytime
algorithm.

. The Lewontin-Campbell formulation o the Darwinian process aims to show the
sufficient and recessary condtions for adaptive dhange to occur. For example, acording
to Lewontin, phenatypic variation, dfferentia fitness heritable fithess are the sufficient
and necessary conditions for adaptive change to occur (Dunbar, 1982).

. The genetic mechanisms form the base of our current understanding of heredity and
variation. The genetic code is an arbitrary, digital code axd the genetic operators,
recombination and mutation, combine to form a powerful information processng
mechanism which searches for fit combinations of genes.

. The formal anaysis of different genetic operators has down that while Darwin
emphasised the role of seledion, thereisaroleto be played by constrained variation: that
is, variant generators which have been seleded becaise they explore cetain areas of
design space.

. Abstrad formulation d the enitities invalved in the evolutionary process has led to a
seond feredity mechanism being described: the memetic system. Cairns-Smith’s
hypothesis abou the origin of life suggests the posshility of take-over: that is, ore
heredity system taking over another one. Furthermore, there is a potentia for conflict
between the genetic and memetic heredity systems.

. Evidence has been given to show how individual organisms can have acausal role in the
evolutionary process This fador combined with the last point gives rise to the posshility
of adaptive change occurring without necessarily requiring changes in gene frequencies.
. While seledion is myopic, there ae anumber of feaures - patches, spatial distribution,
constrained interadions and seledive mating - which reduce the risk of getting stuck in

local optima.
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In the next chapter, the role of development in exploiting Simon's sond type of
seledivity is discussed, and the daims made by a number of reseachers (e.g. Goodwin,
1994 Kauffman, 1993, 1995, 199%hat self-organisation days a big role in evolution are
examined. A set of computational experiments are described in the seand helf of chapter 4
which investigated, among other things, the seledion d evolvability: that is, the seledion o
heredity mechanisms which produce the fittest variants.
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4. The evolution of evolvability

4.1 Introduction

Central to the structure of this chapter isthe so-cdled ‘f undamental principle of embryology’
described by the German embryologist August Weismann. In this principle, Weismann
distinguished between the development from the genotype to the phenotype ad
reproduction between genotypes (Bagure4-1).

genotype] development] phenotype
U

reproduction
U

genotype] development] phenotype

Figure 4-1: Weismann’s ‘fundamental principle of embryology’.

This £heme shows the separation d development from reproduction and the ladk of a caisal
arrow from phenotype to genotype ill ustrates that the genetic transmisson d aauired
charaders is prohibited. It is now agreed that, with a few exceptions, information orly goes
from DNA to RNA and then to protein and not in the other direction.

Weismann's <heme dealy indicaes the two roles of the genotype: in development
and in reprodwction (Dawkins, 198%). The role of the genotype in reproduction was
examined in the last chapter. In this chapter the following questions are aked: What role
does the genatype play in development? How does the genotype map orto the phencotype?
How is the genotype interpreted? Furthermore, Dawkins (1994, p. 129 postulated that
‘ceatain kinds of embryology are good nd only for individual survival, bu aso for giving
rise to further evolution'. Dawkins (198%) cdled this property ‘evolvability’. In this chapter
development is discussed in relation to the property of evolvability and the hypathesis that
evolvability is selectable is tested using computational experiments.

As drealy stated this chapter is lit into two main sedions. development and

reproduction. In the first sedion, the role of development in evolutionis discussed. The am
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in this edionisto seehow certain properties of developmental programs can contribute to
the evolvability of alineage. For example, the dfeds of: developing from a single cél (see
sedion 4.2); constrained embryologies (seesedion 4.2.2); and abstrad design principles like
moduarity and herarchicd organisation (see sedions 4.2.3& 4.2.4. This ®dion shows
how developmenta programs take alvantage of Simon's semndform of seledivity: reuse of
solutions in similar problems. Furthermore, the role of self-organisation in evolution is
examined in sectiod.2.1

In the second Felf of this chapter the results of a set of computation experiments are
described. These experiments demonstrate two things. First, that evolvability can be seleded
in evolution. Sewnd, that evolvability is a ntext-dependent property: that is, the
performance of a mechanism is partly dependant on the context it finds itself in.

The novel contribution to reseacch in this chapter is to provide an analysis of some of
the ways development can contribute to evolvabilty and, wsing computational experiments,

examine in what conditions evolvabilty-enhancing mechanisms can be selected.

4.2 How developmental programs can contribute to evolvability
Developmenta biology or embryology is concerned with the processes of change which
transform a single cél through embryonic stages to maturity and beyond. Dawkins (1999
suggests cdling this entire process ‘total embryology’. In this ®dion the am is to explain
how the genaotype is believed to map orto the phenotype, na to provide an exhaustive
literature survey on embryology. The description d development will then be used to show
how different embryologies could affect both what can evolve and how fast it can evolve.

To start with, the genotype is often mistakenly regarded as a kind d blue print
(Dawkins, 1988 Cohen and Stewart, 1995. A better metapha is of the genotype &
spedfying aredpe (Dawkins, 1988 Cohen and Stewart, 1995. In the redpe metaphar, the
genotype is regarded as coding for a mnstruction processfor a phenotype. This is the view
of development as a program.

The genotype (program) requires an interpreter - that is, the DNA’s derives its
‘meaning’ by the processof being interpreted (Cohen and Stewart, 1993. In most cases, a
copy of the mother's interpreter (her mRNA) is passed on in the g The maternal
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interpreter has the same function as the start up dsk for a computer (Bonrer, 1995. Thus
both an egg and a genotype are necessary for development to start.

The term ‘gen€’, as aready mentioned, has two senses: the gene wding for a
phenatypic charader and the gene @ding for a protein. In embryology, the term ‘gene’ is
used in the seond sense. However, the view that one gene @des for one protein is
complicated by the fad that genes have been foundto be cded within ather genes and
different stretches of DNA have been found which are interpreted in dfferent ways at
different times during the life cycle.

Let us return to the one-gene-one-protein picture. Some genes code for structural
proteins which are incorporated into dfferent structures within the cédl. Other genes code for
enzymes which caalyse spedfic chemica readions, functioning like @mndtion-adion rules:
if chemicd A and chemicd B are present, then make chemicd C. Y et other genes administer
the adions of other genes. These genes, cdled ‘homeotic genes’, switch on a off other
genes. It has been estimated that in some plants and animals, five percent or lessof the DNA
spedfies how to make proteins, while much of the rest is involved in control sequences
which organise procedures (Cohen and Stewart, 1995).

One feaure of the developmental program which is very important is what computer
scientists cdl ‘condtional branching’. This refers to a program which has control structures
which test for certain condtions at diff erent points as the program is exeauted. Consider the
following example which ill ustrates condtiona branching. The journey from my house in
Londonto Birmingham can be spedfied in a number of ways. For example, | could say go
40 miles aroundthe M 25 and then go 100miles up the M40. Alternatively | could say take
the M25 until you get to the M40 junction (condtion 1) and follow the M40 urtil you get to
Birmingham (condtion 2. In the first route, changes to the lengths of either road would
cause the plan to falil; in the secondroute, the plan is robust to such changes. Many feaures
in development need to be speafied like the seand route to prevent problems sich as
having bores which are too kg for the muscles or there not being enough skin to cover the
surface of a limb.

Two types of condtions can be discriminated in developmental programs: internal and
externa. First, the developmental program is slf-referential (Cohen and Stewart, 1995.
Such self-referential feaures form internal condtions. Seand, the developmental program
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is affeded by environmental condtions - for example, temperature or chemicd
concentrations. The environmental factors thus form external conditions.

As already mentioned, there ae catain complications with the nation d genes, more
spedficdly, with the notion d the genotype-phenotype mapping. There is no ore-to-one
mapping between genes and plenatypic feaures. The same stretches of the genotype can
code for different phenotypic feaures producing a form of information compresson. This
leads to a mnredion ketween feaures cdled pleiotropy. Pleiotropy can constrain what can
evolve because gene danges which benefit one fedure can be detrimental to the
performance of ancther feaure. However, becaise ‘greaer amourts of genetic material are
more susceptible to the randamising effeds of mutation’ (Johrston, 1982, p.33pP thereis an
advantage to shorter and more compressed genotypes. A seledion pressure for shorter
genotypes can produce an increased amourt of pleiotropy. Further developmental constraints
produced by constrained embryologies are discussed in sé@i@n

Now we have dl the amncepts needed to explain an example of a airrent theory of
development and to ill ustrate differential evolvability of embryologies. However, before we
do this let us briefly discussthe phenomenon d genetic assmilation (Bonner, 1995 Scull,
1996, (also cdled the Baldwin effed in relation to behaviour (Baldwin, 189§, or
canalisation in relation to development (Waddington, 1942)).

Genetic asgmilation is when genes infiltrate or become asmilated to reinforce
something that is already occurring (Bonrer, 1995. When, for example, norgeneticdly
determined phenctypic charaders bemme geneticdly determined by mutations which donat
disturb these phenotypic charaders. Mutations which do disturb these feaures are seleded
against. A hypatheticd example would be if an organism grows larger if it developsin a hat
environment and this additional size, relative to aher organisms, provides a seledive
advantage. Genes which cause the same dfed (increased size) as developing in a hat
environment will have no effed on the beneficial phenotypic charader, genes which disrupt
the temperature dfed remove the beneficial phenatypic charader. Thus the genes which
mimic the temperature d@fed will be geneticdly assmilated: that is, phenotypic charaders
which were originally produced by external condtions are, due to the adion d the process

of genetic assimilation, now produced by internal conditions.
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The process of genetic asgmilation can guide evolution. For example, condtionaly
branching developmental programs can, by organisms seking out different environments,
lead to dfferent phenotypes. While the different phenotypes produwced in dfferent
environments are from the same genetic stock the process of genetic assmilation can
incorporate genes which produce the same phenatypic éfeds. The important point is that
mutations - genetic dhange - comes ndin this £heme. In chapter 51 shall discusshow
learning can guide evolution.

Let us return to developmental programs. There ae threebasic, constructive processes
that take place & an egg unfolds into an adult: growth, morphogenetic movements and
cdlular differentiation (Bonrer, 1999. But how can al the phenatypicadly different kinds of
cdls in an organism have the same genotype? As the previous discusson d condtional
branching and genetic assmilation have shown the expresson d the developmental program
is context-dependent. First, a diff erent subprogram may be expressed becaise of condtional
branching leading to dfferent subprograms being switched on semnd, dfferences in the
initial conditions can cause the same subprogram to produce different results.

Early reseach in embryology distinguished two types of developmental programs:
mosaic development - the fate of al the cdls is gelled ou in a set of initia rules; and
regulative development - which we have been dscussng. Later reseach has sown this
distinctionto be oversmplified with development often showing both mosaic and regulatory
phases. The question is: How is the developmental processorchestrated, hav, for example,
does a cell ‘know’ what it is meant to turn into?

The developmenta biologist Lewis Wolpert (1969, 199% postulated a theory of
pasitional information to explain howv development occurs. Wolpert suggests that implicit
within the developing embryo are different condtions which affed the part of the DNA
program which is interpreted and thus affed the ultimate form of both the cédl and the
organism. Initially an embryo begins as a single cél which has cetain chemicd gradients
within it. These demicd gradients have been attributed, in some caes, to a ‘materna
effed’: that is, the distribution d cytoplasmic moleaules is influenced by maternal genes.
When the cdl divides the result of the chemicd gradients within a cdl is that ead o the
daughter cdls will have a dlightly different chemicd makeup. The different chemicd
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concentrations in the cdls cause diff erent genetic subprograms to be adivated and produce,
among other things, cellular differentiation.

However, there ae numerous other fadors involved - for example, as well as chemicd
gradients, eledricad gradients have been foundwhich can aso provide information abou the
pasition d a cdl (Bonrer, 1995. Thus developing cdls have other sources of positional
information.

Genes can aso produwce semndary effeds of enormous consequence by producing
moleaules, cdled cdl adhesion moleaules (CAM), that lie on the outside of the cdl
membrane and affea the alhesiveness of the cdl. CAMs produce differential adhesion
between dfferent cdl groups. As the cdls divide, the whole duster goes through carefully
choreographed changes with certain regions developing at different rates and affeding the
overall form.

The reseach on haneotic genes (see page 62) has led to the discovery of ‘ gene nets
(Bonrer, 1995. This refers to the system of isolating genes into unts that can behave
relatively independently of one ancother. Dramatic examples of this are adieved by
geneticists changing homeotic gene sequences. for example, the antennapedia mutation
replaces an antenna with a leg, or the cockeyel mutation that replaces eyes with genital
structures (Cohen, 1995).

The dfed of gene nets is to produce amoduar structure. Mutations to gene nets can
affed one design independently of other designs. This alows the parallel evolution d
different subsystems. Furthermore, these modues (designs) form the niches of the other
modues (designs), thus produwcing patches (see sedion 3.3.3. Patching, as you will
remember, has the effect of reducing the risk of structures getting caught in local maxima.

Even this very simplified description d the developmental process $iows the
enormous complexity invalved. It is clea that a genatype plus an interpreter and a grea ded
of contextual informationis necessary to produce aphenatype. The paints to remember are:
1) the developmental process can be described as an algorithm - a paralé processng,
condtionadly branching program; 2) some developmental programs have a moduar and
hierarchicd structure. Before examining the mnsequences of these poaints, two questions
will be mnsidered: First, why separate growth from reproduction? Seoond, is it passble to

inspect the genotype to determine the phenotype’s properties?

65



Some organisms can reproduce by the same processas they grow, literally bits of the
organism bre& off and grow into separate organisms. However, many organisms have
separate processes of development and reproduction. Dawkins (19890 postulates three
seledive alvantages - which he cdls, ‘badk to the drawing board’, ‘orderly life-cycle’ and
‘cellular uniformity’ - for separating the two processes.

First, Dawkins (1989 argues that there ae @nstraints to the process of dired
transformation o one design into ancther, for example, while it may be possble to bea a
sword into a ploughshare it would be hard to imagine how to bea a propeller engine into a
jet engine. If the majority of changes bring abou bad results, then the transformation suffers
a problem, equivalent to Muller’s ratchet (seesedion 3.3.2), where there is an acamulation
of bad results. What is required is for the designer, informed by the old ideas, to go bad to
the drawing board and redesign the product. Thus while a tange to a design product may
require many caefully co-ordinated changes, a thange to a design process may bring abou
all those changes in one go while leaving the original product untouched.

Seoondy, Dawkins (1989b, p. 26R argues that, ‘well-tempered regulations of gene
adivity are aprerequisite for embryologies capable of crafting complex organs and tisaues'.
The growth cycle provides a dock by means of which embryologicd events can be triggered.
Development has been described as a awndtionally branching processand a growth cycle is
another way of providing the necessary conditional information.

The third reason Dawkins (19890 gives for separating development from reproduction
isagenetic one. If an arganism reproduces by the same processit grows, then a mutation can
arisein any cdl in any part of the organism. However, if an organism produces, for example,
spores, then a mutation to a spore will, through development, come to affed all the cdlsin
the new organism. Thus, the second case has a strict genetic identity which the seledive
process can act on.

To sum up, Dawkins gives three seledive alvantages of separating development from
growth. Current work in evolutionary computation hes largely ignored development (Ackley
and Littman, 1994. However, while natural seledion ads on ptenctypes, what is sleded is
the genaotypes: the anstruction processes for phenatypes. In the second Felf of this chapter a
consequence of this processproduct distinction will be examined, that is, where seledion

acting on the phenotype can also select between different generators of variation.
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The second question to be discussed was: Is it possble to insped the genotype to
determine the phenotype’s properties? Developmental biologists think na (e.g. Wolpert,
1995. Wolpert points out that withou an egg to provide the rred initia condtions and
the initial interpreter, a genotype is useless Moreover, the process of interpreting the
genotype is condtional on the context. Thus bath the program (genotype and egg) and the
inpu (initial condtions of egg and environment) neead to be known if the phenotype is to be
computed. Withou knowing the exad initia environmental condtions there is the
posshility of chaos effeds: that is, very small differences in initial condtions could lea to
very big differences in phenatypes. Even if al this information were known - about the
genotype, the interpreter and the environmental conditions - then the cmputation required to
examine the phenotype’s properties would be immense (intractable in practise).

An additional complication to this computation is that to assess the fitness of future
phenaotype’s requires knowledge of the environment that that phencotype is to be foundin.
The longer the developmental process takes, the greder the number of environmental
paosshiliti es that have to be taken into acourt. Thus, as discussed in chapter 2, the basis of
comparison which is necessary to assss the fitness of a design can change, and these
changes would have to be predicted if the fithess of future phenotypes was to be sssessed
correctly.

Whil e this intuitive agument suggests that the computationis not possble in pradise,
some reseachers (e.g. Langton, 1989 believe that there ae theoreticd reasons preventing
this cdculation. Turing's famous work on the halting problem proved that a machine could
not be @nstructed which, given any other machine and its dart state, could determine in a
finite time whether or not the machine would read its halt state. Turing's work has been
extended, by Rice and ahers (cf. Hopcroft & Ullman, 1979, to show that determination d
any nontrivial property (a property of belonging to nahing or to everything) of an arbitrary
machine is not possible.

However, Turing's work demonstrated that a single machine wuld na be cnstructed
that could determine, in a finite time, whether any other macdiine would terminate. In cther
words, cetain madines could determine whether a subset of possble madines could

terminate. Thus while it may not be passble to construct a machine that can determine dl of
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a genaotype's phenotypic properties, machines could be nstructed that could determine
certain properties.

To sum up, some developmental programs appea to be written in a procedural-like
language in the form of a @ndtionaly branching and moduarly organised, herarchicd
control system. The ontribution o these fedures to the evolvability of a lineage ae
discussd in sedions 4.2.3& 4.2.4 A number of advantage have been discussed for having
separate processes of development and reproduction, for example, ‘badk to the drawing
board’, ‘orderly life-cycle’ and ‘cellular uniformity’.

Finally, it appeas that when generating new designs it may not be possble - in
pradice, maybe in principle - to determine their properties. This implies a need for a tria
and error process guided hy feedbadk, to evaluate the variants. The Darwinian algorithm is
such a process In fad, Langton (1989 argues that it is quite likely that the Darwinian
process is the only efficient, general procedure for finding genotypes with spedfic
phenotypic traits.

4.21 Origins of order
Proteins are amgjor classof biologicd maaomoleaules whaose wide range of structural and
functional roles in cdls is refleded in the diversity of their chemicd structures and three
dimensional shapes (Rees and Sternberg, 1987. The organisation d a protein is lit into
four levels: primary, secondary, tertiary and quaternary. The primary structure refers to the
chemicd formula of the protein and describes the linea sequence of amino adds. The other
levels relate to how the linea sequenceis organised in space In the previous ®dion it was
described how the genotype wdes for a protein. Spedficdly, the DNA only codes for the
primary structure of a protein. The spatial organisation d the structure aises gortaneously
as the structure seeks a lower energy state. However, in some caes other proteins can
influence cetain fold choices (Cohen and Stewart, 1995. The ceatral point is that the
genotype ades only for the primary organisation, the threedimensional shape aises out of
self-organisation - ‘order for free’.

It has been known for many yeas that physicad systems exhibit sporntaneous order: an
oil droplet in water forms a sphere and snowflakes exhibit a six fold symmetry. A number of

scientists argue that self-organisation hes a central role to play in development and evolution
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(e.g. Kauffman, 1993, 1995, 1997Goodwvin, 1994. What is being recognised is that there
are cetain charaderistic types of order which emerge from the interadions of many diff erent
comporents (Goodwin, 1994. Mathematicd models of dynamicd systems have led to a
formal understanding of this phenomenon. For example, numericd computations on simple
nortlinea systems reveded ursuspeded invariants that predicted, for broad classes of
systems, at what point they would change from orderly to chaotic (Smon, 199§. The
understanding which has been gained in many aspeds of chaos, however, does not imply we
can predict the behaviour of such systems.

Let us consider some of the work of Kauffman (1995 who hes been investigating the
phenomenon d self-organisation for over 30 yeas. Using computational experiments he has
begun to understand the condtions in which order arises. In these experiments he used
Bodean networks. These networks can be dharaderised by two variables: N, the number of
nodes and K, the number of inpus per node. A network is generated by randamly assgning
to eat nock K inpus and, again at randam, a Bodean function. Kauffman (1997 studied
the generic properties of classes of networks, or ensembles, by seleding randam samples and
anaysing many such samples to provide an understanding of the typicd behaviour of
members of each ensemble.

Kauff man has foundthat two feaures of the way networks are constructed can control
whether they are in an ordered regime, a daotic regime, or a phase transition regime
between these. One fedure is the number of inpus a node has. Sparsely conreded networks,
with K =1 o K =2, exhibit order; highly conneded networks exhibit chaos. A semnd
fedure that controls the emergence of order or chaos is bias in the @ntrol rules. For
example, AND and OR rules tend to create order.

Kauffman’s results can be best understood by considering a cncrete example. When
K =1, randamly started networks quickly fall into very short state g/cles, so short they often
consist of one state. Such networks rapidly become frozen into a single state.

At the other end d the scde when K = N, the expeded median state gycle length was
the square roat of the number of states. Kauffman found that these networks do exhibit
order. However, as K =N networks have state ¢ycles whose expeded lengths sdes
exporentially with the size of the system, in large systems these state ¢ycles are nat

observable and thus date dhanges appea randam. For example, a network with 200
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variables would have astate g/cle of length 2'°° (approximately 10°%) which at arate of one
state gy/cle per microsecond would require some billi ons of times the history of the universe
since the big bang 14 billion years ago to orbit the state cycle.

Kauff man foundthat the number of attradorsin aK = N network is N/e, where eis the
basis of the natural logarithm. Thus in a network where N = 100000there ae &ou 37000
attradors. Kauffman has aso been able to show that K = N networks show the maximum
possible sensitivity to initial conditions.

Chaos in systems with a few continuots differentia variables is defined as when the
systems fal onto ‘strange dtradors where locd flow is divergent but remains on the
attrador (Kauffman, 1997. Kauff man cal s thislow dimensional chaos to dstinguish it from
high dmensional chaos: systems with a large number of variables in which the length of the
cycle scde exporentially with the number of variables, and which show sensitivity to the
initial condtions. Even though bah behaviours are well established, the relation between
low dimensional chaos in continuows g/stems and the high dmensional chaos described here
is not clear (Kauffman, 1997).

Order arises when K = 2. The expeded length of the state gycles in these networks is
in the order of the square roat of the number of nodes. Therefore, when N = 100000there ae
about 317 states per cycle. To reiterate this point, ou of a possble 21°9°%° or 10°°°%° states
the network visits only abou 317 d them. In this classof system, their dynamics cause them
to move to a very small region d the state space ad stay there (Kauffman, 1995. Also
neaby states converge in state space In ather words, two similar initial patterns will li kely
lie in the same basin o attradion, hence driving the system to the same dtrador - they are
nat chaotic in the sense described ealier (Kauffman, 1995. And if a system undergoes a
mutation - a dange to its wiring or logic - it does not beaome daotic, mutations cause
gracdul aterations in the system’s behaviour. Becaise small changes lead to small changes
to the basins and attradors, these systems are more realily tuneale or evolvable. Finaly,
these systems are not too aderly, they are not frozen like the N = 1 networks, bu are
capable of complex behaviour.

To conclude, Kauffman’'s experiments demonstrate some of the cndtions out of
which order can arise: in Bodean networks order is dependent on the number of inpus and

the Bodlean functions used. Even in randamly generated, sparsely conreded systems using a
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subset of the Bodean functions there is immense order. But how does all this relate to this
thesis? Kauffman's original work was on gene networks and hav development arises out of
them. As his results demonstrate, there is inherent order in such systems and they are
relatively robust to small mutations and which lead to gracdul, paentialy seledable,
changes in system behaviour.

The astrad mathematicd properties discussed in this edion are inherent in systems
made up d interading nodes regardless of their material construction. For example,
Kauffman dscovered that neural networks are fundamentally the same kind d system as
gene networks and thus will have many of the same properties (Waldrop, 1994).

The possble roles of self-organisation in evolution reed to be better understood. For
example, seledion daes nat have to sort through all 1ogicdly possble states, just the caisally
possble ones that arise in that type of system. And even chaotic systems can be tamed by

substituting control for prediction:

‘Few of the adaptive systems that have been forged by evolution a shaped by
man depend on pediction as their main means for coping with the future. Two
complementary mecdhanisms for deding with changesin the external environment
are often more dfedive than prediction: homeostatic medanisms which make
the system relatively insensitive to the environment and retrospedive fealbadk

adjustment to the environment’s variation.” (Simon, 198249)

The reseach into self-organisation hes aso demonstrated that chemica cycles are
highly likely to arise spontaneously. Cairns-Smith’s hypaothesis of the origin of life required
chemicd cycles to form naturaly (see sedion 3.3.3. Furthermore, the evolution d life is
often assumed to be highly improbable - the question is, hov improbable? As we discover
more of the medianisms involved in evolution, it appeas that with eath new find the

probability of the evolution of life seems a little more likely.
4.2.2 Kaleidoscopic embryologies

Richard Dawkins (198%, 1996, using techniques now referred to as artificial life (Langton,
1989, has explored how different embryologies can lead to a property he cdls
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‘evolvability’. Dawkins (1989b, p. 21Pwrote, ‘ Perhaps there is a sense in which a form of
natural seledionfavours, na just adaptively succesgul phenotypes, bu a tendency to evolve
in cetain dredions, or even just atendency to evolve & all.” For example, if the members of
onre lineage alapt faster than those of ancther, then the fittest individuals and their associated
mechanisms will be naturally selected.

In the second helf of this chapter, | document some of my own computational
experiments which, among other things, demonstrate that evolvability can be seleded for by
evolution. The am of this sdion, havever, is to examine Dawkins computational
experiments in embryology and relate them to the previous description of development.

Dawkins engineaed two initial condtions into his world: i) the entities must be
replicators (seesedion 3.3.3; ii) for seledionto ad there must be an embryology which the
genes differentially influence Dawkins wrote a ©mputer program around two main
procedures. develop and reproduce Seledion was left to the aethetic taste of a human
chooser.

Two kinds of embryology can be distinguished: unconstrained and constrained
(Dawkins, 198%). An urconstrained embryology has maximum generality, for example, a
picture on a mwmputer screen with ore gene for ead pixel. This approach, havever, has a
number of problems. Not only are huge aeas of the space of possble phenotypes
uninteresting, but the time it would take to navigate in such a space is impractical.

Constrained embryologies, on the other hand, spedfy smaller numbers of phenotypes
and have asmall er set of genes. In Dawkins' program these genes control drawing operators.
For example, genes could code for families of lines: straight lines with genes controlling
lengths and angles and curves whose polynomial coefficients are spedfied by genes.
However, Dawkins chose to use reaursive procedures - procedures which as part of their
execution call themselves.

Dawkins basic embryology consisted of a tree function which receved as inpu a
length - a depth of branching (spedfied by one gene) - and an array of values (spedfied by
eight genes). In the original program all the embryologies had bilateral symmetry.

What the experiments with constrained embryologies demonstrated was that diff erent
embryologies affeded the acceshility relationships between plenotypes. That is, the
embryology defines what phenotypes are possble and the relation between phenctypes. For
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example, if the distance between phenotypes was measured in mutations, then ore
embryology may cause two dfferent phenotypes to be asingle mutation away from eat
other, whereas ancother embryology may placethe phenotypes many mutations away from
each other.

Dawkins (1989 further developed his program by adding more symmetries to the
embryologies and incorporating genes to control which symmetries were switched on o off.
The alditional symmetries changed bah what phenotypes were posshle and the distance
between plenotypes measured in mutations. But by their very nature onstrained
embryologies can ony produce asubset of possble phenatypes - for example, in this case
only those with even numbers of symmetries.

Dawkins (1996 aso added the property of segmentation to his embryologies. This
allowed a new subset of phenotypes to be explored. Genes were alded which controll ed
segment gradients all owing individual segments to vary in size. In Dawkins (1996 second
program Arthromorphs the fixed repertoire of genes was replacel by a genetic system which
incorporated the genetic operators deletion and dupicaion. These operators allowed the
length of the genatype to vary resulting in an open-ended search space A grammar was
developed in which eat feaure of the athromorph's body is influenced by three genes.
There is a gene spedfic to the segment concerned, a gene that applies to the whole animal,
and a gene that applies to a sub-sequence of segments - cdled ‘tagma’, such as the thorax.
The dfed is quite dramatic, mutations can affed a single segment or be propagated dovn a
number of segments or even the whole body.

Dawkins computational experiments ill ustrate anumber of the properties discussd in
the sedion on avelopment - for example, reaursion and condtional branching. Constrained
embryologies can limit the search for phenatypes to spedfic aeas of the phenotype space
and change the accesbility reationship between phenotypes. Thus constrained
embryologies can increase the evolvability of an entity by reducing the number of trials
possble & ead generation and reducing the distance in genatype spacebetween genatypes.
However, there ae inherent costs incurred by using constrained embryologies:
developmental constraints. Finally, the property of segmentationin the athromorph program
demonstrated how subcomporents can be reused. Reuse of subcomporents is discussed in

the next two sections.

73



4.23 The architecture of complexity
There have been a number of suggestions for linking hierarchies with evolution (e.g.
Lewontin, 197Q Plotkin and Odling-Smee 1981 Sdthe, 1993 Eldridge 1995 Gould,
1997. Hierarchy theory was mentioned in chapter 2 (see sedion 2.4.1) with reference to
Herbert Simon's (1982 article, ‘The Architedure of Complexity’. Simon set out to show
that hierarchic structures - of the ‘box within box’ form - have cetain properties which
allow them to evolve faster than nonthierarchic structures. In this dion Simon’s argument
is considered and related to development as described in the previous sdions and the
Schema Theorem described in the previous chapter (see sedion 3.3.2. The am in this
section is to see how development could take advantage of ‘stable intermediary forms’.
Simon explains the concept of stable intermediary forms using the parable of two
watchmakers, Hora and Tempus. Both watchmakers make watches consisting of 1000 arts.
Tempus constructs his watches 9 that if he puts down a partly assembled watch (which can
be up to 999 units) to, for example, answer the phore it falls to pieces. Hora, onthe other
hand, pus his watches together in ten element suburits, which are further combined urtil the
watch is completed. If Hora’s phone rings, then he loses a maximum of nine units.
Simon analyses this senario mathematicaly: if the probability of a phore cdl is p,

then the probability of Tempus finishing a watch is (1 - p)°®

with an average lossof time
with ead interruption d 1/p parts. Hora has to complete 111 assemblies per watch. The
probability of him being interrupted per unit is (1 - p)*° with an average lossof five units. If
p is abou 0.01, then it takes Tempus on average gproximately 4000 times longer to
asemble awatch than Hora. Thus Hora' s watches built with the ad of subassemblies (stable
intermediary forms) pays bad< 4000fold relative to Tempus's watches which are mnstructed
without subassemblies.

Simon (1996 defined the span of a system as the number of subsystems into which a
system can be partitioned (see page 17). The mathematicd analysis of the HoraTempus
parable has been extended so that, ‘if there exists a hierarchy of potential “subassemblies,”
with abou the same span s at ead level of the hierarchy, then the time required for a

subaseEmbly can be expeded to be dou the same & ead level - that is, propationa to
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1/(1 - p)°>. The time required for the asembly of n elements will be propationa to logs n,
that is, the number of levels in the system’ (Simon, 199690).

As Simon is well aware, this senario incorporates many simplificaions. However, he
lays to rest four possble misunderstandings. First, the theory speafies no teleologicd
mechanism. Complex forms can arise from simple ones by purely randam processes; while
diredion is provided to the process by the stability of the cmplex forms once they come
into existence.

Seoond, Simon pants out that not all complex systems are hierarchica - for example,
polymers. However, Simon suggests regarding these & gedal cases - hierarchies with a
span of one.

Third, Simon pants out that the evolutionary processdoes nat violate the second law

of thermodynamics:

‘The evolution d complex systems from simple dements implies nothing, ore
way or the other, abou the change in entropy of the entire system. If the process
absorbs free @ergy, the complex system will have asmaller entropy than its
comporents; if it releases free @ergy, the oppasite will be true... For the
evolutionary processwe ae describing, the eyuilibria of the intermediate states
need have only locd and nd global stability, and they may be stable only in the
intermediate stage - that is, as long as there is a source of free @ergy to draw
upon.’ (Simon, 1982, d91)

Finally, because organisms are nat energeticdly closed systems, there is no way to
cdculate the diredion a rate of evolution puely from thermodynamic considerations. For
example, the anount of entropy invalved in the formation d a single cdl is trivialy small
and the ‘improbability’ of evolution has nothing to do with this quantity (Simon, 1996).

The main pant being made in this ®dionis that stable intermediary forms can exert a
powerful effed on the evolutionary process Simon's (1996, p. 198 clam is that ‘the
potential for rapid evolution exists in any complex system that consists of a set of stable
subsystems, ead operating nealy independently of the detailed processes going on within
the other subsystems, hence influenced mainly by the net inpus and ouputs of the other

75



systems.’” This argument also implies that many complex systems are hierarchicd becaise
they are the ones which had time to evolve. Thus, a moduar-hierarchicd organisation is a

property which can potentially increase the evolvability of a structure.

4.24 Genetic programming

Reseach in evolutionary computing substantiates Simon's claims that subassemblies can
affed the rate of evolution. In this edion Koza's (1992, 1994, 1995work on genetic
programming provides a mncrete ill ustration d the power of stable intermediary forms, as
well as demonstrating the advantages of non-fixed length genotypes.

Koza (1992 propcsed genetic programming as a domain-independent method for
evolving computer programs that solve, or approximately solve, problems. The technique of
genetic programming is an extension d Holland's work on genetic dgorithms (see
sedion 3.3.2. Koza (1992 identified what he cdled ‘a representation problem’ in genetic
algorithms which limits their performance Thus he substituted general, hierarchicd
computer programs of dynamicdly varying size and shape for the standard fixed length hit
strings (Koza, 1999. This new representation all ows genetic programming to incorporate
more reaily certain adaptively beneficial properties - such as iteration, reaursion, and
dynamic variability.

The basic premise of genetic programming is the same & that of genetic dgorithms:
large popuations of computer programs are geneticaly bred and the Darwinian principle of
survival and reproduction o the fittest, along with genetic recombination, are used to
produce the next generation. Thus genetic programming starts with an initial popdation o
randamly generated representations of computer programs consisting of functions and
terminals appropriate to the domain. The functions can be standard mathematica operations,
standard programming operations, logicd operations or domain-spedfic functions. Each
individual computer program in the popuation is measured in terms of how well it performs
in a particular environment.

The reproduction process involves sleding, in propation to fitness computer
programs from the aurrent popuation d programs, and all owing them to survive by copying

them or their offspring into the new popuation. The genetic process of recombination is
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used to creae off spring computer programs from two parents. The mmputer program has
the form of a parse tree which allows swapping of subtrees in the process of recombination.

There have been two advances in genetic programming which are diredly relevant to
this thesis. First, automaticaly defined functions (ADFs) can be seen to be an
implementation d Simon's dable intermediary forms. Seoond, architedure evolving
operators gives a domain-independent acourt of the function d certain genetic operators
used in Dawkins' embryologies. Each of these developments in genetic programming will be
considered in turn.

The work described in Koza's (1992 first book Genetic Programming had the
limitation that the vast mgority of its evolved programs have asingle part: one result-
producing main part, bu no subroutines. Koza (1995, p. 73% writes, ‘I believe that no
approad to automated programming is likely to be succesgul on nontrivia problems unless
it provides ome hierarchicd medanism to exploit, by reuse or parameterization, the
regularities, symmetries, patterns, and moduarities inherent in problem environments.” So
Koza (1994 developed atechnique for evolving multi ple-part programs consisting of amain
program and one or more reusable, parameterized hierarchically-called subprograms.

The subprograms are cdled automaticdly defined functions (ADFs). These ae
functions that are dynamicaly evolved duing arun d genetic programming and which may
be cdled by a cdling program that is concurrently being evolved. Thus a popuation wsing
ADFs consists of programs with a hierarchy of reusable function-defining branches along
with a main result-producing branch.

Koza (1994 has dhown that genetic programming with ADFs is cgpable of solving
numerous problems. The main pant is that using ADFs reduces the momputational effort -
the number of fitnessevaluations - required to solve aproblem (provided the difficulty of the
problem is above a cetain relatively low bre&-even pdnt). The reason for thisis that even
if @ compoundfunction is to be used more than orce it only has to be discovered orce
Subsequently, programs can incorporate anumber of instances of this function in dfferent
locaions and the design can be optimised. Thus, as Koza's (1999 experiments show both
leaning efficiency and parsimony appea to be the properties of genetic programming with
ADFs.
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There is aso evidencethat the results obtained using genetic programming with ADFs
is gdedle. Koza (1995 has dhown that with several problems for which a progresson o
scded-up versions were studied, the omputational effort increases as a function o problem
size & a slower rate with ADFs than withou them. Also, the average size of solutions
similarly increased as a function d problem size & a slower rate with ADFs than withou
them.

However, the use of ADFs leals to another problem: when ADFs are used it is
necessry to determine the achitedure of the yet-to-be-evolved program. The spedficaion
of the achitedure mnsists of: a) the number of function-defining branches in the overall
program; b) the number of arguments possessed by ead function-defining branch; c) if there
is more that one function defining branch, the nature of the hierarchicd references all owed
between the function-defining branches. While sometimes the achitedura choices flow
diredly from the nature of the problem, Koza (1995, p. 73%indicaes that, ‘in genera, there
is no way of knowing a priori the optimal (or sufficient) number of automaticaly defined
functions that will prove to be useful for a given problem, or the optima (or minimal)
number of arguments for eat automaticdly defined function, a the optimal (or sufficient)
arrangement of hierarchical references’.

Koza (1994 suggested a limited means of automating the process of architedural
choiceby starting with an initial popuation d diverse achitedures and allowing seledionto
pick the fittest architedures. However, this procedure was incgpable of producing new
architeaures on the run. To perform dynamic reconfiguration d architedures, Koza alded
biologicdly inspired procedures. Genetic operations smetimes lead to deletions and
insertions of genetic material. For example, in nature this can lead to gene dugicaion - the
same protein being coded for twice If one of these genes is changed, then the origina
functionality can be maintained by the copy and the new functionality can be explored.

Koza defines gx procedures based oninsertion and deletion: 1) branch dugication; 2)
argument dugicaion; 3) branch creaion; 4) argument credion; 5) branch deletion; and 6
argument deletion.

Figure 4-2 shows that genetic programming with ADFs and architedure dtering
procedures can evolve solutions faster and produce more parsimonious lutions than

genetic programming withou these fedures. Thus ADFs and architedure dtering
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procedures can be viewed as an automated way to change the representation d a problem
while solving the problem (Koza, 1995. These results suppat Simon's mathematica

speculations described in the previous section.

Approach Runs E W S

1 14 5,025,000 36,950 469.1
2 14 4,263,000 66,667 180.9
3 25 1,789,500 13,594 88.8
4 25 1,705,500 14,088 130.0
5 25 1,261,500 6,481 112.2

Figure 4-2: Tests using the Boolean even-5-parity problem and five gproaches: 1) withou
ADFs; 2) with ADFs and initial architedurally diverse popdation; 3) with ADFs and
architedure dtering procedures and crosover with pant typing; 4) with ADFs and good
choice user supgdied architedure and crosver with pant typing; 5) with ADFs and good
choice user suppied architedure and crossover with branch typing. Koza used three
performance aiteriac computational effort, E (with 99% probability); the wall clock time, W
(with 99% probability); and the average structural complexity, S (Koza,1995).

4.25 Summary on development

This sdion has focused onanumber of fadors that can affed both the rate of evolution and
what can evolve. First, the developmental process was described as a biochemicdly
implemented, algorithmic process- a moduar, condtionally branching, hierarchicd control
system.

The role of self-organisation in evolution was examined with regard to bah chaos and
complexity theory. Chaos effeds are dharaderised by complex behaviour from simple
systems; complexity theory goes the other way with complex systems producing simple
behaviour. The main pant was that systems made up d interading comporents can
naturally have orderly behaviour which can grealy asdst evolutionary search. For example,
sparsely conreded systems demonstrate anatura robustness to perturbation and graceul
changes in behaviour when perturbed: that is, the gradual changes which natural seledion
favours. Furthermore, the natural robustness of sparsely conneded systems credes neutral

networks with the advantages discussed in se8ti®i3.
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Hierarchy theory was described in sedions 4.2.3 There ae anumber of reasons to
believe that seledionwould favour moduar and herarchicd structures. First, the ontologicd
picture | put forward in chapter 2 (seesedion 2.4) suggest how new functiondity is derived
from either structural reorganisation a creaing new structures (by, for example, adding to
old structures). Seaond, Kauffman’'s patch logic (see sedion 3.3.3 shows how partitioned
systems are less predisposed to premature cnwvergence Third, Simon showed how
hierarchies of stable subassemblies can evolve faster than nonhierarchic structures (see
sedion 4.2.3. As Koza's work with automaticaly defined functions (see sedion 4.2.4
shows Simon’s claim has been successfully tested in one domain.

The main points so far are:

» That embryologies are dgorithms with certain properties, for example, condtionally
branching, modularity, and hierarchical organisation.

* A number of fadors prevent evaluating the fitness of potential genotypes, for example,
information about the program (genatype and egg), the input (initial condtions) and (as
fitness is relative) the other phenatypes all needs to be known and the subsequent
calculation would be formidable.

» Structures form sportaneously from self-organisation which can aid the processof natural
seledion. Self-organisation can reduce the number of passble states a system will go into
and cetain systems, those of the ordered regime, exhibit a stability that produces the
gradual changes most easily favoured by evolution. Also self-organisation can provide the
initial order required for processes to get started, like the origin of life (seépage

» Certain abstrad design properties, such as moduarity and herarchicd organisation, can
increase the evolvability of a design. For example, using a moduar representation in the
genotype creates discreet and thus recombinable features.

* A moduar design has a number of advantages, for example, it alows reuse of
comporents and thus removes the nead of having to evolve the cmmporent ead time, and
it forms Kauffman’s patches reducing the risk of structures getting caught in local optima.

« Simon's ows how hierarchicdly-organised structures can evolve faster than flat
structures by allowing sets of building blocks to acaimulate & different levels which

prevent higher level building blocks having to be constructed from scratch.

80



To summarise, development can affect evolution in the following ways:

» Constrained embryologies can leal to useful trial-seledivity thereby reducing the anournt
of trial and error necessary.

* The work on self-organisation shows how it may be possble for different types of
structure to facilitate or inhibit adaptive change.

» Embryologies with a moduar design and/or hierarchicd structure can in certtan
circumstances evolve faster than embryologies without these abstract design principles.

» Phenatypic plasticity produced by the developmental program can guide genetic evolution

by allowing genetic assimilation.

In the final half of this chapter some computational experiments are described which

show that evolvability can be selected for.

4.3 Reproductive mechanisms and the selection of evolvability
The am of this work is to explore how an evolutionary process can seled the mechanisms
that lead to the fastest rate of adaptive change. The computational experiments used to test
this hypothesis were caried ou in two stages: first, two dfferent generators of variation
were dhosen and their rates of adaptive change measured for a range of popuation sizes and
on dfferent fitness landscgpes. The exad type of generator was unimportant, all that
mattered was that the two generators of variation performed dfferently in dfferent
environments: that is, produced dfferent off spring. The second stage of the experiment was
to seeif in popuations in which bah generators were present that the generator predicted
from the results of the first stage was sleded. It was foundthat in popuations containing
two generators the evolutionary process was able, in most cases, to seled the better
generator. In some caes, howvever, the other generator was sleded and this was foundto be
due to the short sighted nature of selection.

It shoud be noted that work has aready been dore in evolutionary computation
comparing different generators of variation (e.g. Holland, 1994 and in the mmputational

technique of evolutionary strategies on seleding generator parameters (e.g. Salomon, 1996.

81



However, the am of this work is to demonstrate, using simple computational experiments,
that evolvahility can be seleded and to emphasis that there ae differencesin kind, nd just in
degree between generators. For instance the mutation-and-recombination generator is not
smply a parameterised mutation generator and thus cannd be seleded using the
computational tedchnique of evolutionary strategies unless it is originaly part of the

specification.

4.31 Introduction

Let us gart by considering a hypotheticd example: imagine there ae two equally fit
organisms, O; and O,. Both organisms have the same phenatypes, bu they have different
genotypes. The mnsequence of the difference in the genotypes is that the two organisms
have different generators of variation (genetic systems), G; and G, respedively which are
inherited by O; and O, respedively. This leals to the off spring of O; being on average fitter
than the off spring of O,. Through time seledion will favour the offspring of O; because they
have ahigher fitnessthan the off spring of O,. Thus the generator of variation G; will also be
seleded. This, of course, depends on hawv close the origina organisms are to maximum
fitness.

This example ill ustrates two levels of seledion: dired seledion d the individuals and
indired seledion d the generator of variation - the medanisms implementing the
Darwinian process Dawkins (198%) makes a similar distinction when he discusses the two
types of mutations. 1) mutations that are ordinary changes within an existing genetic system,
and 2 mutations that are danges to the genetic system itself. It is the different genetic
systems (G; and Gy) in ou example that are resporsible for prodwing the different
offspring.

Another way of describing our example would be using two spaces. the space of
possble organisms, and the space of posgble generators of variation. A generator of
variation is in principle amecdanism for simultaneously seaching both spaces. While the
fitness of an individual can be measured in the individud’s lifetime, the quality of a
generator has to be measured in spedes (lineage) time. Through spedes time the generators
of variation operate on themselves (as the generator is coded in the genotype it can be

changed) and as in our example the ‘better’ generator(s) of variation can be selected.
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However, seach invaves bath exploration o the space of possbilities and the
exploitation d certain passhiliti es. In Darwinian evolution the genetic system implements
exploration while seledion exploits certain products. This suggests a means of evolving
evolvability: by constraining the variation. In biologicd evolution variation is constrained
by, for example, the genetic mechanisms, the embryology and selective mating.

As already mentioned, Herbert Simon (1982, ore of the ealy champions of artificial
intelli gence, emphasised the alvantage of seledive trial-and-error as a way of reducing the
amourt of adual trial-and-error required. Darwinian processes cary out a form of seledive
trial-and-error. Asthe next generationis related to the last generation, exploitation constrains
exploration to certain regions of the seach space That is to say, if ‘like begets like
(Darwin, 1859, then seledion reduces the mverage of the seach space ad rearsively
seaches the remaining regions on an increasingly fine scde. Thus the individuals in a
population and the search mechanisms available define the search space.

In the foll owing experiments the central hypothesisis: in apopuation d variantsit is
possble for a Darwinian processto seled the generator(s) of variation which produce the
fastest rate of adaptive change. Computational experiments were used to test this hypothesis.

Two dfferent generators of variation (mutation and mutation with recmbination)
were used to produce the next generation. These generators were used because they are
common in the literature and simple to implement. Many other generators of variation are
possble: for example, logicd operators which deduce new variant forms from the successes
and failures of past instances.

The fitness of the variants was determined uwsing an NK-landscgpe dgorithm
(Kauffman, 19995, the implementation cetail s of which are explained in sedion 4.3.2 The
NK-landscgpe dgorithm was used for two reasons: firgt, it is a well-documented algorithm;
semnd, wsing an arbitrary fitnesslandscgpe helps avoid the problem of coding the solution
into the problem.

The emphasis in this work is on the rate of change of fitness through time nat on
arriving at a given state (e.g. the global optimum). The rate of adaptive dange was
cdculated in two ways to alow the quantitative comparison d performance between the
generators. The first measure was obtained by cdculating the gradient of a run; the second

measure was obtained by cdculating the dhange in fitnessbetween the start and the finish of
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arun. A third way of measuring the rate of adaptive change - by cournting the number of
generations to read a given fitness- was ruled ou because to ched that the given fitness
was not greaer than the global optimum on a particular landscgpe required an exhaustive
search of the NK-landscape.

The first sedion oulines the experimental methoddogy. This is followed by sedions

detailing the results, a discussion of the results, and a summary.

4.32 Method

This sdion describes what the experimental agorithms do (the functional architedure)
withou going into details of how they do it (the implementation cetails). First, there is a
description d the ontology (the things present in these experiments), then a description d
the generate-test-regenerate dgorithm, followed by an ouline of the evaluator medhanism
(the NK-landscgpe dgorithm) and finishing the sedion with a description d the methods of
cdculating the rate of adaptive change. There is also a description d the programs and
information about how to access them in appendix 1.

The ontology consisted o variants, generators, and seledors. The variants were
simple data structures consisting of a bit-string genotype (100 btslong), arecord o the type
of generator which produced them (mutation a mutation with recombination), and a fitness
value (1-100).

The two generators used were mutation and mutation with recombination. The
mutation generator involved flipping a randamly seleded single bit of the genotype. The
recombination generator involved a randamly generated single point crosover which
produced a single offspring (if A = 0000 and B = 1111, then crossov&rpatiit = 0011).

The fitness of a variant was cdculated using Kauffman's (1995 NK-landscape
algorithm. The NK-landscgpe was implemented as follows:. there ae two parameters, N the
number of genes, and K the number of links between genes. Thus the fitnessof a gene (bit)
is dependent on a set of K locaions randamly picked from anywhere on the genotype. A
series of N lookuptables are generated, ore for ead gene location in the genotype. As eah

K+1
2

gene had 2 passble dleles (0 or 1) then there were possble mmbinations of aleles and

hence 5! random entries in each lookup table between 1 and 100.

84



The fitness of a genotype was determined as follows. ead gene was evaluated by
inspeding the fitnessvalue of its allele and d the dleles of the genes it was linked to. This
allele combination was used as a key to accessthe lookuptable and determine the fitness of
the gene. When all the genes had been inspeded their individual fitnessvalues were summed
together and dvided by the number of genes (N). All the genotypes had a fitness value
between 1 and 100.

A tournament selection algorithm, the selector, was used to pick the parent variants:

1. pick a random sample from the old population (e.g. sample size = 5);
2. return fittest variant from sample (if there is a tie, then randamly seled from those that

came first).

The evolutionary algorithm, the Darwinian process had the form of the generate-test-

regenerate heuristic:

1. produce a random population (population size varies);
2. evaluate each member of the population using the NK-landscape;
3. crede the next generation wsing the tournament seledion algorithm to pick the parents

and the generators of variation to produce the offspring, return to step 2.

Two procedures were used to measure the rate of adaptive dhange. The first procedure
involved cdculating the mean fitnesschange in the popuation from the start of arunto the
end d arun. Thusif the mean fitnessat the start of the run was F; and the mean fitnessat the

end was F then the change in fithess was-f.
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Fithess-time graph

y =3.983Ln(x) + 53.653
R2=0.9779

Mean population fitness

21

Time

Figure 4-3: Thisisafitnesstime graph d asingle run d amutation generator onaN = 100,
K =1 landscgpe. F1 =53.85and F2 = 6720 0 F2-F1 = 13.35.A logarithmic trend-line has
been added to the graph and the fit is © close (R*= 0.9779 it almost completely obscures
the actual line.

The second means of cdculating the rate of adaptive change was to raise 10 to the power of
the fitnessvalue Y (adualy Y divided by 10to prevent overflow). Then a straight line was
fitted using linea regresson and the quality of fit tested (seeFigure 4-4). The gradient of the
line was obtained from the linea regresson. This allowed for greaer ease in comparing the
gradients.

Both methods of cdculating the rate of adaptive dange have problems as the fitness
time graphs fiowed a rapid increase in fitness at the outset that tailed off towards an
asymptote (see Figure 4-3). Thus the information abou the rate of the ealy increase in
fitnessis lost, which would perticularly be aproblem if the popuation found the global
maximum. To reduce the risk of finding the global optimum the size of the landscape and

the number of time steps was adjusting making this possibility highly improbable.
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Fitness-time graph
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Figure 4-4: In this fitnesstime graph, fitnesswas plotted as 10"*° and then a straight line
was fitted. The quality of the fit (R?) is 0.9857 and the gradient (the rate of adaptive change)
is 6000000.

The overall experimental design was as follows: there were three variables: the K-
value of the landscgpe, the popuation size and the generator type. The number of genesin
the landscape was kept constant at N = 100, whil e the K-value was varied from 0 to 9. A
greaer range of K-values was not used as the size of the data type representing an NK
landscape increases exporentialy in relation to the K-value. An approximation d the size of
the data type representing and NK landscape can be cdculated from the sum of the seven hit
data entries in the fitnesslookuptables - 7.N.2“** (e.g. if N = 100 and K =20, then an NK
landscgpe has an approximate size of 1468 MB). The popuation sizes were varied from 10
to 1280 \ariants by douling the popuation size & the end d ead run: 10, 20, 40... 1280.
Varying the popuation in this way produced a popuation size variation ower two orders of
magnitude; memory constraints inhibited using larger popuations. Forty runs were caried
out for eath popuation size and K value. The number 40 was readed by starting with a
single run, cdculating the mean fithessand then doubing the number of runs until there was
negligible further change in mean fitness Three eperimental runs were caried ou:

mutation alone, mutation with recombination, and a combination of both generators.

87



4.33 Results

Figure 4-5 shows the dfed of popuation size on the rate of adaptive change. Figure 4-6 and
Figure 4-7 show on the left the generator that was sleded and onthe right the generator
with the fastest rate of adaptive dange: that is, these figures show whether or nat the
generator with the fastest rate of adaptive change was sleded. Figure 4-6 shows: 1) the
generator seleded: either mutation a mutation with recombination and 2) the generator
which performed best when tested alone. Thus the squares in the 2-6 K value range and the

640-1280population size range show deviation from the expected results.

Graph of rate of adaptation v. population size

250000 +
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y =29599Ln(x) + 1344.6

150000 +- R? = 0.9741

100000 -+

Rate of adaptation
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0

0 200 400 600 800 1000 1200 1400

Population size

Figure 4-5. Rate of change in mean fitness against popuation size for the mutation
generator running on N = 100,K = 0 landscgpe. The thick, dark line is a logarithmic trend-
line that has been fitted results.
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1280

Pop.size
640
320
160 0O5-10
80
40 mO0-5
20 m-5-0

01 2 3 456 7 89 01 23456 7 829

K values K values

Figure 4-6: The cdculation d these maps invalved subtrading the rate of adaptive change
of one generator from the other using the following formula: Y = [C-MO[C-R[ where
C=combined change in fitness over time (df/dt), M =mutation d/dt and
R =recombination d/dt. Thus where Y was pasitive (dark and white), the recombination
generator was favoured; where Y was negative (light but not white), mutation was favoured.
The first map shows which generator was picked; the second map shows the generator that
performs best in the same situation when na competing. The df/dt values used in these
cdculations were obtained by subtrading the initial mean popuation fitnessfrom the final
mean population fitness.

[1500000-1000000
[10-500000

[l -500000-0

[ -1000000--500000

640
0 — 80
1 ‘ Pop. size
23456749 10 P

0123456744
K values

Figure 4-7: These maps were aeaed using the same technique used in Figure 4-6 while
using the mean gradients of the fitnesstime graphs. The map onthe left shows the generator
seleded (negative numbers when mutation was picked, pasitive numbers when mutation
with recombination was picked), the map onthe right the generator that was expeded to be
selected.
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4.34 Discussion

The experimental hypothesis was that a Darwinian processcould indiredly seled the better
generator of variation by seleding the better products. However, a number of variables other
than the generators were foundto effed the rate of adaptive thange, for example, popuation
size and the K value of the landscape.

Figure 4-5 shows the dfed of popuation size on the rate of adaptive change: when
K = 0 the trend-line was approximately logarithmic. Thus, as the popuation size increases
the rate & which the popuation adapts followed a law of diminishing returns. It shoud be
noted that this trend was not constant aaoss both generators and on all landscapes. For
example, the mutation with recombination generator, espedaly at K = 3, had an increase in
the rate of adaptive dhange which was approximately linea: that is, diredly propational to
the increase in population size.

Taking into acount the dfeds of popuation size and the K value neither generator
outperformed the other in al cases (see Figure 4-6 and Figure 4-7). When the popuation
sizes were between 1080, the mutation generator performed better than the aossover
generator. Also as the K value increased, the size of the popuation in which the mutation
generator outperformed the recmbination generator incressed. There were two small
perturbations when the popuation size was 10 and K = 2 and K = 5. However, these small
popuations are very unstable & the initia effed of seledion can easly remove ather
generator from the population before the generators have had time to be evaluated.

An interesting result was the large perturbation that occurs in the popuation
sizes> 320 when the K value was between 2 and 5. This is clealy shown in Figure 4-7
where there is alarge trough where ape&k is predicted: that is, where the predicted generator
isnot seleded. The cdculation d these landscgpes invalved subtrading the rate of adaptive
change of one generator from the other. Therefore, the height or depth of a point on the
landscape is propational to the diff erence between the generators’ rates of adaptive change.
Figure 4-7 shows that the recmmbination generator was much faster than the mutation
generators in certain cases. For example, when K =3 and poplation size= 1280 the
mutation generator produced an average dhange of fitnessof 17.5while the recombination

generator produced an average increase in fitness of 24. In this case it is clea that
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recombination was the faster generator, bu this was not the generator seleded: out of
40runs, when K = 3 and popuietion size = 1280, the recombination generator was sleded
in only 11cases.

Whil st trying to explain this perturbation two assumptions were cdled into question:
1) the dfed of ealy seledion; 2) the dfed of generator competition. Trials were caried ou
to test the dfed of seledion by examining a popuation with novariant generator ading (see
Figure 4-8). In the ealy stages of a trial, seledion exploits the fitter variants and thus the
mean popuation fitness increases. It was assumed that this would be the same for bath
generators and so could be ignored. However, the recombination generator seansto be more

sensitive to changes in population size which could result from early selection.

Fitness-time graph
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60 |
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Figure 4-8: This fitnesstime graph was produced in a popuation with only seledion ading.
This $ows the initial increase in mean fitnessthat can be dtributed solely to seledion: in
this case from 53.62 to 63.06.

The second fase ssumption was that a popuation d one type of generator would
adapt at the same rate & a popuation with the two generators competing. Both generators
suffer from areduced popuation size: the generator alone has a popuation size of X while
the generator in competition hes a popuation size of X/2. Also, as mentioned before, the
recombination generator seems to be more sensitive to changes in the popuation size than

the mutation generator.
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The caise of the perturbation, when the generator with the fastest rate of adaptive
change was not seleded, was foundto be due to the myopic nature of seach (in this case
Darwinian evolution): that is, the short-sighted seledion d individuals with the greaest
immediate gain. Mutation combined with seledion appeaed to produce afaster increase in
fitness than mutation with recombination and seledion in the initial stages of a tria (see
Figure 4-9). This was probably because it took the recombination generator time to buld up
a set of building blocks: that is, high fitness but radicdly different variants were initially
being crossed ursuccesdully. The mutation generator, on the other hand, was producing
subtle variations on succesdul variants. This, however, begs the question: why was the

mutation with recombination generator successfully selected in so many cases?

Fitness-time graph

80 +

Mut: K =3
Rec: K=3

Mean population fitness
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Figure 4-9: Mutation and recombination generator, on a N = 100, K = 3 landscgpe with a
population size of 100.

To explain why the generator was picked succesully in so many cases we nedl to
look at the shape of the fitnesstime graph in a cae when the predicted generator was
picked. What was found was that depending on the K value of the landscapes, different
trends were obtained (see Figure 4-10). In the lower K-value landscgpes recombination
allows larger jumps and thus produces a faster rate of adaptive change. However, when the

K value was high both generators show a reduced performance.
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Fitness-time graph
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Figure 4-10: Mutation and mutation with recombination generators on a N =100,K = 0
landscape, population size of 100.

In addition to the main experiments comparing seledion d generators that differed in
kind, a simple experiment was run comparing seledion d generators that differed in degree
In these experiments sledion ofimised the generators parameters. Koza' s (1995 work (see
sedion 4.2.4 demonstrates how the genetic systems can invent new structures and passbly
new generators. However, this experiment tested how the parameters of a particular kind o
generator of variation could be optimised in a specific context.

A simple eperiment was carried ou in which the mutation generator operates with a
probability P. This probability could itself be mutated. Figure 4-11 shows what happens
when this experiment is run. There is an initial period when the mean probability of
mutation increase exploring the spaceof posshiliti es, then the mutation rate begins to drop
as sledion exploits the better variants. The mutation rate stabili sed with a probability of
mutation o 0.0191.The gradua reduction in mutation rate through time is reminiscent of
simulated anneding in which there ae initialy large jumps and the distance between these

jumps is reduced through time.
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Graph of fitness & mutation against time

100 +

— Fitness
y =3.621Ln(x) +52.027

R? =0.9632

Mutation rate

40 +
30 +
20 +
10 +

Log. (Fitness)

0 20 40 60 80 100 120 140 160
Time

Figure 4-11: shows 1) the rate of increase in mean popuation fitnessona N = 100,K =0
landscape (the dark line with a fitted trend line), and 2) the probability of mutation.

Let us consider some general points abou this work. These experiments imply that
seledion d the fittest agents will i ndiredly seled the generators of variation which produce
the fastest rate of adaptive dhange. This effed of seledion works on the basis of the fitness
of the ggent produced and nd onthe kind d generator: that is, any fador which increases the
fitnessand is heritable will be favoured. In ather words, what is important is the product and
not the spedfic process adifferent processwhich produces the same product will be equally
favoured.

However, these results have shown that the medhanisms performance is condtional
on certain variables. Thus if these variables change @ a result of the medchanisms adions,
then a different type of generator may beamme ‘better’. For example, while asexual
reproduction is more robust when the popuation size is snal, as the popuation size
increases sxua reproduction may produce afaster rate of adaptive dhange. Note the
similarity of thisresult to that of the ‘no freelunch theorems' (Wolpert and Maaealy, 1999
which proves that algorithms that seach for an extrenum of a @st function perform exadly
the same, acarding to any performance measure, when averaged owver al posshle st
functions.

These eperiments also demonstrate how a group poperty, the popdation size, can
affea individual fitnessand hence what is sleded. However, seledion is clealy ading at
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the level of the individual and indiredly seleding the group kecaise its individuals are the
fittest (or evolving the fastest). Note in these experiments the reproductive spedes concept is
used: that is, reproductive compatibility (Ridley, 1990. The morphdogicad spedes concept -
morphological similarity, not strict identity - is ignored in these experiments.

Some preliminary attempts were made to implement sexual seledion onthe basis of
genotypic simil arity. This was done by mate seledion keing on the basis of fitnessmuilti pli ed
by genatypic similarity (the number of bits in common). These eperiments were
unsuccesdul. It appeaed that more sophsticaed strategies were nealed to seled mates.
However, Todd (1996 foundthat the seledion d mating strategies relying on phenatypic
fedures led to the formation d diverging sub-popuations: that is, sexual seledion poduced
speciation.

Sexual reproduction produces a parallel seach where groups of individuals can share
their findings in the next generation. For example, if one agent has good heaing and another
agent has good sight, these traits could be cmbined in a single generation (Maynard Smith,
1994). Thus even though an agent can orly pass on helf of its genetic material, if the
resulting off spring are fitter than its rivals' off spring, then there will be an indired seledion
of sexual reproduction. The other advantages of sexual reproduction - for example, avoiding
the problem of Muller's ratchet (see sedion 3.3.2 and in the natural world where agents
passon pairs of chromosomes that form neutral networks (seesedion 3.3.3 - al add to the
strength of the argument that natural selection will favour sexual reproduction.

It shoud be noted that there ae anumber of simplificaions in these experiments:. for
example, there is a dired genotype-phenotype mapping and the agents have no constraints
on who they can mate with or how many times they can mate. Thus the alvantages of

patches, neutral networks and constrained embryologies are all lost.

4.35 Conclusions and further work

The hypothesis being tested was that a Darwinian process could seled the medhanism that
produces the most rapid adaptive diange. While this proved to be true in most trials there
was a deviation from the expeded results. The reason for this perturbation was that seledion

is a short sighted process that is, variants are seleded on the basis of their current
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performance nat their potential future performance As the asexual individuals produced the
faster initial increase in fitness, the asexual generator was selected.

The implicdions of these experiments are nat limited to hiologicd evolution. The
ability of the Darwinian algorithm to seled its generatorsis derived from its logica structure
and nd its physicd form. For example, it is possble to imagine caes in science where the
proceses which produced the best results have been adopted. However, as these
experiments show, there are some important cases when this approach does not work.

There ae many posshiliti es for further work. The experiments could be run again with
more runs O that the results could be analysed statisticdly. A broader range of popuation
sizes and K values could be explored. The third measure discussed in sedion 4.3.1could be
investigated. Other generators of variation could be tested and the work aimed at

parameterising these generators continued.

44 Chapter Summary

In this chapter the potential roles of development in evolution have been examined. This has
included a discusson d the role of self-organisation in adaptive cdhange and the evolvability
of different embryologies. Finaly, a set of computational experiments was described which
demonstrate in the simple situation tested that agents with mechanisms which dd na
diredly change their phenatypes, bu which changed those of their off spring are seleded by
evolution if they produce faster adaptive dange than cther medianisms. However, these
experiments also demonstrated that there ae anumber of variables which affed the rate of
adaptive change and different mechanisms are sensitive to different variables.

The main points of this chapter are:

1. The genotype has two roles: one in development and the other in reproduction.

2. The developmental program is a paralel, condtionally branching, hierarchicd control
system. Parallel in two senses. first, within a cdl there is concurrent transcription d
DNA; seoond, ketween cdls there is concurrent differentiation. The condtions can be
self-referential (internal) or environmental (external) and are hierarchicdly organised as

there are genes called homeotic genes which switch on or off parts of the program.
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3. Self-organisation hes gained suppat as a fador in evolution. This can be seen in a
number of ways. the DNA does not code for all the properties of a structure, for example,
the 3D structure of proteins; structure aises gpontaneously within networks, for example,
autocatalytic chemica cycles will naturaly occur. Thus there is inherent structure for
seledion to work with, and some of that structure (for example, the structure produced by
sparsely conreded networks) is highly susceptible to Darwinian evolution by natural
selection.

4. Dawkins (198%, 1999 embryologies $1ow how Simon's (1982 sewnd form of
seledivity (reuse of previous slutions) can be implemented. Simon's mathematicd
anaysis of stable subasemblies siow how embryologies that use subassmblies could
evolve faster than thase withou them. This claim has been strengthened by the work of
Koza (1994, 1995 that shows that genetic programs with ADFs (stable subassemblies)
evolve faster than those without them.

5. To produce open-ended seach spaces Koza (1995 introduced the genetic operators of
deletion and insertion into genetic programming. Genetic programs evolved using these
genetic operators adapted faster that programs evolved without them.

6. The thesis in the seaond Helf of the dhapter was that a seledive system could indiredly
seled the generator of variation which resulted in the faster rates of adaptive dhange. This

hypothesis was corroborated, but not in all cases.
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5. Trajedoriesin design space

5.1 Introduction

Bonrer (1980 distinguished between genetic and cultural evolution by stressng the way
information is transmitted: in the former-geneticdly and in the latter-behaviourally. The
discusson so far has focused on genetic evolution and its mechanisms, particularly those
that can spead upthe processof adaptive dange, for example, heredity, recombination, and
hierarchicd organisation. Thereis, however, ancther classof adaptations which can increase
evolvability: the medhanisms that produce ailtural evolution. The am in this chapter is to
extend the previous discusson d Darwinian evolution by incorporating the mechanisms that
can bring abou change within the lifetime of an individual and allow individuals to share
this knowledge.

However, examining genetic and cultural evolution in the red world or the laboratory
isvery difficult. An animal would have to be chasen that had a short lifetime so that it could
be observed owver successve generations, and this animal would be required to demonstrate
both genetic and cultural evolution. Furthermore, there is the notorious difficulty of
discriminating between innate and aaquired charaders: in ather words, between genetic and
cultural contributions to a feaure. The result is that comparing and contrasting genetic and
cultural evolution in the real world is, putting it mildly, problematic.

There have, howvever, been a number of mathematicad models of cultural evolution
(e.g. Cavilli -Sforza and Feldman, 1981 Lumsden and Wilson, 1981 Boyd and Richerson,
1985. But as May (1977 points out, ‘f ormidable mathematicd difficulties dand in the way
of a fuller understanding of the interplay between cultural and kologicd evolutionary
proceses . For example, the general equations relating gene frequencies in successve
generations are not only nontlinea, bu also invalve the frequencies from ealier generations
(May, 1977. Also the mathematicd theories of cultural evolution tend to model the aultural
dynamics and pay less attention to the mechanisms which make it happen (Gabora, 1997).

Whil e there ae anumber of difficulties with the usual experimental and mathematicd
approadies, there is an dternative gproadch: the computational approach. By using a
computational approadh the dynamics of a genetic-cultural evolutionary system can be

modelled, and to implement the model requires functionally spedfying the mechanisms
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involved. The use of computational models has a number of other advantages: it avoids the
lifetime problem encourntered while observing red world systems - that is, simulations of
evolution read na take billi ons of yeas; it allows the experimenta subjed to be austom-
made, for example, agents with the required genetic and social mechanisms; it removes the
nature-nurture problem as implementations can be designed that make it possble to
discriminate the relative cntributions of eat fador; it alows the dired observation d the
agents’ internal states, both genetic and psychological.

For the reasons given in the previous paragraphs (aso see dapter 2) a computational
approach was taken to investigate the relationship between genetic and cultural evolution.
With the growth of work in artificia life and the alvent of journas like the Journal of
Memetics there has been increasing interest in cultural evolution (for a recent review see
Gabora, 1997 and a number of computer models have been produced (e.g. Ackley and
Littman, 1994 Gabora, 1995. However, these reseachers have focused on modelling
cultural evolution independently of genetic evolution: in the cae of Ackley and Littman
(1999 this meant separately testing Darwinian and Lamarckian evolution and comparing
their rates of adaptive dhange; in the cae of Gabora (1995 this meant ignoring genetic
evolution atogether. In neither case were genetic and cultural evolution implemented within
the same agent.

One of the ams of the work described in this chapter was to investigate the
consequences of having both genetic and cultural evolution running concurrently. The work
in this thesis focuses on hav different mecdhanisms interad and the computational
experiments described here implement agents with a broad range of cgpabiliti es (abeit
implemented in a ‘broad but shallow’ manner - see seétign

The set of agents used in the computational experiments described in this chapter aso
define atrgedory in design space The trgedory is formed by the foll owing sequence of
agents. agents in the first class were alapted through genetic evolution. The aents with
hardwired phenctypes are cdled ‘Darwinian credures after Dennett’s (1986, 1995, 1996
clasgficaion d agents. Thiskind d agent forms the starting point of the trajedory in design
space.

Dennett cdled agents * Skinnerian credures' if they had a cetain degreeof phenotypic
plasticity. These aents are not whally designed at birth, bu have dements of their design
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that can be ajusted by events occurring during field testing. Skinnerian agents are divided
into two classes: first, agents with a fixed set of behaviours, and with the caability of
reinforcing the most useful ones; seand, agents capable of reinforcement leaning and o
exploring the space of possible behaviours.

‘Dawkinsian creaures are so-cdled becaise of the nongenetic heredity mecdhanism
postulated by Dawkins (1989h. Dawkins described a new replicaor, a unit of cultural
transmisgon a a unit of imitation, which he cdls a meme. Dawkinsian credures have the
capability to imitate other agents and thus behaviourally transmit information.

The fina class of agents are cdled ‘Vygotskian creaures after the Rusdan
psychoogist, L. S. Vygotsky. Vygotsky, like Piaget, saw children as adive anstructors of
knowledge and undrstanding, bu he differed from Piaget in his emphasis on the role of
dired intervention by more knowledgeable othersin this leaning process(Smith and Cowie,
1991). Vygotskian creaures are cgable of instructing others, that is of behaviouraly
transmitting knowledge to other agents.

To sum up, whil e the ideaof linking genetic and cultural evolution is not a new one,
there ae a number of difficulties ganding in the way of testing theories abou the
relationship between them. The theorising of the evolutionary epistemologistsis, | think, the
cleaest formulation d the link between biology, psychology and socioculture and will be
described in the next sedion. In sedion 5.1.2 the basis for the alaptive ayent (Holland,
1986, 19941995 used in the mmputational experiments is described: the dassfier system.
The subsequent sedion describes the design-work and the computational model produced
when implementing some of the evolutionary epistemologists ideas. This chapter is
structured like astandard experimental write up with the following sedions: introduction,
method, results, discussion and conclusion.

The novel contribution to reseach in this chapter is, by implementing the different
kinds of agents, to provide an analysis of the requirements and properties of agents cagpable

of both genetic and cultural evolution.
5.11 Evolutionary epistemology

While Darwin, Huxley and Spencer al aluded to the generdity of evolutionary theory,

Willi am James (1880 was the first to use the analogy in its Darwinian form as the basis for
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an extensive analysis of thought and problem solving (Plotkin, 1988. Since then scores of
writers have eamployed the analogy in the same context: for example, Baldwin, Campbell
Dawkins, Dennett, Edelman, Piaget, Popper, Lorenz, Skinner and Simon. Recantly Dawkins
(19891 when dscussng therole of culturein evolution pastulated a second teredity system
- the memetic system; other researchers (e.g. Moravec 1989, p. 16)tak of another ‘genetic
take-over’ where genes have ‘finally outsmarted themselves'.

Campbell (1976 produced an extensive review of evolutionary epistemology. In this
article he identifies ten levelsin the evolutionary processextending from the genetic level to
the level of leaning, thought and science However, for the purpose of this sedionasimpler
multi ple-level model developed by Plotkin and Odling-Smee(1981; Plokin, 1988, 199bwill
be described.

A basic tenet in evolutionary epistemology is that the genetic-level acourts of
evolution are insufficient to explain al the observed phenomena such as complex, leaned
and social behaviours. Thus a multi ple-level, multi ple-processacourt is substituted which
incorporates at least three domains: the biologicd (genetic and developmental), the
psychological and the sociocultural.

Plotkin and Odling-Smeé s (1981) evolutionary model originally employed four levels:
genetic, developmental, psychoogicd and sociocultural. Subsequent criticism of the
developmental level has led to it being incorporated within the genetic level. For example,
Campbell (19817 pointed ou that development, via the processes involved in it, expresses
the already stored information, but is not involved in the generation of the information.

However, development is epigenetic, that is, a @ndtional, self-referential, dynamic
and probabili stic process Due to epigenesis, adaptations are not invariant structures, bu
vary widely depending on the environments in which development occurs (Plotkin, 1995.
This developmental plasticity can be seen as an adaptive device - a knowledge-gaining
medhanism. For example, ‘If the at thicknessof a mouse varies with temperature during
development, then na only is the aaptation d the thickness of the wat a form of
knowledge of the temperature of the world of that mouse, bu the relatively short-term
processof development itself, together with the long-term process by which the genes that
control such flexible development are seleded, can be seen as an integrated process by
which that knowledge is gained’ (Plotkin, 19951R44).
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Plotkin (1995 cdlsthefirst level of the model the ‘primary heuristic’. As the primary
heuristic has been examined in detail i n the last two chapters, we will quickly move onto the
next level of Plotkin and Odling-Sme€s model. The next level, the psychoogicd level,
gains information by the processes of leaning and stores information in the central nervous
system. Plotkin (1995) calls the psychological level ‘the secondary heuristic’.

Plotkin and Odling-Smeé s model forms a nested hierarchy, that is, the higher levels
are enbedded in the lower levels. For example, it may not be possble for evolution to
speafy goal-satisfying behaviour, but a set of behaviours and a reinforcement mechanism
seleded by the primary heuristic could alow an agent to seled its own behaviour through
interading with the environment. Thus the psychologicd level is nested in the biologicd
level because the central nervous g/stem is part of the phenatype which is, in turn, partialy
spedfied by the genatype (Bonrer, 1980. However, Lewontin (1981) has made the point
that as well as saying that one thing constrains ancther, it isimportant to say to what extent.
A cdibagy gene, for example, would immediately be seleded against in Darwinian credures,
whereas a cdibacy meme can be propagated through culture. Another example is given by
Bonrer (1980: male soprancs were catrated in the west to ke their singing voices, bu
castration is a very bad idea if there is any genetic basis for singing ability.

Plotkin (1995 emphasises how some dhanges in the world occur at a rate too fast for
the primary heuristic to acommodate, for instance the locaion d prey or the identity of
friends. The secondary heuristic has a similar function to that postulated for devel opmental
plasticity: that is, to acommodate those feaures of the world which are only partialy
predictable. Thus if there ae ‘tradking devices whose own states can be dtered and held in
that altered condtion for the same period as the fedures they are tracking’ (Plotkin, 1995,
p. 149, then the secondary heuristic can acommodate some of the environmental changes
which the primary heuristic caana tradk. For example, psychoogicd medanisms alow
knowledge to be aquired onshort-term stabiliti es in the environment, such as where food
can be found o who is a friend: that is, feaures that the primary heuristic canna, to use
Plotkin's (1995 terminadlogy, track because they occur to quickly for genetic evolution to
take place.

However, any information aaquired by the secondary heuristic is confined to an

individual. The final level, the sociocultural level, incorporates a norgenetic channel of
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communicaion. This level Plotkin (1995 cdls the tertiary heuristic. In Plotkin and Odling-
Smeées model, leaning occupies a dual role for the tertiary heuristic - both the sender and
the recaver gain information through the aucia and pvota secondary heuristic. The
sewndary and tertiary heuristics $are astorage site for information - the ceitra nervous
system. But Plotkin and Odling-Smee ague that while the tertiary heuristic requires the
secondary heuristic, the secondary heuristic does not require the tertiary heuristic.
To summarise, ore of the main aims of evolutionary theory is to explain adaptations.
Adaptations come in a variety of forms. physiologicd, structural and kehavioural. The neo-
Darwinian geneticd theory of natural seledion and its medhanisms explain hav certain
adaptations can be formed. However, theorists going badk to Darwin have postulated
additional mechanisms which can produce alaptations and have caisal power in the
evolutionary process For example, leaning refers to a dass of medanisms whereby an
individual can adapt within its own lifetime: that is, produce alaptations. Thus adaptations
can arise from leaning and then be behaviouraly transmitted to ather individuas (an
example of the formation d adaptations in the @sence of changes in gene frequencies).
Plotkin and Odling-Smeé€s hierarchicd evolutionary model postulates how this could
happen. However, as Plotkin (1988 describes, a mgor problem with the evolutionary
epistemologicd models is testing them. The computational experiments described in this
chapter investigate the three levels described in this sdion: the biologicd, psychologicd

and sociocultural.

5.12 Adaptive agents

The aents in the computational experiments described in this chapter were based on
Holland's (1986, 1994, 1995clasdfier system. Holland (1995 propcsed the dassfier
system as a genera representation for an adaptive ayent where the caabiliti es of individual
agents are described by a olledion d stimulus-resporse rules. The dassfier system was
originally conceved as a production system in the spirit of a neural network (Waldrop,
1994. In developing the dassfier system Holland was inspired by the geneticd work of
Fisher (1930 and the neurologicd work of Hebb (1949. He dso made extensive use of
eonanic metaphas sich as freemarket ecnamies. In this ®dion the basic dassfier
system is considered (Holland, 1986, 1994, 1995ong with Wilson's (1994 simplified
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zeroth-level classfier system which is gmilar to the one used in the computational
experiments described later in this chapter.

There ae three ®mporents to a dassfier system: the performance system, the aedit
assgnment system and the rule discovery system. The performance system is a production
system whose if-then rules are made up d ternary strings representing condtions and
adions. These strings consist of 1's, O0s and #s which stand for wild cads. The

performance system has a ‘bulletin board’ where binary strings are posted. If the condition of

Bulletin baard = 0101

Matchingrules:
0101-1111- strength =100
0101- 0000- strength = 80
0101- 1100- strength = 35

Rule Chosen:
0101- 0000=> posting 0000

Figure 5-1: Performance System

a rule string matches a message posted onthe bulletin baard, it gets the dhanceto pat its
adion in that round. Corflict resolution is performed by the matching rules competing to
post their messages. Each rule makes a bid onthe basis of its properties - in the simplest
case, this is propationa to the rule's drength. Then the system colleds al the bids and
choaoses a set of winners by lottery, the highest probability of winning going to the highest
bidder. Figure 5-1 gives asimple example where the cndtion 0000is paosted to the bull etin
board, three rules match this condtion and the second rules wins the lottery and hes the
chance to post its action 0000.

Rules can be adivated concurrently. This paralelism has two advantages (Holland,
1994). First, using sets of rules together all ows the system to make cmbinatorics work for it
rather than against it. Imagine the old-style padlice sketch pads which dvided the faceinto a
number of parts and provided a number of instances of eat part. If the faceis divided into
ten parts - for example, hair, eyes, nose - and there ae ten variants per part, then these
hunded bulding blocks can describe ten billi on faces. In the same way the rules which

make up the dasdfier system can be reused in anumber of diff erent combinations dependent
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on the situation. For example, a dasgfier system with 100 dfferent rules which is able to
activate 5 rules concurrently can describe over 75 million situations.

The seaond advantage of concurrently adivated rulesis that using a number of rulesto
describe aparticular situation all ows experienceto be transferred to nowel situations. Seang
ared ca at the side of the road with aflat tyre may be anowvel situation, bu if it adivates the
rules for car, red and tyre, then the appropriate (goal-satisfy) behaviour may be elicited.

Another fedure of clasgfier systems is that the messages on the bulletin baard can
come from ether external detedors or from other rules. This alows these systems to
produce internal feedback concurrently with processing sensory input.

As the dasdgfier system is described, it is incgpable of credit assgnment - assgning
worth to the individual classfiers. Holland implemented a form of Hebbian reinforcement in
which the agent adjusts the strength of its rules on the basis of their behaviour. Holland
augmented the basic reinforcement mecdhanism so that as a rule wins the dance to pcst a
message, it pays its bid to the rule that posted the message it matched. Thus, stage setting
rules which produce useful behaviour are rewarded as the strength is propagated badk
through the system. This algorithm is cdled the bucket brigade dgorithm. However, as the
bucket brigade dgorithm was nat used | will not go into any more detail abou it. The aedit
assgnment agorithm used is described later in this sdion when dscussng Wilson's
zeroth-level classifier system.

The final comporent of the dassfier system expands its leaning cgpadty from just
exploitation to include exploration. Rule discovery in classfier systems is produced by the
adion d agenetic dgorithm. A genetic dgorithm can be used in two ways (Wil cox, 1995:
first, the Michigan-style where individual clasdfiers are coded as individua strings evolve.
Rule seledion is probabili sticaly based onstrength. New rules are aedaed and replaceother
low-strength rules. The seandway is the Pittsburg-style where entire rule sets are aded as
a single string and evolved. Note that the Michigan-style genetic dgorithm all ows adaptive
change within the lifetime of the system, but this approac adds additi on requirements to the
system - for example, those requirements produced by need for rule replacement - that are
still being investigated (Goldberg, 1989,Wilson, 1999. In this work bath approaches were
used simultaneously, the Michigan-style simulating leaning in the lifetime of the ayent and

the Pittsburg-style providing adaptive change over generations.
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While there have been a number of modificaions to the basic dassfier system
(Goldberg, 1989 Wilson, 1999, as they are not incorporated in this work, they will not be
discussed. However, Wilson's (1994 formulation d a zeroth-level classfier system (ZCS)
will be described as it formed the basis of the implementations. The ZCS kegys much of
Holland's origina framework, bu simplifies it to increase understandability and
performance (Wilson, 1994).

The ZCS, like Holland s classfier system, has detedors, eff edors and condtion-adion
rules representing behaviours. The ZCS's rules, like Holland' s rules, consisting of condtions
and adions made out of ternary strings based onthe binary alphabet, plus the ‘dont cae
symbal #. Assciated with ead rule is a scdar strength. A ZCS has no internal message list
and is thus incgpable of temporary memory. In the performance gcle of the ZCS, the
condtion d ead rule is compared to the binary string representing the detedor inpu. If the
bit at every non# pasition in the ndtion matches the mrrespondng bit in the detedor
string, the condtion is stisfied and the dassfier becomes a member of the aurrent match
set, M. Next, an adion is s€leded from among those proposed by members of M. A ZCS
employs a stochastic, rule-seledion method a roulette whed with sedors szed acwording to
the strengths of the members of M. Thus a particular adion a is sleded with a probability
equal to the sum of the strengths of the rulesin M which advocate that adion, dvided by the
total strength of classfiersin M. Next, an adion set is formed, consisting of al the members
of M which advocate a. Finaly a is ent to the dfedor interface and the crrespondng
action is carried out in the environment.

The other detail s of a ZCS, for example, the reinforcement algorithm, differ from the
algorithm used in this experiment and thus will not be described. An important point to nae
abou this work and the experiments described in chapter 4, is that it uses previously
developed algorithms because they provide the required functionality. This work is nat
amed at investigating or developing these dgorithms. The dassfier system was used
because it provided a means of having adaptive change over individual and generation time,
but if, for example, the genetic dgorithm operating within an individua’s lifetime was
replacal by another algorithm that provided the same functiondlity, this would have little
beaing on the design-work asped of these experiments. But the same sort of functionality

with detailed differences could make a big difference to the quantitative results.
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5.2 Method

This ®dionis Plit into a number of subsedions, starting with a discusson d the scenario
and then describing ead classof agentsin turn. An owerview of the programs used in these
experiments is given in appendix 2 along with the location d the wde on the University of
Birmingham, School of Computer Science’s computer network.

The astrad scenario used in these experiments consisted of ten stimuli which were
presented twenty times to a popuation d agents. Each stimulus had a desired resporse. The
stimulus-resporse rules consisted of 20-hit, randamly generated, hinary strings. Ten hits for
the stimulus and ten hits for the resporse. However, this may also be adisadvantage &
organisms may be designed to learn specific types of patterns and rules, not arbitrary ones.

The quality of the ayent’s resporse was propationa to the number of bits which
matched the desired resporse - this figure was added to the agent’s fitness The advantage of
using such an abstrad scenario was that it prevented the experimenter from programming
anything into the agent which assisted its learning.

In these experiments a mnstant popuation size of 100 agents was used. Each agent
had a genotype and a phenatype: initialy, the same list of 20 condtion-adion rules. Each

generation lasted 200 rounds, thus providing 20 presentations of each stimulus.

5.21 Darwinian creatures

Darwinian creaures consisted of just the performance system of a dasgfier system. In the
performance system only a single rule could pcst its message; internal messages were nat
deamed necessary for the scenario and were prevented. If multi ple rules matched a stimulus,
then ore rule was picked at randam. Initialy, the contents of the agent’s genotype and
phenotype rule sets were identical.

The ayents darted with 20 randamly generated rules. A rule was made up d aten hit
stimulus gring and a ten bit resporse string. These strings consisted of 1's, 0s and #s -
which stood for wild cards. Thus there wef&®ssible rules.

After 200 rounds, a new generation was creded from the last generation wsing the
following algorithms. A tournament seledion algorithm was used to pick the parents (fitter

agents):



1 pick 10 members at random and with replacement from the current population
2 return the strongest member (if there is atie, then randamly seled from those that came
first)

There was a seacond form of this algorithm which returned the wegkest agent. This was used
to seled aruleto bereplacal in afixed popdation d rules within a Skinnerian creaure. The

following algorithm was used to create a new population:

repeat 100 times
1 pick parent 1 using tournament selection
2 pick parent 2 using tournament selection

3 recombine the parents’ rule sets and mutate the resulting rule set creating a new agent

The spedes-level crossover was caried ou by taking the parents’ rule sets and @cking
arandam point between ore and the length of arule set. The new rule set was made up d
the rules of one aent up to the randam point, combined with the rules of the other agent
after that point. Mutation was carried ou by randamly fli pping a bit within arule. Ead rule
had a 0.1 probability of a single bit being mutated.

5.22 Skinnerian creatures
The Mark | Skinnerian creaure was implemented using the basic Darwinian creaure and
adding a aedit assgnment system. At the beginning of ead generation every rule started
with a strength of one and after a fitness evaluation a number between zero and ore was
assgned to the strength - this figure was propartional to the number of bits matching the
desired resporse. As ead rule had an initial start strength of one, the agents were forced to
try ead rule a least once assessng its adua value, and subsequently using the highest
strength rule.

The Mark 1l Skinnerian creaure was implemented using a Mark | Skinnerian creaure
and incorporating a rule discovery system. Every 100 rounds a genetic dgorithm was run

repladng two ‘wed&’ rules with two new rules. This internal genetic dgorithm worked
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identicdly to the external, popuation-level, genetic dgorithm with rules being substituted
for agents: that is, tournament seledion pcked rules within an agent, na agents from the
population, and then rule-specific crossover and mutation operators were applied.
With the operation d the interna genetic dgorithm, however, there is the alditional
complicaion d adding the new rules to the rule set withou disturbing its performance This
was dore using the version d the tournament seledion algorithm which returned the
wedkest rule. The rule returned by the tournament seledion algorithm was replaceal by the
new rule. Note that this replacanent only occurred in the phenctype rule set, na the

genotype rule set.

5.23 Dawkinsian creatures
The Dawkinsian cregure was implemented using the Mark Il Skinnerian creaure and adding
the caability of imitating other agents. The old generation d agents was run concurrently
with the new generation. An individua in the new generation could, with a probability P,
imitate amember of the old generation. As the old generation hed alrealy tried ou all its
behaviours it was using its best rules, and it was no longer able to improve its performance.
Imitation was caried ou by copying a rule producing the observed behaviour with a
posgble mutation into the imitator's st of behaviours. The obvious smplificaion here is
that copying rulesis nat the same thing as imitating behaviours. This smplificaion, that was
adopted duwe to timerestriction onthis work, avoided the problem of rule inference An agent
from the old generation was picked using the tournament seledion algorithm, then the
observed rule (behaviour) was copied with a passble mutation ower a wed rule using the
semnd tournament seledion algorithm (the tournament seledion agorithm that returns the

weakest member).

5.24 Vygotskian creature

The Vygotskian creaure was the same @ the Dawkinsian creaure except that it had the
additional cgpability of instructing other agents. Instruction was implemented by the ayents
of the old generation instructing, with a probability of P, arandamly chosen agent of the new
generation. The transmitted behaviour was chasen using the tournament seledion algorithm,

there was the posshility of mutation, and the to-be-replaced rule was picked using the wegk-

10¢



rule returning tournament seledion agorithm. Using the tournament seledion algorithm to
choase the to-be-transmitted rule simulated an agent demonstrating a useful rule that was not

elicited by context.

5.3 Results

These eperiments produced two types of results: first, quelitative results relating to

observations made while carying out the necessary design work to implement the trgjedory

of agents;, second, quantitative results obtained by measuring the rate of adaptive cange of

eat kind d agents. In the discusson | will describe the results of the design work, here |

will give a graphical representation of the rates of adaptive change in the different agents.
The poaints on the graphs represent the mean popudation fitnesses at the end d eadh

generation. Thus at the end d the first generation the Dawkinsian and Vygotskian agents are

on average significantly fitter than the other kinds of agents.
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Figure 5-2: The five different kinds of agent are: A1 = Darwinian agent; A2 = Mark |
Skinnerian agent; A3 = Mark Il Skinnerian agent; A4 = Dawkinsian agent; A5 = Vygotskian
agent.

54 Discussion

There ae anumber of deliberate simplificaions in these experiments, for example, the

agent’s architedure is purely readive, the agent is behaving as if it had what ethologists cdl
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‘fixed adion petterns’. However, for the purpose of modelling credures with a greaer
degree of norrinstinctive reasoning cgpadty, an architedure would have to incorporate
additional sorts of control. Sloman (1997 postulates that the human information-processng
control system has three rather different sorts of control: a readive subsystem, which can
itself include many different types of control with different degrees of sophistication, a
deli berative subsystem and a meta-management subsystem. The agents described here have
only a readive subsystem and are incgpable of deliberation, that is assembling new
combinations of adions to cope with nowl contexts, or of metamanagement - self-
monitoring and self-assesament of deli beration. Using agents with orly a readive subsystem
was an intentional simplificaion in order to make the experiments feasible, na a spedfic
constraint of the dassfier-based implementation: Donrart and Meyer (1994, for example,
implemented an agent architedure with bah readive and dcdiberative subsystems using
hierarchically-organised classifier systems.

Another simplificaion in these experiments is the one-to-one, genotype-phenctype
mapping. By using such a mapping, the mechanisms for increasing the rate of adaptive
change discussd in chapter 3 and in the first half of chapter 4 were ignored. However, this
mapping allowed a direct comparison of genetic and cultural evolution.

Other experimental simplificaions include: the isuue of evolving the Skinnerian
agent’s reinforcement strategies (see sedion 5.4.2); the isuue of how the agents transmit
information about rules - the medium; and the @nstraints to information transmisson
imposed by the different media.

In the rest of this ®dion | will discussead classof agents in turn, considering their

requirements, their costs and benefits, and their role in the process of adaptive change.

5.4.1 Darwinian creatures

The requirements of Darwinian credures and their role in the process of adaptive dange
have drealy been dscussed in chapters 3 and 4and thus will not be discussed again here. In
those two chapters a number of mechanisms were discussed which augment the process of
adaptive dhange by reducing or removing the risk of evolving systems getting caught in locd
fitnessoptima. However, in the light of such augmentations to the Darwinian system we can

ask why adaptive dhange is nat more prevalent in the red world and why the fossl record
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shows long periods of stasis? In this edion | give an overview of stasis based onWilli ams
(1992, chapters 6 & 9) acournt before mnsidering some alditional explanations that
emphasise the central theme of this chapter: the role of behaviour in evolution. In ather
words, this sdion relps build up the agument, suppated by the results of the work on
Skinnerian, Dawkinsian and Vygotskian creaures, for a broader theory of Darwinian
evolution than the geneticd theory of natural seledion. Note, however, that stasis is only
relevant to thisthesisin so far as it highlights gaps in the explanatory power of the geneticd
of natura seledionwhich are explained by atheory of evolution which incorporates cultural
evolution.

Before mnsidering the different explanations | want to emphasise that | do nd believe
that there is a single caise of stasis, nar shoud the gparent simplicity of the phenomenon
require asimple eplanation (Cohen and Stewart, 1999. In ather words, Occan’s razor,
parsimony, or econany of explanation shoud na automaticdly lead us to see&k a single
mechanism to explain stasis or avoid complex explanations.

The first explanation for stasis, that is imperfedions in the geologicd recoord, is not
redly an explanation d stasis at all, bu an attempt to remove the need for an explanation by
denying the phenomenon. Darwin (1859, chapter 9) went into grea depth describing the
problems that aboundin the fossl record like the intermittence of geologicd formations and
the sudden appeaance of groups of spedes. However, enough evidence has now been
colleded to suggest that stasis is a red phenomenon and daes need an explanation
(Williams, 1992).

The next most common explanation d stasis is on the basis of historicity:
phylogenetic, developmental and genetic constraints. Phylogentic constraints refer to the faa
that natural seledion rever designs new madhinery to cope with new problems, bu aters
arealy existing madciinery by slow dteration d the macinery's parameters (Willi ams,
1992, p. 7% Developmental constraints are merely a spedal kind d phylogentic constraint
(Williams, 1992. The role of developmental constraints, constrained embryologies, in
fadlit ating adaptive dange was described in sedion 4.2.2 however, as the names 2uggests,
a constrained embryology can only produce a subset of possible phenotypes.

Ancther fador which can play a role in stasis is pleiotropy. The beneficial role of

pleiotropy of forming gene nets was discussed in sedion 4.2 However, pleiotropy can also
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lead to constraints. If different phenatypic feaures are wded for by the same pieceof the
genotype, then a beneficial change to one feature may be detrimental to another.

As Kauffman's (1993, 1995,1997 work demonstrates, certain types of structure ae
quite stable, with small changes having littl e or no effed (seesedion 4.2.1). This robustness
of structure can result, for example, from genetic assmilation (see sedion 4.2) where
developmental programs have been seleded that produce the same phenctypes in dfferent
environments. Thus g/stems with prenatypic plasticity - for example, via development or
leaning - can adjust to changes in the environment withou any further genotypic dhanges.
In other words, as the environment changes the structure stays the same.

One way a structure can stay the same in a danging environment is, if the
environment permits, by changing its niche. In ather words, if the environment changes,
agents can either change to a different environment which is sitable to the old design o
adapt to the new environment. This phenomenon was previoudy referred to as ‘niche
seledion (seesedion 3.3.3; Eldridge (1995 cdls the same phenomenon ‘habitat tradking'.
If a suitable niche is present, then changing the niche will probably be quicker and more
economical than anatomically adapting to the new niche.

Sexual seledion, like niche seledion, could also pay arole in prodwing stasis. We
discussed Todds (1996 computational experiments on evolving popuations of sexually
reproducing individuals in sedion 3.3.3 Thaose experiments demonstrate that constraints on
mate recognition can affed the rate of adaptive dhange. Large dhanges in those fedures
which are used in mate recognition can make it difficult for the individual to find a mate. In
other words, a beneficial adaptation may not be incorporated into a popuationif it produces
an individual unrecognisable to ather members of its own spedes. Todd (1996 found that
leant mate-seledion strategies can lead to more rapid adaptive change (and spedation)
because they allow a population to track changes in its members.

Another feaure of natural seledionwhich could creae stasisis that superfluous ability
is nat rewarded (Humphreys, 1976. For example, while it may be possble to design a
chedah that could run twice & fast, a @st-benefit analysis compared to a normal chedah
would probably lea the latter to be evaluated as better as the st of the increased speed
would probably not be paid for by the increase in prey caught. However, if the dedah’s
food starts running faster, then the requirements change and a doulde speed cheeiah may be
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seleded. The paint is that natural seledion can creae or prevent change depending on the
circumstances. This has been mathematicdly demonstrated by Maynard Smith (1976 and
led to the formulation d the concept of ‘evolutionarily stable strategies' (ESS): *‘a strategy
which, if most members of a popuation adopted it, canna be bettered by an alternative
strategy’ (Dawkins, 1989b, p. 69 In the previous example of the chedah, the single spead
chedah was gable in that context, if the context changed, then the strategy may no longer be
stable.

Thus far we have mnsidered a number of fadors which can cause or fadlit ate stasis. |
now want to introduce atheory by Popper (1986 to suppgement these fadors and kecause
the theory emphasises the role of behaviour in evolution. Popper’s theory distinguishes
between external or environmental seledion presaures and internal seledion presares
resulting from the preferences of the organism. He described a simple model with two kinds
of genes: anatomy or a-genes and kehaviour or b-genes. He further subdvided b-genes into
p-genes (controlling preferences) and s-genes (controlling skills).

Popper argues that it is changesto b-genes, spedficdly to the p-genes, which affea the
course of evolution. For example, a dhange to the preferences could lead to different skill s
and pdentially to dfferent anatomies that are wmpatible with the new preferences and
skills. Obviously, this squence can be gyclicd: for example, new anatomies may favour
changes in preference, and so on.

However, | do nd think that genetics is esentia to Popper’'s theory becaise
adaptations can be transmitted behaviourally. As suggested before, to avoid confusion the
word ‘gene’ in the evolutionary sense shoud be replaced by the word ‘replicaor’. This
terminologicd change dso has the dfed of generalising Popper’s theory to norgenetic
systems. Moreover, questions can then be asked abou the relative difficulties of transmitting
areplicaors and breplicaors in dfferent heredity systems. For example, is it easier to
transmit a-replicators geneticdly and breplicators behaviouraly? Behaviour requires an
appropriate anatomy, by alowing the anatomy to interpret a stored information structure
controlling behaviours, you separate the transmisson d anatomy and the transmisson d
behaviour giving b-replicators far more flexibility.

The evolution d b-replicaors would be hard to identify in the fossl record and may

result in the mistaken view that there is gasis. However, such changes could creae new
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niches and stimulate the evolution d new forms independent of changes in the eternal
environment. (The sportaneous eruption d new forms independent of changes in the
external environment could also be a @nsequence of genetic drift operating within reutral
networks.) What is important is that in the faceof changing niches, an agent could adapt
behaviourallyrather than anatomically, which could result in the appearance of stasis.

To sum up, the main pdnt of discussng stasis was to consider the nstraints ading
on genetic evolution and to introduce the possbility of cultural evolution. In this dion, |
have discussd a number of fadors which can contribute to stasis. The final part of this
discusson oulined hov natural seledion d behaviours could adapt an agent even if
anatomicd adaptive dange was inhibited by, for example, phylogenetic, developmental or
genetic constraints. The behaviour could be geneticdly determined, bu thisis nat necessary
as the behaviour could be psychdogicdly generated and transmitted behaviourally. The
creaures discused next demonstrate ways of generating and transmitting behaviours
through norgenetic mecdhanisms. Cultural evolution can be regarded as a way around some
of the mnstraints described in this ®dion, as well as providing the means to increase the
rate of adaptive diange. Thus it may be more wst-effedive for evolution to add a new
information channel than to modify the old ore. Even if the initial cost of moving to a
behaviour interpreter for information structures is high, the alditional flexibility could

produce a significant benefit

5.4.2 Skinnerian creatures
A Mark | Skinnerian credure requires a set of different behaviours and a mecdanism for
exploiting goal-satisfying behaviours. What is important is the quality of the reinforcers: that
is, whether they reinforce the wrred, niche-appropriate behaviours. The standard hiologicd
answer to the question d how to assess the reinforcas’ quality is through reproductive
success - those aedures whaose behaviours favour their survival and reproduction passon
their genes, including geneticaly coded reinforcers, to future generations. The seledion o
Popper’s preferences (p-replicators) demonstrates how reinforcers could be seleded (see
section5.4.]).

In the cmputational experiments described in this chapter the agents had the wrrea

reinforcers coded into them. The reinforcers were not evolved becaise these experiments
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were damed at testing the rates of adaptive thange of different kinds of agents and nd their
ease of evolution.

Another requirement of the Mark | Skinnerian creaure was a lifetime long enouwgh to
test and evaluate their behaviours. There is a relationship between the number of trials
needed to test a set of behaviours and the number of behaviours an agent possessed: that is,
the more behaviours an agent had, the more trials were required to acarately assessthem.
This relationship is between the number of different behaviours and a particular reinforcer;
however, there is dso a similar relationship between the number of separate reinforcers and
the length of an agent’s lifetime. Each reinforced behaviour requires enough trias to
determine the strong behaviours and let their subsequent use influence the agent’s fitness.

The Mark Il Skinnerian agent requires medanisms for generating new behaviours and
for repladng old behaviours. In these experiments a genetic dgorithm was used for rule
discovery. A benefit of using a genetic dgorithm was that it allowed the alvantages of
seledive trial and error discussed in chapters 3 and 4. Thus on the basis of previoustrias, if
cetain behaviours have been favoured and the fitness landscgpe is correlated (i.e. similar
behaviours have similar fitness, then the better behaviours can be used to guide the seach
for new behaviours.

A seoond requirement of a behaviour-replacenent mecdhanism is creaed by the finite
nature of the agents, in this case, the finite set of behaviours. The problem is identifying the
behaviours which can be replaceal withou reducing the overall performance of the agent.
There ae two means of addressng this isaue: first, to have amedanism that identifies a
wegk behaviour that can be replacel and replaces it; sewmnd, to have a large set of
behaviours with redundancy so that randam replacament will have little or no effed. The
first mechanism, selective replacement, was used in these experiments.

A number of problems occurred with relation to the internal genetic dgorithm. First,
there was a problem with the genetic dgorithm picking parent rules of two totally diff erent
kinds (relating to dfferent reinforcers) and producing low fitnessoff spring. This problem is
analogous to an elephant trying to mate with a mouse. Two approadhes to ded with this
problem were explored: 1) an asexual genetic dgorithm was used and 2 sexual seledion

was implemented.
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First, the internal genetic dgorithm was modified to implement asexual reproduction.
In this case afit rule was ®leded, copied, mutated with a probability P, and wsed to replace
awe rule. This lution to the mouse-elephant problem ignored the fad that there were
different kinds of behaviour relating to dfferent reinforcers and thus certain behaviours
proliferated at a cost to the overall performance of the agent.

A semnd approach to this problem that was tried was to introduce sexual (mate)
seledion. Thiswas implemented by the genetic dgorithm picking a mate for a particular rule
on the basis of similarity (number of bits in common) multiplied by strength. Sexual
seledion, havever, did na improve the dficiency of the genetic dgorithm and this problem
was flagged for further work.

Skinnerian creaures have anumber of benefits. For example, in these computational
experiments, reinforcement leaning meant that agents used their ‘best’ behaviours, that is,
the ones that made the biggest contribution to their fithess Thus the fithess estimates of the
Skinnerian creaures were more senditive than those of the Darwinian creaures. For
example, if a Darwinian creaure had two matching behaviours - one worth nine
(hypotheticd) fitness points and the other worth ore fitness point - then it would use them
equally, averaging five fithesspaoints. Anather Darwinian creaure with ore behaviour worth
six fitnesspaoints would end up faving a higher probability of transmitting its behaviour to
the next generation. Skinnerian creaures reduce the dilution effed of bad behaviours by
testing all their behaviours and then using only the strongest one.

Skinnerian creaures can aso benefit by the processof genetic assmilation dten cdled
the Baldwin effea (Baldwin, 1896 Lloyd Morgan, 1896 Simpson, 1953 Bateson, 1963: a
mecdhanism whereby leaning can guide aad augment genetic evolution (see sedion 4.2).
Hinton and Nowlan (1987) ill ustrated genetic assmilation by simulating a smple interadion
between learning and evolution in which a 20-conredion reura network is at least partialy
spedfied by a 20-gene drromosome. The unspedfied conredions are left for the neural
network to lean. It is assumed the neural network can implicitly recognise the desired state
when it readesit. A popuation d 1000 reural networks was left for 1000trials to randamly
try out different connedions until the desired network was found. The next generation was
cregded using a genetic dgorithm. The parents were picked probabili sticaly, with those
neural networks that leant the problem the quickest being the most likely to be picked - their



probability of becoming a parent was propartional to 1+ 19n/1000,where n was the number
of trials after the correct setting had been learnt.

Because different genotypes gpedfied dfferent initial connedions, recombination led
to changes in the initia neural network configuration. As the fitter agents were the most
likely to producethe next generation, their initial configurations were most often recombined
leading to an increase in the number of initially corred conredions and a reduction in the
leaning space It took Hinton and Nowlan's modd abou 20 generations, with 1000
individuals per generation and 1000 trials per generation, to produce the correct response.

Maynard Smith (1987 considers to what extent leaning had acceerated evolution in
this model. In the absence of leaning there ae 10° genotypes, of which ore has a fitness of
20 and all the rest a fitnessof 1. *An asexual popuation, withou learning, would try out
more than 1C individuals before solving the problem, compared to 20,000for the simulated
sexual popuation with leaning’ (Maynard Smith, 1987, p. 45¢ Maynard Smith (1987
argues that the dfed of leaning is to ater the seach spacein which evolution operates,
surrounding the optimum by a slope that natural selection can climb.

As well as the benefits of genetic asgmilation and the advantage of being able to use
the best behaviours, there ae the alvantages of adapting to changes that occur too quckly
for genetic evolution to tradk and the passhility that leaning a function may be eaier than
evolving it (Johrston, 1982. First, Skinnerian credures can adapt to changes that occur
within their lifetimes. Darwinian creaures require previous knowledge of such changes or
fortuitous acddental properties to cope with such changes. Second, kecaise genetic
evolution influences development, it may be difficult to influence the relevant phenctypic
feaures through thisindired means. However, leaning allows the aquisition d phenctypic
fedures, and povides additional phenctypic variability for natural seledion to operate on,
even in cases where genotypic variability is minimal.

The medianisms of Skinnerian credures incur a number of costs. The Mark |
Skinnerian credures face a initial, paentialy dangerous, testing phase. For example, an
agent with ten behaviours, orly one of which is good,will have arelatively low fitnessafter
ten trials. However, the agents as implemented in these experiments will in a 100trials use
the strongest behaviour 91 times and the fitnesscdculation will be lessobscured by the nine

other poorer behaviours.
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A problem that was initially encountered in these experiments was that the agents were
implemented in such a way that the rule set was both the genotype and the phenotype. The
pasition d a rule in the rule list was important to the genetic dgorithm’s adion. Thus,
initialy, Skinnerian credures were cgable of transmitting aaquired charaderistics -
Lamarckian evolution - becaise new rules were aeded in the lifetime of the aent and
written over other rules and this modified rule set was used in the generation d off spring.
However, the adion d writing new rules over we& rules aff eded the aossover operation by
disrupting building blocks (schemata). In ather words, the operation d the Pittsburgh-style
genetic dgorithm is dependant on the order of the rules in the rule list, and the rule-
replacament algorithm disrupted this order. This led to a caastrophic lossof performance, in
fact, no adaptive change was observed.

Hinton and Nowlan (1987, pp. 45@151) describe asevere mmputation dfficulty with
Lamarckian evolution: ‘To knav how to change the genatype in arder to creae the required
charaderistics in the phenotype it is necessary to invert the forward function, that maps from
genotypes, via the processes of development and leaning, to adapted phenotypes. This is
generally a very complicated, nonrlinea, stochastic function, and so it is very hard to
compute how to change the genes to adhieve desired changes in the phenotypes even if those
desired changes are known.” However, as these experiments show, this problem does nat
only arise in agents with complex genotype-phenctype mappings. Simple one-to-one
mappings suffer schema disruption withou computational mechanisms for assgning
appropriate insertion pants for replacement rules. Thus Lamarckian evolution poved
incompatible with the agents implemented here withou the adtion o extra
(computationally expensive) mechanisms.

Johrston (1982 identifies Sx seledive wsts of leaning: 1) delayed reprodictive
effort; 2) increassed juvenile vulnerability; 3) increased parental investment; 4) greder
complexity of the central nervous g/stem; 5) greder complexity of genotype; 6)
developmental falli bility. The ast of a delayed reproductive dfort, mentioned ealier in this
sedion, is related to the fad that there is an initial testing phase. Juvenile vulnerability can
be reduced by parenta care & a st to the parents. Agents with a set of behaviours and the
cgoability to lean require amore mmplex central nervous g/stem than those withou the

cgability. To code for a more mmplex central nervous g/stem requires a more amplex
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genotype which in turn requires higher fidelity copying mechanisms. Finaly, the very faa
that behaviours are unspedfied may result in agents leaning maladaptive resporses and
being selected against.

Johrston (1982 stresses the point that while there ae benefits for having the
cgability to lean, there ae dso a number of costs and if leaning ability is to be seleded,
the benefits must outweigh the asts. However, the asts of different mechanisms neal na
be alditive. It is unlikely, for instance that delayed reproduction, juvenil e vulnerability and
parental cae have aditive wsts (Johrston, 1982. Furthermore, if the benefits of one
mechanism outweigh the msts and this medanism is ®leded, then this may reduce the st
for other medhanisms, for example, the seledion d better perceptuomotor skill s that led to
an increased central nervous g/stem complexity would pay some of the ast incurred by
learning (Johnston, 1982).

The mst-benefit analysis for different adaptations is relative to the other adaptations
present. This means that learning may be beneficia at one point, and then at a later stage
genetic asgmilation will remove the neal to pay its costs. For example, Mayley's (1996
computational experiments sowed that while aleaning ability is initially favoured, genetic
assmilation will mean that subsequent agents that do nd have to pay the st of leaning
will be selected.

Ancother seledion pesaure for genetic assmilation is implicaed by the fase
dichatomy of an agent having either instinctive &iliti es or a dean slate and a set of adaptive
abiliti es (Todd, 1996. Agents with a better initial starting point (instinctive abiliti es) and the
ability to adapt will have aseledive alvantage over purely instinctual agents. Hinton and
Nowlan's (1987 experiments sowed how genetic assmilation via the adion o
recombination can improve the quality of an agent’s start in life.

The isaue of genetic assmilation dscussd in this sdion relates to the nature-nurture
debate, that is, the diff erence between innate and aayuired feaures. Mayr (1974 described
ancther way of discussng this dichatomy using the ancept of a genetic program. A genetic
program which dces not allow appreaable modificaions during the process of trandation
into the phenotype is cdled a dosed program - closed becaise nothing can be inserted
through experience. A genetic program which allows for additional input during the lifetime

of its owner is called an open program.
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Darwinian creaures have fixed phenotypes - closed programs. Skinnerian creaures
have a cetain degree of phenotypic plasticity - open programs. If the fedures of the
environment which are gplicable to the genetic program are stable enough and the open
programs are subjeded to the wsts described in this dion, and the st of storage and
transmisson d genetic information are not too hgh, then there will be aseledive alvantage
for agents with closed programs. However, as the Hinton and Nowlan (1987 showed, open
programs can guide evolution and result in a faster rate of adaptive change.

The phenatypic plasticity of the Mark | Skinnerian creaure was limited by the size of
the initia rule set. In the Mark 1l Skinnerian creaure agenetic dgorithm allowed the agent
to search the spaceof possble behaviours. However, because of the time needed to initially
evauate the behaviours, the genetic dgorithm was adivated after 100 rounds. halfway
through the agent’s lifetime. The longer the agent lived, the more oppatunity it would have
to benefit from the rule discovery system. The genetic dgorithm had orly a minor effed in
these experiments because of the short lifetime of the agentSdaess-2).

Finally, the following problem with Mark 1l Skinnerian creaures was observed in the
computational experiments: new rules that were discovered in the aent’s lifetime could
affed the overal fitnesscdculation d the agent, but they could na be transmitted to the
next generation. Leaning could produce phenctypicdly strong agents that were
genatypicaly weak. Thus while leaning could guide evolution, it could also fail to dred the

evolution of agents not capable of passing on their fithess-enhancing, learnt features.

5.4.3 Dawkinsian and Vygotskian creatures
The first type of agent, the Dawkinsian creaure, has the caability of imitation: that is, the
ability to copy another agent’s behaviour. A central requirement of imitationis smething to
imitate. Thusif an agent is cgpable of imitating, then the questionis who a what shoud the
agent imitate? Consider the following evolutionary sequence. The point of describing this
sequence is to consider the oppatunities available to agents in dfferent niches, nat to
provide a just-so story for the evolution of intelligence.

First, consider niches in which parental care is available. In the last sedion parental
care was discus=d in relation to reducing infant vulnerability in agents cgpable of learning.

Parental care incurs a st to the parents whil e benefiting the off spring. However, parenta
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cae satisfies a necessary condtion d imitation: something to imitate, which is not to say
parental care is logicdly sufficient for Dawkinsian credures to evolve. Where parental care
is provided, there ae two reasons why it might be agoodideato imitate your parents: first,
the parents behaviour has been succesdul enowgh to lead to reproduction; second, the
observed behaviour will be spedes appropriate a the parents are of the same spedes. The
main pant is that there ae reasons to think that imitation would be aseledive advantage in
niches where parental care is available.

Furthermore, parental cae can creae family groups. Groups form a necessry
condtion for what Bonrer (1980 cdlsthe ‘wolf pad principle’: that is, where groups all ow
adions not posgble to the individuals alone (in the cae of the wolf this refers to hurting
large prey). Note that the wolf pad principle is task-dependent, for many tasks an individual
may be better off aone, for example, an individual will nat hurt in a group unessit finds
more food than hurting alone. While family groups stisfy a necessary condtion (a group)
under which the wolf padk principle can be exploited, as cia inseds demonstrate, social
living dloneis nat sufficient for the evolution d intelligence There ae, in fad, a number of
advantages of groupliving (cf. Krebs and Davies, 1987,chapter 6), bu for the purpases of
this discussion we will focus just on the wolf pack principle.

Humphreys (1976 postulates that it is ocia interadions between certain kinds of
agents that creaed a requirement for increased intelli gence Thus while the st of increased
intelligence may have dready been partly paid for by other functions (e.g. leaning),
Humphreys postulates that it is ocia living, particularly socia negotiations, which produces
the requirement for increased intelligence.

However, there is a seaond pashility: that is, socia living does not just require
increased intelli gence bu it credesit. By this | mean that imitating agents in a social group
can satisfy the logicd condtions which produce Darwinian evolution by natural seledion. In
such cases imitation forms part of a seand reredity system which brings abou cumulative
adaptive change across groups of individuals separated in space and time.

The medanisms of imitation also compensate for the leant adaptation problem found
in Skinnerian creaures: that is, that adaptations leant over an agent’s lifetime caana be
geneticdly inherited by their off spring. With imitation, leant adaptations can be transmitted
to the offspring by a norngenetic heredity system. As well as leading to adaptive dange
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which is cumulative over spedes time, imitation also produces a socia equivalent of
recombination which is not constrained to a single instance of mating, bu can operate
between any individuals at any time (Bonrer, 198Q Williams 1992. Thus unlike sexual
reproduction where two individuals can share genetic information at one time (conception),
imitation, in theory, allows any number of individuals to share information as often as
possible.

Another feaure of cultural evolution is that it may suffer lessthan genetic evolution
from the problems of feaures being assciated in such a way that changes to ore fedure
creae changes in ancther. In genetic evolution this occurs partly because there is a seledion
presaure for shorter genotypes. Obviously this sledion presaure is nat diredly applicable to
cultural evolution. It may be the case that new behaviours can be added in cultural evolution
withou disrupting the old behaviours and that behaviour can be more readily changed
without changing other behaviours.

Imitation can also provide an advantage when an agent leans squences of behaviours.
As a behavioural sequence increases in length, the number of possble sequences rises
exporentially. There ae two approades agents can take to reducing this problem: first, they
can aqyuire parts of sequences (modues) which can be subsequently used as building
blocks; second, they can aqquire information abou the ordering of sequences. The imitative
mechanism allows agents to take advantage of both approaches.

Thus far we have mnsidered some of the requirements and kenefits of imitation, bu
what abou its costs? Plotkin and Odling-Smeé€s (1981) hierarchicad evolutionary modd (see
sedion 5.1.1) emphasised that the different levels of the hierarchy were nested in the levels
below, for example, asthe brain is coded in the genatype, the psychologicd level is nested in
the biologicd level. Furthermore, the sociocultural level is nested in the psychaogicd level
as they share some of the same mecdanisms. As Johnston (1982, pp.342-3) pointed ou,
‘interadion among the various costs and lkenefits of leaning is unlikely to be linealy
additive, since there will most likely be redprocd interadions among the various ®ledion
presaures that ad on an evolving popuation... It shoud be noted that the evolution o one
type of leaning ability may make the evolution o others lessexpensive... then the evolution
of others will not incur this sledive st and there may be a‘snow ball’ effed, permitting

the relatively rapid evolution d several leaning abiliti es'. In ather words, if the @sts have
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already been paid (or partly paid), then the alditional mecdhanisms incur no (or negligible)
costs whil e providing additional benefits. In the case of the sociocultural level, if the @sts of
leaning have been paid by the psychdogicd level, then the sociocultrural level incurs
negligible alditional costs - in fad its benefits may help pay the csts of additional brain
power.

However, imitation has a big constraint: you can only imitate what you can olserve.
Infrequent but essential behaviours, for example, can be missed. Hencethere is an advantage
of having another knowledge transmisson medanism - instruction. Instruction, like
imitation, refers to a dass of mechanisms, na a single mecdhanism. While ajents with
imitation can orly imitate what they observe, agents with instruction can demonstrate
behaviours which are nat naturaly €licited. For example, play stalking in many predators
gives the imitator both something to olserve and hurting pradice Thus instruction can be
regarded as a mechanism which adds selectivity to the process of adaptive change.

Vygotskian credures are named after the Rusdan psychologist Vygotsky who
postulated the concept of the zone of proximal development (ZPD). The ZDP is the distance
between a dhild’'s adual developmenta level and hs or her paotential level of development
under the guidance of adults or in collaboration with more cwmpetent pees (Smith and
Cowie, 199]). Thisrelates to the notion d designs developing through a sequence of niches
(see sedion 2.5), for example, an embryo developing in a womb urtil it is cgpable of
surviving in the external world with the help o the parents and so on. Thus instruction
allows an agent to provide asuitable behavioura niche which fadlit ates another agent’s
behavioural development.

To conclude, imitation and instruction provide anorgenetic information transmisson
channel. This has a number of advantages: first, adaptations leant within the lifetime of an
agent can be passed onto the next generation; second, information can be transmitted to any
individual (not just to dff spring); third, information can be imparted many times (not only at
the point of conception); fourth, some alaptations can be transmitted independently of other
features.

Cultural evolution can be much faster than genetic evolution (Bonrer, 1980Q. Genetic
evolutionis constrained by generation turnover; cultural evolution, onthe other hand, all ows

rapid change within the lifetime of the individual. Because ‘evolutionarily stable strategies
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are dependent on the other strategies present and kecause ayents have limited cgpadties to
predict what other agents are going to do,a dynamic environment is expeded. The dfed of
rapid change in the ailtural domain will prevent or reduce the amourt of genetic
assmilation. Genetic evolution canna tradk changes that occur above acertain frequency
related to generation time (Plotkin, 1995 and hence the necessary adaptations have to be
produced by cultural evolution.

Whereas sxually reprodwcing Darwinian credures are limited to recaving
information from two individuals once in their lifetime, Dawkinsian creaures can receve
information from any individual on many occeasions. This alows a kind d social
recombination the results of which are dealy seen in Figure 5-2. As the graph shows,
popuations of Dawkinsian and Vygotskian agents have an initial advantage & they can
adapt to a new situation more quickly than the other kinds of agents. Social recombination
indicates a benefit which could help pay the wst of the expensive central nervous g/stem as
it allows the aility to adapt within the lifetime of an agent, and can also produwce altura
evolution.

In ore theory of human cultural leaning (Tomasello et al., 1993 three forms of
leaning are distinguished: imitative, instructive and collaborative. However, these
experiments $ow that the first two forms of leaning automaticaly produce aform of
collaborative leaning. The mnsequence of imitation and instruction is a kind o social
recombination ketween groups of individuals distributed in space ad time. As the
Skinnerian credures were implemented so that they always used their strongest behaviours,
it was these behaviours that were on show to be imitated. In ather words, ignoring deception,
an agent can wsualy be expeded to use its ‘best’ behaviours and so these behaviours are
what isimitated. However, the imitation processis not exad: ‘mutations’ can arise. Thus the
semnd leredity system satisfies Lewontin’s three principles of phenatypic variation,
differential fitness and heritable fitness There is a phenotypic variation in behaviours, a
differential fitnessbetween dfferent behaviours in relation to dfferent goals, and fitnessis
heritable - there is a correlation between what is observed and what is tried.

Finally, other adaptations can augment the heredity process (Maynard Smith &
Szarthmary, 1995, for example, language, written communicaion and science. Language is

seen here & a wmmunicaion tod, written communicaion alows agents from different
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places and dfferent times to communicae with aher agents (including themselves), and
scientific papers are a forma written structure incorporating mathematicd and logicd

formulations which creates a high fidelity cumulative knowledge base.

55 Summary and further work

These experiments describe atragjedory in design spacemade up d five different kinds of
agents. These implementations al owed the mmparison d agents with and without particular
medhanisms. for example, with a reinforcement medanism (Skinnerian creaure) and
withou one (Darwinian creaure). The results of these experiments can be split into two
caegories. qualitative design-work observations and quantitative measurements of the rates
of adaptive dhange. The design-work invalved identifying the requirements, exploring the
medhanisms which satisfied thase requirements, and examining the costs and kenefits of the
medhanisms. The quantitative side of the study aimed to measure and compare the rates of
adaptive dhange between the different kinds of very smple aents. These measurements
showed that there was a significant increase in the aility of Dawkinsian and Vygoskian
creatures to adapt compared to the other creatures in this very simple world.

The main design-based observations were & follows. Darwinian credures are a
sufficient mechanism to produce alaptive dhange if time permits. However, time is often in
limited supdy. The mechanisms of Skinnerian credures are cgable of guiding evolution
(the Baldwin effed) and allowing adaptive dange within the lifetime of the agents.
However, Skinnerian creaures have nat got the mechanisms to passon aayuired adaptations
to the next generation and the wsts of the medianisms in Skinnerian creaures produce a
seledion presare for genetic assmilation. Dawkinsian credures have mecdhanisms which
alow the transmisgon d leant charaders. However, socia agents are faced with the
formidable task of interading with ead ather and this can leal to rapid change which cannat
be tradked by genetic evolution. Thus cultural evolution, while influenced by genetic
evolution, becomes partly independent of it. The fina kind o agent, the Vygotskian
credure, demonstrates how seledivity can be incorporated into the process of cultural
evolution by agents being able to seled which o their behaviours are on show to be
imitated.
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Centra to this thesis is the ideathat Darwinian evolution by natural seledion is an
algorithmic process If the logicd condtions are satisfied, then adaptive dange follows. |
argue in this chapter that agents cgpable of imitation can satisfy the logicd condtions
required for Darwinian evolution. There is a way in which adaptive dhange in the ailtura
domain occurs independently of the agent’s intelli gence In fad the agent’s intelli gence can
be seen as a way of adding seledivity to the trials explored and hence brings us bad to the
concept of evolvability. To conclude this chapter, two additional kinds of agents are
described that addressisaues ignored so far and a scheme is suggested for representing the

different kinds of agents discussed in this thesis.

5.5.1 Further work: Popperian and Gregorian creatures

Dennett (1995, 199% describes two kinds of agents which were not implemented: Popperian
and Gregorian creaures. For the purpose of this discusson these two kinds of agent will be
described as if they are independent of the previously described agents, however, it may be
the cae that these mechanisms may be required for some of the previous mechanisms to
work. For example, leaning by imitation may use Popperian medanisms. Popperian
creaures have an additional medhanism, an internal model, which allows simulated trial and
error; Gregorian creaures can buld and uilise atefads. Further work could investigate
these agents and compare them to the other agents described in this chapter.

Skinnerian cregures cgpaaty for trial and error is fine so long as the aedure is not
killed by one of its ealy errors (Dennett, 1995. A better system involves preseledion
among all the possble behaviours and adions before field testing them in the red world.
Dennett (1995, 1995 names siuch credures ‘ Popperian creaures after Karl Popper who said
that this type of design enhancement permitted our hypothesis to die in our stead.

A Popperian creaure requires osme sort of internal environment which is dructured in
such away that the adions favoured there ae the same or similar to the adions favoured in
the external environment. The inner environment, in ather words, must contain information
about the outer environment and its regularities (Dennett, 1995).

Internal models as a mechanism for guiding behaviour have dso been dscussed by
Holland (1995. Holland emphasises the role of models in bah anticipation and prediction.

Holland suggests that the basic move for constructing models involves eliminating detail s



that seleded patterns remain. In his analysis Holland dstinguishes between two types of
internal models. tadat and owert. The first type, the tadt internal model, prescribes an adion
under an implicit prediction d some desired future state, for example, a baderium
swimming up a glucose gradient implicitly predicting the presence of food.An owert internal
model is used for the basis of explicit, bu internal, exploration o aternatives, a process
called lookahead.

Popperian credures can have both tadt and owrt internal models. Humans, for
example, are Popperian creaures that with resporses like vertigo, fleang in terror and
sexual attradion demonstrate the use of tadt models, whereas chess playing, for instance,
demonstrates the use of overt models.

Experiments are used in the modelling processto bah test and gather data (Magee
1989. From observations a number of passble models can be used to describe asituation.
Experiments can then be used to dff erentiate between models as well as gather more data.
The dstrad models generated by this processignore unknowvn details when they are not
relevant.

Science is a formalised model generating and testing process However, the use of
models in science has led to a redisation d their limitations. To simulate ared world
situation, like aflapping wing, requires awhade atificial physics of the relevant phenomena
and information d all the properties of the wing - hardness brittleness easticity, bending
and compresson - and any emergent properties of the model that may arise - patterns of
turbulence and the interaction of the multitude of different factors (Dawkins, 1996).

Thus smulations require alot of information which may not be known and the process
itself can be computationally very expensive. However, engineas also use models sich as
wind tunrels to try out their idess, often after an extensive period d computational
modelli ng. Popperian creaures can ressonably be expeded to dothe same, that is, to use the
internal models of the world to pre-seled posshiliti es before field testing. Thus a necessary
requirement of Popperian credures is a delay between sensing and ading. Withou this
cgoability it is not pasgble for an agent to test out different posshiliti es against an internal
model, or a simplified external one.

Dennett’s (1995, 1995 final kind d agent, named after Richard Gregory, is cdled a
‘Gregorian creaure’. Gregory described the @ncept of ‘potential intelligence which
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identifies well-designed artefads - tods - as endowers of intelligence (external potential
intelligence). Tods require intelligence to use and confer intelligence on their user.
However, using atod does nat necessarily require the intelli gence needed to design it. For
example, adaptations can be regarded as todls, but to use abrain obviously does nat require
the adility to be ale to buld ore or even understand hav one works. A related pant is that
improving a tod does not necessarily require the intelligence of being able to buld the
improved tool from scratch, for example, improving a computer program.

Toodls nead na be physicd artefads: in the sense used here aword isatod. Words and
other mind todls give aGregorian creaure an inner environment that permits it to construct
even more subtle move generators and move testers. Thus Gregorian cregures can benefit
from the experience of others by exploiting the wisdom in todls that others have ‘invented’,
improved or transmitted.

Both Gregorian and Dawkinsian creaures siow how norgenetic adaptive change can
ocaur via the same process as genetic adaptive change: natural seledion. However, while
Dawkinsian creaures have medanisms of imitation, Gregorian creaures do nd need such
medhanisms. A physicd tod creaed by one Gregorian creaure culd subsequently be found
by another agent who leans how to use it. These todls form part of the phenctype of the
agent and produce what Dawkins (1982) calls an extended phenotype.

It is posgble to imagine Skinnerian credures using tods. As reinforcers edfy the
desired states and nd the means to achieve them, using a tod as part of a behavioura
sequence leading to a reward would reinforce the tod usage. However, in nature, tod use
appeas rare. It isinteresting to ask why, if many animals are cgable of using tods, they do
not do so more often. Tod use forms anaother possble benefit of a mmplex nervous g/stem
which could help to pay its costs.

To conclude, Popperian creaures have amedanism for exploring the consequences of
different behaviours before they are used in the external world. Gregorian credures can
incorporate structures into their phenatypes. Both tod use axd lookaheal can increase the
evolvability of an agent: that is, these different medhanisms can increase the fitness of an

agent and lead to the selection of the underlying mechanisms (see chapter 4).



5.52 Darwin machines

The term ‘Darwin macine was coined by Calvin (1987 to refer to madines whose
operation is based on \ariation and seledion. Dennett (1986 argued that variation and
seledion, which he cdl s generate-and-test, are fundamental to all processes of invention. He
writes that such claims ‘owe their plausibility to the fad that they are implications of an
abstraa principle whose “necessty” (such that it is) consists in this. we can know
independently of empiricd reseach in psychodogy that any adequate and complete
psychologicd theory must exploit some version a other of the principle (Dennett, 1986,
p. 71). However, Simon (1982 points out that generate-and-test is nat an efficient or
powerful processunlessthe generator is endowved with a high degreeof seledivity which, he
goes on to say, can be euated with some kind d feedbadk of information from the
environment. In this thesis | have described a set of Darwin madines which dffer in kind.
The different medhanisms add seledivity to the variation produced and this can creae the
property of evolvability. In this ssdion | will outline some of the Darwin madines discussd
in this thesis.

In Holland's (1994 analysis of adaptive systems he describes the ‘enumerative plan’ -
a plan for seaching for an optimal structure in a set of structures. The exumerative plan
exhaustively tests a set of structures and is charaderised by the fad that the order the
structures are tested in, is unaffeded by the outcome of previous tests. The plan generates a
set of structures, tests them, keeos the best, generates ssme more, tests them and chedks the
best against the best ones it has dored. While this plan is effedive, it is not efficient. The
enumerative plan could be termed the zeroth-level Darwin madiine and is atrue example of
completelyrandomtrial and error.

However, the evolutionary processis better charaderised as seledive or constrained
trial and error. If niche satisfadion bases reproduction (differential reproduction) and
reproduction produces forms that are rrelated to the parents (heredity), then the next
generation is constrained to a subset of the passble variants. With reproductive mecdhanisms
that dupicate the parents this shemeislimited to the initial variation. However, when in the
processof reproduction errors are made, a @mnstrained search space ca be explored by the

next generation. Mutation functions to injed new variation into the popuation and ads as an
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‘insurance palicy’ in case seledion removes variation (Holland, 1994. Reproduction with
and without mutation form two differekindsof Darwin machines.

Holland's (1995 Schema Theorem shows that recmbination is a powerful
medhanism for finding the &owve average building blocks that make up a genotype (see
sedion 3.3.2. Thus the recombination medchanism can be incorporated into a design to
produce another kind of Darwin machine.

Todd (1996 showed that agents with mate-preference leaning can adapt faster than
agents withou the medanism because they can tradk evolving popuation structures (see
sedion 3.3.3. Thus mate preferenceleaning is another mechanism that can be incorporated
into a design to create another kind of Darwin machine.

One step of the design-based methoddogy was referred to as exploring a
neighbouhoodin design space (see sedion 2.3). There ae anumber of possble designs
which can satisfy the requirements for adaptive dchange. In particular there is a dass of
designs cdled here the Darwin madines. Darwin madines can be implemented using the
medanisms discused in this fdion as well as other mechanisms such as open
developmental programs, leaning, moduar design, hierarchicd organisation, imitation,
instruction, and internal models. By spedfying the different Darwin madines it is passble
to compare them in the foll owing manner: one madine with mechanism X against another
machine withou medanism X. It is suggested that by classfying and describing the
different Darwin madines in this manner it is possble to explore their requirements, costs
and benefits in a systematic and precise way.

To conclude, at the start of this chapter the problems inherent in investigating cultural
evolution were identified. The computational approach was offered as a solution asit did na
suffer from a number of problems that affeded the other approaches. A hierarchicd model
of the evolutionary process was described and a design-based study of it exeauted. The
insights into the model gained by the design work and quantitative results obtained from
comparing diff erent kinds of agents was documented. Finally, two additional kinds of agents
were outlined for future work and in this sdion a suggestion was made for formally

specifying the set of architectures which satisfy the design called here the Darwin machine.
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6. Summary

6.1 Overview

This chapter takes as its garting point a summary of the magjor isaues addressed in this thesis
(note that these paints are nat al meant to be novel). Thisis followed by a consideration o
paossble diredions for future work and a summary of the main contributions made in this

thesis.

6.2 The main points of this thesis

1. There ae many different types of explanation. This thesis focuses on forma and
functional explanations. Aristotle agued that the essntia nature of a thing is its
functional organisation. Thus as long as the relevant functional properties of a design can
be estraded, the functional organisation can be described independently of the
implementation cktails. This leads to the mnjedure that an explanation d evolution and
the mind can be given independently of detailed knavledge of the biology in which these
machines are implemented.

2. The phenomenon examined in this thesis is adaptive dange. Analysing the concept of
adaptation reveds a number of things:. firstly, the concept is used to apply to bah the
processof adaptive dhange and to the products of that process secondy, adaptations have
relational (to the niche) and functional properties - in aher words, adaptations are
functional design feaures which satisfy niche requirements; and thirdly, adaptive dange
is either a processof searching through design spacelooking for designs which *better’ fit
a particular niche or of changing to a more suitable niche. The @ncluson d the
conceptual analysis was that adaptation refers to the dass of design feaures with
relational and functional properties and adaptive diange refers to the dass of processes
which can produce adaptations.

3. The analysis of design and nche properties demonstrated that adaptive processes are
required in dynamic environments, where designs are incomplete, and in competitive
environments. If the niche dianges, then for the design to persist it requires either to be
able to tolerate the dhange or change acordingly. The interadion o adaptive aents

results in dynamic systems prodwcing a Hegelian world of perpetual change where
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complex dituations contain conflicting elements which by their very nature ae
destabili sing and produce diange (Magee 198§. Sewndy, in neture, for example, many
designs are unfinished: that is, they require cetain areas of the design to be modified in
relation to the niche. Furthermore, in a world with finite resources, there will be a
competition between designs with the better designs being more succesgul. In al these
cases adaptive proceses can provide a seledive alvantage, and as these @ndtions
appea prevaent in the red world, adaptive processes are necessary to the success and
persistence of designs.

. In chapters 3 and 4 the am is to give alogicd description d biologicd evolution:
describing the functional organisation d the Darwinian process independent of its
biologicd base. It is argued that the Darwinian process is a probabili stic, anytime
algorithm. The logicd condtions sufficient to kring abou Darwinian evolution were
examined (e.g. Lewontin, 1970).

. A conjedure of this thesis is that charaderisations of evolution like, ‘randam (or blind)
variation and nonrandam seledion’ are seriously mislealing. In a Darwinian process
variation is ‘blind in a rather uninteresting sense (e.g. randam point mutations), what is
more interesting and important is how the variation is nonrandam. The Darwinian
processis not an example of Holland's (1994 enumerative plan where subsequent trials
are generated independently of the results of previous trials, bu it is an example of
Simon's ledive tria and error where previous trials inform (in the biologicd case via
heredity) subsequent trials. Different mechanisms which can lead to seledivity in trias
are examined in this thesis.

. The genetic system is logicdly described and the insights of the computational studies
into genetic dgorithms are mnsidered. However, a number of properties of natural
popuations are largely ignored in these computational models. Thisled to a mnsideration
of the myopic property often ascribed to evolution and concluding that this limitation is
neither as degp na as problematic asit at first seans. For example, natura partitioning of
popuations in space ad time, patch logic and reutral nets help stop popuations getting
caught in local optima.

. In the first half of chapter 4, the role of development in evolution is considered,

particularly how developmental programs can affed adaptive change. Development is
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described as a ondtionally-branching, hierarchicd, control system. The program
exeaution is condtional on fadors interna and externa to the agent. The devel opmental
program is hierarchicdly organised bah in Simon's (1982 moduar ‘box-within-box’
sense (e.g. nested subroutines), and in Plotkin’'s (19995 control hierarchy sense of
programs controlling and co-ordinating other programs which are being exeauted
concurrently and asynchronously.

8. Simon (1982 mathematicdly demonstrated that hierarchicad organisation can affed the
rate of adaptive dnange and Koza's (1992, 1994, 1995work on genetic programming
seams to suppat this clam. These mathematicd and computational results demonstrate
how the representation d the developmental program can influence both what can evolve
and how fast it can evolve.

9. A set of computational experiments are described in the second relf of chapter 4. The
experiments demonstrate two things: that evolvability can be sdleded and that
evolvabilit y-enhancing medianisms are @ntext-dependent (e.g. relying on popuietion
size and landscgpe ruggedness. Thus ome of the mecdhanisms described in chapters 3
and 4indicate how agents can vary in ‘evolvability’ and the computational experiments
demonstrate how Darwinian evolution can seled the alaptive mecdanisms that produce
the fastest rate of adaptive dange (this is not to suggest that the medhanisms =leded
lead to the optimal rate of evolution).

10Design work is described in chapter 5 which investigates the role of additional
medhanisms (such as, reinforcement learning, imitation, and instruction) in the processof
adaptive dange. Another conjedure agued in this chapter is that computational
experiments al ow the testing of evolutionary models in a way which is unfeasible in the
real world and have been acknowledged to be mathematically formidable (May, 1977).

11.Thefirst classof agents examined were Darwinian creaures that had fixed phencotypes. A
number of fadors are discussed that may constrain adaptive diange and produce stasis.
Rather than a single medhanism being postulated to explain stasis, a ®lledion o
mechanisms relating to the previous discussion are described.

12 The second class of agents were Skinnerian creaures that are Darwinain creaures with
additional medianisms such as reinforcement leaning. The phenotypic plasticity of

Skinnerian creaures helps avoid some of the fadors that produce stasis, for example,
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allowing the generation and testing of phenotypic variations independently of genetic
variation. However, leaning is not withou its costs a number of which are discussed.
One problem with Skinnerian creaures is that fithess producing adaptations learnt within
the lifetime of the aent are lost a eath new generation kecause they canna be
genetically inherited.

13The final two classes of agents are Dawkinsian credures cgpable of imitation and
Vygotskian creaures cgpable of instruction. These mecdhanisms alowed behavioura
transmisson d the adaptations leant within the lifetime of an agent. Thus imitation and
instruction creae behavioural adaptive change which is cumulative over spedes time.
Furthermore, cultural evolution dffers from genetic evolution by: 1) allowing agents to
passinformation more than orce per generation and between any number of individuals;
2) allowing agents to produce phenaotypic variation throughou their lifetime thus adaptive
change bemmes independent of generation turnower. It is argued that these kinds of
agents in a adltural setting satisfy the logicd condtions for Darwinian evolution by
natural selection.

14Two additional types of agents were outlined: Popperian and Gregorian credgures
(Dennett, 1995, 199K Popperian agents possess an internal model of the world which
allows them to pre-test posshiliti es before trying them out in the red world. Gregorian
agents utili se toadls and the intelligence implicit within the tod’s design, for example
Newton's model of the world can be used to test a hypothesis withou the agent having to
be able to have invented the model in the first place.

15A fina conjedure is that human intelligence is to a large degree a sociohistoric
phenomenon. To buld asingle agent capable of reading human performance unaided by
the acamulation d cultural knowledge is an unrecessarily difficult task. Thisis nat to

say that building a robot that can take advantage of culture is itself a simple task.

6.3 Further work

The broad scope of this thesis means there is a plethora of further work that could be dore.
The design-based methoddogy used in this thesis has been barowed from artificia
intelli gence and applied to artificial life. In describing this approad | outline an ortologicd
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pasition. Further work could refine this metaphysicd model and elucidate the roles of
abstract machines and causation.

In the mnceptual analysis of adaptation a relationship between epistemologicd
guestions and the process of adaptive dhange is suggested. Further work could be dore to
analysis the hypothesis that adaptations are knowledge, and adaptive change is a process of
knowledge acquisition.

The requirements analysis could be further refined and tested. Biologicd cases could
be investigated to seeif, for example, there ae situations where the requirements are nat
satisfied bu organisms dill manage to live there. From this dudy of adua niches the
requirements could be refined and further requirements could be specified.

There is dill alot of work that could be dore to test the hypaothesis that evolvahility
can be seleded. In thiswork only two posgble medanisms were investigated and orly on a
limited range of scenarios. Further work could investigate in what condtions different
mechanisms are selected and how different combinations of mechanisms interact.

The design work dore in this thesis incorporates the ‘broad bu shallow’
simplificaion. The individual medianisms had to be simplified to be @le to implement
broad designs. Further work could deepen the implementations of the mechanisms, such as
leaning, imitation and instruction. The process of degoening the implementations is itself
further design work which will crede a greder understanding of the implemented
mechanisms.

In the curse of the design work inadequades in the spedficaion and hence the theory
were uncovered, for example, the rule (behaviour) replacement procedure within agents. The
design-based approach could be regoplied, the requirements of the mecdhanism analysed and
possible designs which satisfy these requirements explored.

Additional work could be dore to broaden and predsely formulate the dassof Darwin
madhines outlined in this thesis. Additional Darwin madhines are outlined li ke the Popperian
creaures and design work could be dore to produce functional spedficaions of the
mechanisms and to test that they have the capabilities attributed to them.

A number of claims are made &ou different medhanisms and hov they could
influence evolution. For example, it has been argued that diff erent developmental programs

can influence the rate of evolution (e.g. constrained embryologies). The developmental
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process has an inherently algorithmic nature which makes it particularly susceptible to a
computational approadh. However, the majority of current work ignores this distinction and
uses smple (often ore-to-one) genotype-to-phenctype mappings (Ackley and Littman,
1994). Thus further work could examine the dfed of different types of embryologies on the
rate of evolution such as embryologies with moduar and herarchicd structures and
embryologies with redundancies in their coding that produce neutral networks and
embryologies that are inherently social.

There were anumber of other medanisms which could benefit from design work and
subsequent testing through computational experiments such as Dawkins' conjedures abou
the relationship between reproduction and embryonic development, the role of patches,
neutral networks, and fadors sich as gace time, constrained interadion ketween agents, in
the evolutionary process.

Finally, a number of conjedures were postulated in this thesis and could form the
starting placefor further work. For example, investigating a theory of spedation caused by
the joint adion d natural, sexua and riche seledion. Popper’s theory of a-genes and b
genes would make avery good starting point for areseach program investigating the role of
behaviour in evolution, such as the selection of reinforcers (p-genes) in Skinnerian agents.

To reiterate apoint made in the introduction, the design-based approadh combined
with the broad-but-shallow simplificaion produces an ededic literature survey where
breadth is substituted for depth. The obvious diredion for further work to take is to degpen
the implementations and provide mathematicd anayses of them. However, the agument
that has been developed in this thesis is for examining the interadion between dfferent
medhanisms, so ancther passble diredion for further work is to continue exploring design
spacevia anaysing the requirements and examining costs and benefits of different broad bu
shall ow architedures. While neither approach is aufficient initself, a combination d the two
approadies is nealed in reseach to produce ahappy medium between exploitation and

exploration (a distinction central to the contents of this thesis).

6.4 Contributions

* Methodological contributions. the problem of a ladk of a formal methoddogy in the
field of artificial life is identified. The design-based methoddogy, developed in artificial



intelligence is offered as a solution. Suppat is added to the agument that taking a
computational approadh removes sme of the problems inherent in experimental and
mathematical approaches.

Terminological contributions: problems with certain evolutionary terms are identified,
for example, adaptation, reredity, gene and spedes. The concept of adaptationis analysed
and pdential confusions in the terms heredity and gene ae examined. Darwins' original
terms have bemme boundto geneticd theory of natural seledion and suggestions have
been made for a general terminology. For example, Darwin (1859 emphasised the role of
heredity in evolution and while this has beacome synonymous with the genetic system,
Darwin orly stated that ‘like produced like'. A more caefully worked ou concept of
heredity is suggested where one structure informs anaother without mention o a particular
implementation like genetics.

Conceptual contributions: the problem of Darwinian evolution keing conceptualised as
randam trial (blind variation a randam variation) and error (seledion) isidentified. As a
solution it has been suggested that Darwinian evolution is charaderised as sledive or
constrained trial and error. This distinction is explored with reference to the concept of
evolvability and hes resulted in the suggestion d spedfying a set of Darwin madines. A
second conceptual problem that is identified is that there is, in general, a bias to attribute
causa power to orly physicd things (see ~axs/pubic-html/misc/supervenience). In an
attempt to address this problem the possble roles of behaviour in evolution are
elucidated.

Theoretical contributions. the main problems examined are that of evolvability and
combining genetic and cultural evolution. Evolution is examined from an algorithmic
perspedive and it is argued that genetic and cultural evolution are both instantiations of
Darwinian evolution by natural seledion. However, aswell as the simil ariti es between the
two instantiations there ae anumber of differences which effed the functionality of the
two systems such as the rate a& which adaptive change can occur: that is, its evolvability.
To suppat the dam that there is such thing as differential evolvability, a range of
medhanisms are described which can in dfferent circumstances increase the rate of

adaptive change of their owners.
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7. Appendix 1

A brief functional description d the programs used in the experiments described in the
seoond Helf of chapter 4 is given in this sdion. The adua programs can be found onthe
University of Birmingham, Schod of Computer Science omputer network in the diredory
‘~cxc/Public/Code’ . The programs in this dion took approximately six months to develop
and due to their computationally intensive nature, data lledion took a further month with
ten Dec Alphas being used in parallel.

The following functional speaficaionwill be split into two parts: in the first sedion
the NK landscape programs are described, in the seaond sedion the programs which run the
experiments are described. It shoud be noted that due to the number of agents used in some
of the experiments and the intensive mmputational nature of this work that considerable
attention was paid to bah size and spedl, and this dictated the choices of the data structures

used etc. At the end of this section is a brief overview of how to compile and run the code.

7.1 NK Landscape program
This file ontains 11 pocedures that can be split into procedure for generating an NK

landscape and procedures for evaluating a bit vector on an NK landscape.

7.11 NK landscape generation procedures

The main procedureis cdl ed newlandscape. This procedure takes as inpu two integers (N &
K) where the seaond \alue has to be lessthan or equal to the first value and generates an NK
landscepe of the spedfied size (N genes, K links) with the associated fitnesslookup tables
(see sedion 4.3.2 for a detailed spedficaion). Three data types, nklandscape, gene and
sevenbit, are defined. The nklandscape data type acnsists of two integer values (N & K) and
alist of gene data types. The gene data type mnsists of alist of integers (referring to other
genes which effed that genes fitnes9 and a sevenbit data type (the fithesslookuptable). The
sevenbit data type is a vedor with seven hit dots that hold integer values from 1 to 100.
Each procedure has an acmmpanying initialisation pocedure cdled newnklandscape,
newgene, and newsevenbit. The last procedure, newlink, generate a list of integers

representing the genes to which a particular gene is linked.
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7.12 Fitness evaluation procedures

The main procedure is cdled ewaluate. This procedure takes as inpu a bit vedor
representing a genotype and a nklandscape data type representing an NK landscgpe and
returns the fitnessof the genotype acording to that NK landscape. A bit vedor data type is
defined cdl ed onebit with an acempanying initiali sation procedure cdl ed newonebit. There
are two additional procedures used in ewaluate cdled gen to int and int_to_gen. These

procedures convert a binary number to a decimal and a decimal to an integer respectively.

7.2 Programs used to run experiments on the selection of evolvability

The main procedure is cdled run. This procedure takes as input an nklandscape data type
representing an NK landscepe, a list of agents representing an agent popuation, an integer
representing the number of generations to run, ancther integer representing a sample size for
tournament seledion, and a generator of variation pocedure for generating the next
generation (seesedion 7.2.2. The data type representing the NK landscgpe is produced by
the programs described in sedion 7.1.1 The agent popuation consists of a list of agent data
types produced by a procedure cdl ed newagent. The agent data type mnsists of a onebit data
type representing a genotype, an integer representing a generator type, an integer
representing a probabilit y of mutation and an integer representing fithessvalue (the nature of
these variables will beaome dea in the subsequent discusson). The number of generations
is an integer spedfying how many subsequent generations are to be produced. The sample
size for the tournament seledion speafies the number of agents that are randamly picked by
this algorithm (explanation foll ows). The final variable is the procedure which is to be used
to produce the next generation. In the foll owing sedions the tournament seledion pocedure

will be explained, followed by a description of each generator of variation.

7.21 Tournament selection

The main procedure is cdled tourn_sel. This procedure takes as inpu a list of agents
representing a popuation d agents and an integer representing the sample size. Each agent
has been evaluated by the procedure evaluate and the agent’s fitnessis gored as part of the
data type. The procedure top takes as inpu a list and a predicae, top returns the dement
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with the highest numericd value acording to predicate. The procedure tourn_sel uses the
procedure pick_sample (which randamly seleds withou removal the sample size number of

agent$ to produce a list of agents and then uspgo calculate the fittest agent in that list.

7.22 Generators of variation

All the generators of variation are procedures that take the same inpus (alist of agents and
an integer) and poduces the same output (a list of agents). All the generator of variation
procedures use tourn_sel to seled the parents of the next generation d agents. However,
ead of these generators can use alditional procedures to produce the off spring that make up

the next generation.

* nex_gen0 uses tourn_sel to pick parents withou removal and then copies them to form
the new generation

* next_genluses a procedure calletutatewhich flips a random chosen bit of agent

* nex_gen2 uses a procedure cdled recombination that takes as inpu two agents and
produces a single agent by a single point crossover and then uses the procedure mutate to
produce a single point mutation

* nex_gen3 examines eat agent picked by the tournament seledion algorithm for its
generator type and then if the generator type refers to mutation it creaes an off spring
using the mutate procedure and if the generator type is recombination it uses the
pick_mate procedure to find another similar type of agent and then creaes an df spring
using therecombinatiorandmutationprocedures

* nex_genp uses a procedure cdled mutate mutation which changes the probability of a
mutation accurring, thus the probability of a single mutation varies between 1 and 100

(otherwisenext_gengacts just likenext_genl)

7.23 Miscellaneous procedures

The procedure eval _popapplies the procedure evaluate to every agent in alist of agents. The
procedures mean_slot and count_slot cdculate the average slot value in an agent popuation
and the number of agents with a slot value of 1 respedively. Finaly, the procedure colstatk

takes as inpu two integers (correspondng to N and K), a generator of variation pocedure
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and file name. This procedure aedes an NK landscgpe and then colleds the mean
popuation fitness of 40 runs of popuation ranging from 10 to 1280agents, and stores the

results to the specified file.

7.3 How to run the program
The program is written in the Pop 11 pogramming language and thus requires the Poplog
system to run. Asuming that you have acces to this popdog environment, to run the

program requires the following steps:

1. type ‘ved nkexperiments.p’ to open up the main file in the poplog visual editor

2. push ‘enter’ and type ‘11’ and push ‘return’ to compile the code

3. the procedure run is resporsible for exeauting the mde - typing run(N value (int), K
value(int), popuation size(int), number of generations(int), sample size(int), generator of
variation (seeabove=> and then push the **’ button onthe number pad will cause the

program to run and display the results to the screen.
For example, to run an nkandscgpe where N = 100, K = 0, with 1000 agents, for 50
generations, with a tournament seledion sample size of 5, and wsing the mutation generator
(next_gen)lyou would type:

run(100, 0, 1000, 50, 5, next_genl)=>

and then push **" button on the number pad to execute it.

14z



8. Appendix 2

A brief functional description d the programs used in the design work described in chapter 5
is given in this appendix. The adual programs can be found onthe University of
Birmingham, Schod of Computer Science ©mputer network in the diredory
‘~cxc/Public/Code’. The @de described in this sdion took approximately a yea to
develop, havever, urlike the @de described in the previous dion, with reasonable
parameters this code takes 15-30 minutes to run.

For clarity the ade has been split up and pu into seven files. Eadch file will be
described and orly the important procedures discussed. However, as the first file contains
the main function-cdling procedures all of its procedures will be described. Due to the
intensive computational nature of this implementation and the number of agents used in the
experiments considerable dtention was paid to bah size and speed, and this dictated the

choices of the data structures used etc.

8.1 Main

This file loads the other files and contains the procedures for running the overall program.
The first procedure in the file is cdled mean_slot which takes as input a list of data types
representing a list of agents and a procedure for accessng an integer data type slot and as
output returns the mean slot value of the list of agents.

The second pocedure create_poptakes asinpu threeintegers representing the number
of clasdfier systemsin the popuation, the number of classfier rules per clasifier system, and
the number of bits in ead condtion and adion d a dassfier rule. The procedure
create_pop returns a randamly generated list of classfier systems that represent a list of
agents that meet the input specifications.

The next procedure propartiond reward takes as inpu a dassfier system
representing an agent, the stimulus given to the agent, a Bodlean representing whether or nat
the agent is capable of reinforcement leaning, an integer representing the reward, and an
integer representing the number of bitsin a wndtion a adion d a dasgfier rule. As output
propationd_reward produces nathing, but its adion updites the fitnessof the agent and, if

the agent is cgpable of reinforcement leaning, the rule resporsible for behaviour. The
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procedure works by rewarding the agent (and passbly the rule) propationaly to the
similarity between the given response and the desired response.

The penultimate procedure is cdled run. This procedure takes as input an integer
representing the number of rounds, a dassfier system agent representing the desired agent, a
list of classfier systems representing the arrent popdation o agents, a Booean
representing whether or not agents are cgable of reinforcement leaning, an integer
representing the reward, an integer representing the number of bits in a dasgfier rules
condtion a adion, a procedure representing a generator of variation to be used with the
internal genetic dgorithm (explained in the vads file description), an integer representing
the probability of imitation, an integer representing the probability of instruction and an
integer representing the tournament seledion sample size. This procedure runs a popuation
of agents for a spedfied number of rounds, presenting a stimulus to ead agent in turn and
rewarding the responses proportionally to the desired responses.

The last procedure is cdled go. This procedure takes as inpu an integer representing
the number of rounds per generation, an integer representing the number of generations, an
integer representing the size of the tournament seledion sample, an integer representing the
number of agents in a popuation, an integer representing the number of bits in a dassfier
condtion a adion, an integer representing the probability of mutation, a Booean
representing whether or not an agent is cgpable of reinforcement leaning, a procedure
representing a generator of variation to be used in the internal genetic dgorithm, an integer
representing the probability of imitation, an integer representing the probability of
instruction, and a Bodean representing whether or not the desired agent changes through
time. This procedure runs a popuation d agents for a set number of generations and returns

a list of integers representing the mean population fitness at the end of each generation.

8.2 Bitprocs

This file contains the procedures which define and manipulate the éstrad data structure.
The &strad data type is a bit vedor cdled twobit. This file mntains procedures for:
randamly generating and mutating bits; for creding randam twobit data types; for matching,
mutating, recombining and comparing the similarity of twohit data types; recycling twobit

data types. This last procedure is very important to the overal program as the genetic
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algorithms operating between and within the agents produce prodigious amourts of garbage
which significantly slow down the program. However, by initialising two sets of data types
and then copying between them rather than generating new data types ead time significantly

reduces the garbage collection problem.

8.3 Classes
Thisfile contains procedures for creaing and manipul ating the cfs data type that represents a
clasgfier system. The main comporents of a cfs data type ae alist of classfier rules
representing the phenatype, two lists representing the matched and the message list, and an
integer representing fitness and a second list of clasgfier rules representing the genotype
(thisisinitialy the same @ the phenatypic list, bu it canna be subsequently altered). There
are dso procedures for mutating and recombining cfs data types as well as for regycling them
using the procedure recydevec defined in hitprocs. There is adso a procedure cdled
devdopment which takes the list of clasgfier rules representing the genotype and produces
another identical list of rules representing the phenotype.

Thisfile dso contains procedures for defining and manipulating the integral data types
of the dassfier system: that is, the cfrs and msg data types representing classfier rules and
messages respedively. The cfs data type has acompanying mutate, recombine and regycle

procedures.

84 Vacfs
This file contains the procedures for running the performance system and the rule discovery
system of a dasgfier system (seesedion 5.1.2. The main procedure is cdled run_cfs. The
procedure takes as inpu a cfs representing a dasgfier system, an integer representing the
number of bitsin atwobit data type and a procedure representing a generator of variation.
The run_cfs procedure produces no ouput, but uses the procedure matcher to seeif any of
the dassfier system’s rules match any of the messages on the message list and then uses the
procedure poster to generate aresporse to any matched message. Run_cfs can also exeaute
the rule discovery system via the procedure igathat is executed every 100 rounds runs.
There ae three procedure representing generators of variation: an asexualy

reproduwcing genetic dgorithm, a sexually reproducing genetic dgorithm and a sexualy
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reproduwcing genetic dgorithm with sexual seledion. Eadch generator of variation uses
tournament seledion (see @pendix 1) to pick the parents. The procedure run_ind_gal
represents an asexually reproducing genetic dgorithm where parent rules are picked using
the tournament seledion algorithm, then the procedure genopsl copies and uwses the
procedure mutate cfr to produce the offspring. The new rules are mpied ower low fitness
rules in the rule population.

The procedure cdled run_ind_ga2 represents a sexualy reproduwcing genetic
algorithm. This procedure picks two parents using the tournament seledion agorithm and
then uses the procedure genops2 to produce a single offspring via the adions of
crosover_cfr followed by the adion o mutate cfr. The sexualy reproducing genetic
algorithm with sexua seledion is a variation d run_ind_ga2where the second parent is
picked by the tournament seledion algorithm on the basis of similarity to the first parent
multi plied by fithess Thus the tournament seledion gcks a partner for the first parent which

is biased by the similarity between the classifier rules.

85 Spp_ga

This file mntains the procedures for creding new popuations of classfier agents. The main
procedure is cdled run_spp_gaand takes as inpu two lists of cfs that represent popuations
of agents. The procedure uses tournament seledion to pick the parents and then uses the
procedure spp_ga_opto creae anew classfier system viathe adgion d recombination and
mutation. The procedures which ad on the cfs data type ae defined in the file dasss. The
list of cfrs forms the genotype of ead cfs and these lists are what are adossed by the

procedurecrossover_cfs

8.6 Remove
This file contains one procedure cdled remove which takes as input a list and an item and

returns a list where every occurrence of item has been removed.
8.7 Social

This file cntains two procedures cdled imitation and instruction. The first procedure,

imitation, takes as inpu two lists of cfs representing the arrent generation and the last
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generation d agents. Both lists of cfsarerunin parallel by run_cfs al owing the agentsin the
current popuation to imitate the behaviour of the agents from the last generation. The
procedure imitation generates a list of agents from the last generation which have produced
behaviour in the arrent roundand then ead agent of the new generation hes a probability of
imitating another agent (an inpu of the run procedure - see sedion 8.1). If an agent is
seleded to imitate ancther agent, then using tournament seledion an agent is picked from
the list of behaviour producing agents and that agent’s current behaviour is copied with
mutation into the imitating agent’s rule list over a low strength rule.

The procedure instruction takes as inpu two lists of cfs representing popuations of
agents (same & imitate). Each member of the last generation has a probability of instructing
an agent from the next generation (an inpu of the run procedure). If an agent is sleded to
instruct, then a ‘fit’ rule is picked by the tournament seledion procedure and an agent is
randamly picked from the new generation. The ‘fit’ rule is copied from the instructor over a

low fitness rule of the instructed and the mutation procedure is applied.

8.8 How to run the program
As with the code described in the previous appendix, this program is written in the Pop 11
programming language and thus requires the Poplog system to run. Assuming that you have

access to this poplog environment, to run the program requires the following steps:

1. type ‘ved main.p’ to open up the main file in the poplog visual editor
2. push ‘enter’ and type ‘11’ and push ‘return’ to compile the code
3. the procedure gois resporsible for exeauting the ade (seesedion 8.1for adescription d

the list of the parameters)

For example, to run a scenario where ayents interad for 100 rounds, over 50 generations,
with a tournament seledion size of 10, with agents with 20rules eat with 15 bts, with a
generator ov variation cgpable of mutation, with the cgability of reinforcement leaning and
rule discover, and with agents with the adility to imitate and intsruct ead ather with a

probability of 0.1, in a dynamic world type:



go(100, 50, 10, 20, 15, true, run_ind_gal, 10, 10, true)=>

and then puwsh “*’ button onthe number pad to exeaute it. The data from the run will be

displayed on the screen.
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9. Glossry

» Alleles - one of a group d genes that occur a a particular gene locus (position on
homologous chromosomes); in genetic dgorithms it refers to the different forms a gene
can take (Belew and Mitchell, 1996).

 Architecture - a set of functional mechanisms with causal links between them.

» Design- a design is a description of an architecture.

* Epigenesis - the oncept that an organism generates from the new appeaance of
structures and functions, as oppased to the hypothesis that an organism develops by the
unfolding and growth of entities aready present in the egg at the beginning of
development (Belew and Mitchell, 1996).

» Epistasis - aform of gene interadion whereby one gene interferes with the phenotypic
expression of another nonallelic gene (Belew and Mitchell, 1996).

* Gene- ambiguous term with two at least two sense: 1) in development it refersto nucleic
acid sequences; 2) in reproduction it refers to heritable features.

» Genotype- the genetic constitution of an individual (Belew and Mitchell, 1996).

* Niche - set of requirements.

* Phenotype - the detedable expresson d the interadion d the genotype and the
environment constituting the visible daraders of the organism (Belew and Mitchell,
1996).

» Pleiotropy - the caaaty of alelic substitutions at one gene locus to affed more than ore

aspect of the phenotype (Abercrométel, 1990).
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