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Abstract. Faced with a vast, dynamic environment, some animals and robots of-
ten need to acquire and segregate information about objects. The form of their
internal representation depends on how the information is utilised. Sometimes it
should be compressed and abstracted from the original, often complex, sensory
information, so it can be efficiently stored and manipulated, for deriving inter-
pretations, causal relationships, functions or affordances. We discuss how salient
features of objects can be used to generate compact representations, later allow-
ing for relatively accurate reconstructions and reasoning. Particular moments in
the course of an object-related process can be selected and stored as ‘key frames’.
Specifically, we consider the problem of representing and reasoning about a de-
formable object from the viewpoint of both an artificial and a natural agent.
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1 Introduction

The cognitive architecture of any animal or machine (jointly ‘agents’) has limits, so it
cannot contain a perfect model of the dynamic external and internal world, such as about
all matter, processes, affordances, or more abstract concepts, like ‘mind’ or ‘spirit’. Ev-
ery agent receives a particular amount of data through its sensors. How useful that data
is in the short or long term depends on the environmental conditions, how accurately
the data might be processed into information, and the agent’s behavioural response.
Frequently, an agent should maximise the amount of meaningful, relevant information
it can obtain about its surroundings, while minimising the energy expended, but this is
highly dependent on the nature of the agent [1]. This applies not just to a static snapshot
of time, but also to a constantly changing world with a past, present and future, where
being able to predict events, or select between alternative actions without actually trying
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them, may be useful for the agent. So in these circumstances, what are the most useful
elements for the agent to store and process in its cognitive architecture and how may
they best be coded? Principally, we propose that when an agent gathers information
through its senses, often it may form object representations supported by exploration1.

To date in the field of animal cognition (AC), there has been surprisingly little sys-
tematic, quantitative research on exploration, and how it could support learning mech-
anisms in different agents (see [3] for more discussion). What research there is, has
largely been on humans and focussed on Bayesian network learning (e.g. [4]). Among
the non-human animal researchers, the focus has been on what the different cognitive
capacities of different species are, rather than how they actually process information to
achieve those capacities [5]. For example, the ‘trap-tube task’ is a typical litmus test
for causal understanding of gravity (e.g. [6]). It has revealed a lot about many species,
but it is just a binary measure of whether an individual can complete the task or not.
No one has fully investigated why one individual can succeed at the task, while another
fails – is it something about their different exploratory strategies? Moreover, although
quite complex-looking actions can often be performed by agents with simple mecha-
nisms and small neural architectures (e.g. [7]), they may not be able to generalise these
actions to other similar, but novel circumstances. Thus in this paper, we are concerned
with more complex, flexible agents. Another area consistently ignored in AC, but one
which may provide answers, is how the senses support exploratory learning (e.g. [8]).

It is a blossoming area in Artificial Intelligence (AI) however. Robots force us to ex-
plicitly define the model design, suggesting concrete, testable hypotheses for AC. How-
ever, we believe there is not yet a robot/simulation that can flexibly abstract concepts, or
generalise knowledge to new situations. AI has looked at different learning mechanisms
in isolation with relative success, but few projects have tried combining them into one
agent (e.g. [9]). Therefore, AC behavioural experiments can provide realistic biological
constraints and inspire more integrative cognitive modelling in AI.

We would like to propose that when exploration of objects occurs for forming repre-
sentations, it is not always random, but also structured, selective and sensitive to partic-
ular features and salient categorical stimuli of the environment. Also that it can follow
through three stages of theory formation – the forming, the testing and the refining of
hypotheses [10]. Each hypothesis may be specific to a particular group of affordances or
processes (‘exploratory domains’), but they may also be generalisable to novel contexts.
We introduce how studies into artificial agents and into natural agents are complemen-
tary [10], by comparing some findings from each field.

First, we will take a top-down approach to explore what some of the general en-
vironmental constraints imposed on an agent’s system when internalising the world
around it may be. Then we will look at some of the possible mechanisms to solve these
problems, particularly in the visual domain of object representation. There are several

1 Cognition does not always rely on internal representations and the degree of detail in any
internal representation can vary greatly depending on the situation. For instance, there can be
a lack of detail especially when the environment can largely control an agent’s behaviour, such
as in flocking behaviour or in using pheromone trails. Here alternative, but complementary,
mechanisms may be more relevant, such as emergency or embodiment, but in this paper we
will not consider these cases[2].
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methodological problems in computer vision research, including recognition, tracking
and mental imagery [11]. Within robotics, we present an approach where simulations
of real objects, calibrated from real-time environmental data, can be used as artificial
mental imagery. We have exploited a combination of key features from image analysis,
computer graphics and animation, as well as aspects of physical models, to generate
an internal representation of a deformable object with predictive capabilities. Finally,
we will consider the degree of ecological validity of this model by comparing it with
AC behavioural findings about parrots, who are notoriously exploratory and playful
throughout their lives.

2 Requirements for the Agent-Environment Interaction

An agent interacting with its surrounding environment often combines perception and
analysis with action. It can also be driven by its goals, which can be quite explicit, like
foraging for survival, or particular problem-solving tasks. Or they can be quite implicit,
such as to gather information by apparently random exploratory behaviour. Shaw [12]
suggests, “The chief end of an intelligent agent is to understand the world around it.”
Here, the word ‘understanding’ implies the agent’s ability to make predictions about the
world. For this to take place, the agent should be able to detect the consistent properties
or salient features in its environmental niche. These properties allow a link to form
between the agent and the environment. We will now consider what some of these
primordial properties might be (see also [13]).

2.1 Redundancy

Given the inherent limitations of the agent, it will only be possible for it to gain a partial
understanding of its surroundings2. This partial understanding may not allow the agent
to make perfect predictions for all environmental events, so it cannot always be ready
to process useful information. As it detects sensory data, it also may not succeed at
processing relevant signals. Therefore, we expect there may be errors and inexactitudes
at different levels of the agent’s perceptual or analytical processes. It may thus be useful
for its system to be able to tolerate this margin-of-error. Some agents often have more
than one mechanism to find things, solve problems, or to perform actions. The agent
could just react according to different layers of data filtering, or it could use one or a
combination of different learning mechanisms [10]. While qualitatively different, all of
these mechanisms produce similar, valid results. In this sense, we call these different
possible mechanisms ‘valid ways’, and say they are ‘redundant’. Therefore, redundancy
allows the agent to ignore irrelevant data, or to reconstruct faulty perceptions from new
perceptions that convey the same information.

2.2 Consistency

When multiple methods are used to collect or analyse data, they can act in a comple-
mentary way, and contribute by providing different information. Alternatively, they may

2 An artificial agent (e.g. a virtual automaton) in a very simple environment can make perfect
predictions; but we are not concerned with these cases.
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be superfluous; in which case, they confirm previous findings. For an agent, different
methods of perceiving or deducing the same thing should be consistent with each other,
if there is enough knowledge. An agent that sees a pen while touching it, should gain
tactile information in accordance with the position and surface of the image it sees. If
there is a fault in the synchronisation between this visual and tactile information, the
agent will not be able to properly integrate this information, or accurately describe the
object. This principle is present in human mathematics: different methods used to solve
the same equation, must give the same answer.

2.3 Persistency

For an agent to be able to make relatively accurate predictions about the environment,
there should be at least a few unchanging rules in the environment for a significant
period of time. These rules are useful for the agent’s internal knowledge and learning
mechanisms. The strongest examples can be found in mathematics and physics. In order
to develop the cosmological theories of physics, it is necessary to assume that the phys-
ical laws that rule at the present time on planet Earth, are the same rules that applied
during the Big Bang and in galaxies far beyond ours. Agents should respond in the same
way to the environment. During complex actions, an agent may change or modify their
goals and plans. Even then though, they should make the changes according to a partic-
ular, foreseeable pattern, which may be rooted, for example, in their brain structure. If
agents do not follow persistent rules, their behaviour is erratic and unpredictable.

2.4 Regularity

This is the predictable presence of previously perceived features or classes of them,
due to a fixed relationship between occurrences3. There should be persistent patterns in
the environment, allowing at least for partial predictions, particularly when an agent is
faced with different causal problems. Causality is a manifestation of regularity, where
the partaking elements are not always identifiable, but whose manifestation always en-
tails the same consequence. Thus, agents should have mechanisms capable of detecting
these patterns to take advantage of them. Then the environment could be categorised
using a finite amount of key features linked by predictive relationships, including el-
ements representing continuous features. For example, a small mathematical equation
can describe an infinite parabola.

Sequentiality. This is a particular form of regularity, but in a universe with only one
temporal dimension, it becomes especially relevant. Sequentiality is the presence of
a series of features of two or more elements that are nearly always perceived in the
same total or partial order4. The first features can be used to identify the sequence and
predict either the following features, or the rules set needed to process them. Some
examples include: identify a command and know which actions to execute; analyse the
first items of a numerical sequence and predict the next; listen to the first notes of a

3 This can be present in different dimensions, or in a hierarchical structure.
4 These may not be contiguous and can include cause-and-effect learning.
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song and remember how to sing the rest (which was memorised in advance); identify
the beginning of a question and prepare to understand it to look for the answer; or listen
to the sound of a prey and prepare to chase.

Structure with Partial Order and Layers. There could also be a succession of sub-
sequences. The connections here would only allow a few options to follow, such as
beginnings of other sub-sequences. This forms a branching structure, which becomes
layered, modular, and, in some cases, hierarchical [14]. The maximum length of an
existing sequence, and the maximum number of branches that can be remembered and
manipulated, impose strict limitations upon what the agent can understand, and the
types of patterns it is capable of detecting. However, this structure may allow more
complex agents to make abstractions, as concepts formed at one stage could be re-used
and refined to repeatedly form ever more complex concepts in multiple ways [1]. This
allows for progressively specific and parallel processes (e.g. [15]).

2.5 Experience

For small and well-identified tasks, a largely pre-programmed agent may suffice. Little
experience may be needed in a relatively static environment, such as where precocial
animals, whose behaviour has been almost completely determined by their genome, just
need to survive long enough to reproduce. Other agents are often required to adapt to
diverse, dynamic environments, where a lot more learning is required (see [1] for greater
discussion). The different extractions of relevant information (Section 2.1) would more
likely be processed by mechanisms shaped and influenced by experience. The agent
should seek out information to reinforce, evolve and, when possible, prove or disprove
its current models, particularly if its expectations are violated. Depending on the needs
and the competences of the agent, a specific, relevant subset of experiences would allow
specific, relevant features of the individual’s niche to be captured (e.g. [16]). We believe
there is continual extension of these ‘branches’ or ‘blocks of knowledge’ throughout the
life of a cognitive agent. At different ages or stages of development, an agent should
take in different aspects of the same overheard conversation, for instance, or different
aspects of the operation of the same tool.

2.6 Where Does This Leave Us?

All of the above described environmental features/constraints together form a structured
universe. Parts of this structure may be perceived and understood by artificial and nat-
ural agents. The existence of regularities reduces the information needed to describe a
part of the environment, as once enough elements and relationships have been identi-
fied, the rest can be inferred. Some animals may have the ability to identify ‘valid ways’
and describe them as ‘formalisms’; sets of rules that can warrant good results when suf-
ficient conditions are met [10]. This is essentially how science operates, particularly
logic, mathematics and computer science.

Within the field of AI, some formalisms for ‘knowledge representation’ focus on the
association of symbols to entities (i.e. objects, relationships and processes) in a struc-
tured way, such as ‘Frame Languages’ [17]. However others, like ‘First Order Logic’,
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incorporate powerful systems of deduction. These symbolic languages are extremely
powerful for discrete reasoning, but they may not be particularly appropriate for de-
scribing continuous dynamics, or even for making predictions, such as when objects
move through an environment. In AI, it is highly relevant to consider the amount and
type of knowledge needed before an agent can be capable of processing it. How much
does the agent need to know to be able to predict a few movements of different objects?
Can that knowledge be learned from experience, or does it need to be pre-programmed?

In certain contexts, the minimum number of necessary elements to complete a de-
scription is known as the number of degrees of freedom. For example, given the generic
mathematical formula that describe parabolae, only three points are needed to specify a
single, infinite parabola. This principle can be directly applied in computer graphics. By
making use of algebraic equations, an infinite amount of shapes can be approximated,
represented and reconstructed with just a few polynomials [18]. Furthermore, transfor-
mations of these shapes can be encoded with mathematical formulae, thus allowing the
representation of physical objects and processes; which can be used to implement a
form of mental imagery.

Hence, whether the powerful deductive machinery is available in a natural or an ar-
tificial agent, it is important to define how we go from representations of continuous
transformations, to discrete objects and events. As with the popular phrase, ‘a picture
is worth a thousand words’, predicate logic may not be able to naturally represent 3D
graphical information in a consistent, complete and compact description. It may be pos-
sible, however, to extract logical information from graphical simulations when required
for symbolic reasoning. Here we give an example of how this could be achieved in AI
by combining traditional animation techniques, computer graphics and physics, with
symbolic representations.

We believe this approach may be more rigorous than the standard mechanism used
in human brains. Humans can recognise things without being able to draw them [19],
or use mental imagery without making exact simulations [11] (while our AI system
requires them). This shows how we need to better understand the underlying mecha-
nisms of natural agents processing and representing the world around them. Observa-
tions of natural exploration behaviour do provide realistic biological constraints on the
design of AI models for object representation. We will investigate these issues in AC
by running behavioural experiments on parrots, as our exemplar exploratory and adap-
tive species. Is there evidence of each of the environmental requirements/regularities
described above being attended to by the parrots? Does their exploration behaviour
suggest underlying strategies for processing and representing the environment?

3 Designing a Representation

3.1 Using Key Frames to Model Deformable Objects

The study of the perception and understanding of the affordances of deformable objects
is particularly appropriate to illustrate the points outlined in the section above. The
problem of representing solid objects, their properties and their related processes has
been studied in great detail in computer graphics [20], and there have been attempts to
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generate representations using semantic information [21]. Within the first field, there are
several good representations for many different types of shapes, most of them based on
meshes, splines or quadrics [18]. The motion of objects is simulated with an approach
analogous to traditional cartoon animations. There is a set of key frames, where a ‘key
frame’ is a drawn snapshot in time defining the start and end points of any smooth
transition, and all of the frames connecting them are called the ‘inbetweeners’.

Currently, key frames are identified and drawn by humans; in traditional animation
the most skilled cartoonists are responsible for them. Due to the smoothness of the
transition between key frames, it is possible for a less-skilled cartoonist to interpolate
the inbetweeners. In computer animation, the control points and curves defining the
geometry and colours of the scene are set in the key frames. The transitions between
key frames are mainly polynomial interpolations, or continuous mathematical transfor-
mations of these control elements [22]. To create realistic animations, movements are
often captured from real objects. This is a very slow and expensive process [23]. In an
attempt to automate the rendering of realistic movements and the inbetweeners, physics
engines have been incorporated into the animation packages. They are also present in
real-time virtual environments where interaction with a user takes place.

However, the incorporation of physics changes the dynamics of producing an ani-
mation slightly. Instead of interpolating between two key frames, the first key frame is
given by a human designer and the simulation stops when a given condition is satis-
fied, thus automatically generating the inbetweeners and the final key frame. Note that
predictive capabilities have been attained, and that the simulation is now required to
specify the new parameters of the material. This includes mass, young coefficients or
spring stiffness, in addition to the method’s criteria, such as integration methods or time
steps. Correctly estimating these parameters is a difficult problem.

Furthermore, while the simulations may look plausible to the human eye, they may
not be physically accurate, so different models are required to simulate different materi-
als and differently shaped objects. A natural agent’s brain faces a similar computational
problem, yet evolution largely seems to have solved it in a qualitatively different way.
Humans can reason and make predictions about features of the world, but we proba-
bly do not simulate it in the quantitative way a physics engine does. It is still not com-
pletely clear how or what exactly the underlying mechanism is in various natural agents.
Behavioural experiments can allow us to infer what is going on in an animal’s mind.
However, interpretation of the data is largely based on assumptions and only allows us
to make indirect conclusions. Invasive techniques, such as particular neurophysiolog-
ical or brain imaging methods, only provide partial information about the content, or
even about the structure or neural representations, in an animal’s mind. Thus, if done
correctly, AI simulations can be very illuminating. We suggest that an initial list of
problems an artificial agent needs to solve are:

1. Generate an internal representation of real deformable objects in the surrounding
environment;

2. Identify key frames of the related environmental processes;
3. Interpolate (continuously or discretely) the links between frames;
4. Use previous knowledge to predict future events.
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The automation of the animation process provides one solution for the first three points.
Traditional animation techniques, however, cannot address the fourth point. The use of
physics models and formal logics can address the two last points, but in this case the
agent needs to select and calibrate the right model. It is still debatable whether physics
models can correctly approximate all the ranges of processes observed in natural envi-
ronments, given the inherent limitations of mathematical models to model real, complex
deformations. Furthermore, there is still no model that integrates all of the points into
one agent. Given the huge variety of possible affordances perceived by humans alone,
we expect that some form of learning should be used to generate the model(s), which
would provide the interpolating link between key frames and aid the artificial agent
in making predictions. However, which type of learning mechanism is still open to
question.

Here we present the advances of a preliminary, physics-based method, where a gen-
eral (though not completely accurate) model of deformable objects is used [24], and an
artificial agent learns to calibrate and use it in the way described above. The next step
is to take the key frame representation of the object and extract symbolic ones from
it. Then we need to take functions that describe the transformations, associate a sym-
bol to each, and consider that symbol as referring to a categorised process or action.
For several cases, this step should be quite straightforward, since the representation has
already been discretised, grounded and categorised [25]. Then the already developed,
symbolic-level machinery can be applied. Finally, the overall results can be compared
with natural exploration behaviour (e.g. of parrots) for ecological validity. Is there evi-
dence of similar mechanisms in natural systems? Is our model biologically plausible?

3.2 Representing the Object’s Shape

Kakariki Experiment I: AC Implications for AI Models. When segregating the
world around itself, we believe an agent first needs to identify and represent distinct
objects. Then the agent needs to understand what the shape of each object means, i.e.
its affordances when it interacts with the rest of the world. What are its physical prop-
erties? How can some of these properties be encoded in the memory of the agent?
For instance, if two key elements are connected by a known relationship, anything in
between is already implicitly represented. Contact points and segments of continuous
curves can be approximated by lines and polynomials, and delimited by key points.
Under this light, it is natural that an agent would be more interested in these points of
discontinuity. Indeed, in our first AC experiment, we found that this does seem to be the
case, at least for the New Zealand red-fronted parakeet or ‘kakariki’ (Cyanoramphus
novaezelandiae).

We chose kakariki as our model animal species for investigating how agents gather
and represent environmental information, as they are neophilic and have a high ex-
ploratory tendency throughout their lives. Moreover, as with many other parrot species,
they are relatively intelligent and have an anatomy adapted to dexterity and fine object
manipulation. We presented a series of novel objects of a range of different rigid shapes
to 21 kakariki individually and recorded their exploratory behaviour in detail over a
25-minute period. They spent most of the time exploring the corners and indents of the
objects, then areas of high curvature second, over smooth surfaces. We would like to
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suggest this may be because corners and areas of high curvature are more likely to cue
useful properties/affordances about different objects.

Related to this finding, it is interesting to consider in AI how Shaw uses information
theory to apply the principle of maximising information and predictive capabilities to
an image analysis task, and the first result he finds is an edge detector [12]. Similarly,
related to the AC finding on relative importance of areas of high curvature, Ravishankar
[26] found that it is easier for an artificial agent to recognise deformed objects by plac-
ing emphasis on the bending around points of high curvature. It is further compelling
that a piece-wise continuous mathematical function is naturally segmented at its points
of discontinuity; corners are discontinuities of the derivative of a function of one dimen-
sion; edges are discontinuities of the derivative of a function of two dimensions; while
points of high curvature (maxima, minima and inflexion points) are points where the
first derivatives are zero. It would seem that the same points that mathematicians deem
interesting are playing a major role in both natural and artificial agents, as features for
object segmentation, categorisation, tracking and, possibly, prediction. Therefore the
use of mathematical curves to approximate deformable objects is highly illustrative.

AI Model I: Modelling the Sponge. In one dimension, a way of approximating a
continuous curve is by a succession of lines. In two or more dimensions, shapes can
be approximated by meshes, where each element is ‘flat’ and defined by nodes and
edges. Triangular and hexagonal meshes are widely used. Alternatively, quadrics and
polynomials of two or three degrees can be used. They are flexible enough for repre-
senting most humanly distinguishable continuous shapes. Polynomials have been used
to form splines, which are defined by a small set of control points. They can be used to
interpolate as much detail of a shape as desired, since the polynomials are continuous,
while the connections between them can be discontinuous (e.g. [18]). This is why we
considered meshes and splines for our model.

As an experimental example, our model analysed the process of deforming a sponge.
In general, compliant materials have the potential to change their shape in nearly an in-
finite amount of unpredictable ways, therefore understanding deformable objects poses
a particularly interesting challenge for both artificial and natural agents. Unlike rigid
objects, it is not possible to know in advance all of the elements required for represent-
ing the deformation. How many splines or elements in a mesh is required, or what are
its degrees of freedom? For some specific objects under controlled circumstances, these
possibilities can be restricted, as in medical research with human organs [27]. However,
an agent that interacts with an environment populated with unrestricted deformable ob-
jects, requires a more general solution. One approach is to automatically generate a
hierarchical mesh to represent a few objects in a virtual environment, which adapts as
an object deforms [28]. However, this has not yet been directly tried in robotics, where
an internal representation needs to match objects in the external environment. This con-
tinues to remain an open question even in the AC literature – what would the agent do
if an object becomes deformed to a shape unforeseen by the initial representation?

As a tentative first step towards solving this problem, we looked at modelling a
spheric robotic finger pushing against a sponge. Please note we are not claiming this
model replicates animal vision or reasoning, but it may provide a building block from
which to work from. The movement of the robotic finger was blocked by a pencil
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Fig. 1. Top view of an experiment where a robotic finger (sphere at the top) pushes a sponge,
perpendicular to its widest axis, against a pencil that serves as an obstacle (green cap). a) The
contour of a deformed sponge approximated by a series of splines, with the control points placed
by a human. b) The sponge represented by a rectangular mesh, generated in the first frame before
deformation; the mesh configuration was predicted by the physics model. c) Hexagonal mesh,
similar to (b).

directly opposite. The finger performed a continuous movement against the sponge,
while a camera and a force sensor registered the interaction. Figure 1 illustrates the
use of splines and meshes to approximate the contour and surface of the sponge as it
became deformed.

3.3 Representing the Related Processes

Kakariki Experiment II: More Implications for Models. Once the agent can gener-
ate a representation of any object shape it may detect, we believe the next step is for it
to understand the related physical processes in the environment. It should identify the
key elements and unite them with appropriate functions. How does the object become
deformed when interacted with in the world?

We first considered this in the natural dimension in a second AC behavioural exper-
iment. We presented the same kakariki with five cubes of different deformabilities in a
random order over five trials over different days. As in the previous experiment, in each
trial we allowed them 25 minutes to interact with the objects as they chose and recorded
their exploration behaviour in detail.

As we predicted in [10], they initially explored the two extremes the most (i.e. the
most rigid and the most deformable cube), but their exploratory ‘focus’ or ‘strategy’
changed. So in the second and third trial, the cube of the ‘median’ or intermediate
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deformability was explored significantly more than all of the other cubes. Then in the
final two trials, the cubes the next interval along (i.e. the second-most deformable cube
and the second-most rigid cube) became more of a focus for the kakariki’s exploration.
In conclusion, the exploration strategy seems to change with time, perhaps as more
experience and progressively more specific knowledge is gained about the deformability
of objects and different object categories. We would like to suggest that the kakariki had
a exploration strategy that allowed them to gain more information about the process of
deforming an object.

AI Model II: Modelling the Deformation. Simultaneously, we wanted to consider
what the design of this internal strategy/learning mechanism could be for an artificial
agent. In the AI example of deforming the sponge, the following key frames can be
identified:

1. The finger starts moving. At this point the force sensor detects only some noise,
but the command to move has been given and the vision (camera) begins to detect
changes between frames, i.e. that the position of the finger is changing. Thus, the
first key frame would contain the finger separated from the sponge and the pencil.

2. The finger touches the sponge. At this point the force sensor detects an abrupt
increase in one direction. Visually, collision detection routines begin to detect a
contact between the circle (i.e. the finger), and one or two triangles in the mesh (i.e.
the sponge).

3. The finger stops moving. No more changes are detected.

Notice that these coarse key frames are the frames where things change in a very notice-
able manner. It is possible to connect frames 1 and 2 by using a function that describes
the simple linear translation of the circle (finger). Between frames 2 and 3, the same
translation function applies to the circle, but also the physics model gets activated to
deform the mesh (sponge) as the circle pushes it. These two functions can predictively
describe the observed movements. At frame 3, no function or model is required any-
more, because the execution of the command is over and there is no more movement.
The scene has ended. From this perspective, the whole process/action can productively
be segmented into smaller actions. The internal representation of each frame can be
formed by tracing back the activation and deactivation of the required mechanisms.
Now each segment can be re-represented by a single symbol. The whole sequence can
be described as something like: displace finger; push sponge; stop. The agent can then
choose between thinking of the command it executed (e.g. translate), or the changes in
the sponge (detected through vision or touch), or combinations of both.

There are precedents to doing this type of segmentation, such as in the work by
[21]. Here the agent, Abigail, analyses a simple circle-and-sticks simulation of ping-
pong. Even for this highly simplified world, it was not trivial to unequivocally detect
the points of discontinuity that establish the beginning and end of an action. However,
Siskind was not quite using our concept of segmentation in modelling, which is just an
extension of the idea of a polynomial connecting two control points. Even though the
use of splines to approximate curves is a widely used technique, there is not a general
technique that can automatically generate a spline from scratch to approximate any
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curve. It is a brand new research field; to investigate the use of models for interpolation
between frames, segmenting and understanding actions.

4 Conclusion

By studying both artificial and natural agents, we can provide a fuller account of how,
when necessary, an individual can efficiently represent objects and their related pro-
cesses in the environment from the huge number of sensory signals they receive. In this
light, we can also consider what the requirements posed by the external environment
may be upon the finite brain of the agent. Thus, we have briefly discussed two be-
havioural experiments on parrot exploration of novel objects to give us an insight into
what the biological constraints might be on an AI model for representing deformable
objects.

Specifically, we have described how a selection of key elements from the environ-
ment could be used as a basis for an object representation, and considered possible
underlying exploration strategies for gathering information by observing natural be-
haviour. These key elements are connected through functions, which indicate how to
obtain the value of other points. The same mechanism could be used to represent pro-
cesses and actions, by identifying key frames, and finding the correct physics model to
interpolate between frames. It is possible to segment a complex interaction between
the agent and the environment into individual actions, by detecting: the commands
given; discontinuities in the sensory signals; and the intervals of application of each
mechanism. Each of these individual actions could then be represented by symbols.
These symbols are grounded in the environment through the selected key elements. It
is straightforward to use these symbols for traditional problem-solving tasks, as in [14].
We have further provided evidence that natural agents seem to similarly focus their
exploration behaviour on key environmental elements, such as corners, edges and ar-
eas of high curvature. Likewise, at least with parrots, individuals seem to attend first
to extreme exemplars of particular object properties, including deformability/rigidity,
but this exploration strategy becomes gradually refined with time. However, we cannot
yet confirm if this parrot exploration is due to similar underlying mechanisms as those
presented in our AI model. In conclusion, we have presented an interesting preliminary
analysis of some of the forms of object representation that may be useful to intelli-
gent natural agents in certain contexts, and demonstrated these capabilities in working
computer models.
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