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Abstract
This position paper presents the beginnings of a general theory of representations starting from the
notion that an intelligent agent is essentially a control system with multiple control states, many of
which contain information (both factual and non-factual), albeit not necessarily in a propositional
form. The paper attempts to give a general characterisation of the notion of the syntax of an
information store, in terms of types of variation the relevant mechanisms can cope with. Similarly
concepts of semantics, pragmatics and inference are generalised to apply to information-bearing sub-
states in control systems. A number of common but incorrect notions about representation are
criticised (such as that pictures are in some way isomorphic with what they represent).

(1) Introduction
It is often assumed that in order to use a representation one must be conscious that one is doing so. I
suggest that there is a more general notion of representation, which covers all states or structures that
store or contain information used to control internal or external behaviour, whether in humans or other
natural or artificial behaving systems. There is a huge variety of types of control states, whose
properties depend on the sophistication of the architecture in which they are embedded and their
functional role within that architecture. At one extreme this includes information states of simple
homeostatic devices, like thermostats. Far more complex representations are involved in the control of
internal or external behaviour in a human brain, including many information structures of which we
are totally unaware, such as those encoding information about the grammar of our language, the social
norms that we follow unconsciously, and all the skills that we use in solving problems, taking
decisions, forming judgements, and controlling our actions. Much of our competence depends on
stored information about the world, about our language, about our society, and about how to do
things  and we are unconscious of most of it, which is why conceptual analysis and theoretical
linguistics are so hard. Discovering what information is used by other animals, and how that
information is represented, is at least as hard. We can expect that intelligent robots will also need to
have access to vast amounts of information of many kinds, used in different ways. For humans, other
animals, and robots some of the information is undoubtedly stored in the environment, like the trail
blazed in the forest by a hunter who cannot remember all the details of his route, but there are also
internal stores which, in part, constitute the explanation of the different capabilities of different agents
in the same physical environment.

 We need a label to cover all the various kinds of information stores, irrespective of what their
structures are, or how they are created, or whether we are aware of using them or not. The word
‘representation’ seems to me to come closest to meeting this requirement, even if some people
normally use it in more restricted ways (just as non-mathematicians often use the word ‘ellipse’ in a
restricted manner that excludes circles). A study of the general principles of intelligence (Sloman
1994a) must include a survey of different forms of representation (‘notations’, ‘languages’), theUses
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architectures in which they are embedded, and the mechanisms that support and manipulate them.
Such a study cannot be encumbered by such commonplace assumptions as that representations are
external, are primarily used for communication between agents, and can only be used consciously.

The study of the nature and role of representations in intelligent systems can make most progress
if based on the assumption that a mind (or a brain) is a sophisticated self-modifying control system
with multiple control states, many of which contain information, of different kinds and in different
forms (Sloman 1993b). A representation, then, is a sub-state in a control system. Different sorts of
representations will be found in different control systems, and even within different sub-mechanisms
in the same control system. Within this framework, we can generalise notions like ‘syntax’,
‘semantics’, ‘pragmatics’ and ‘inference’, as shown below.

This idea, illustrating the ‘design-based’ approach to the study of mind (Sloman 1993c), a
development of Dennett’s (1978) notion of the ‘design stance’, is at odds with many common ideas of
representation, which are usually abstracted from an inadequate survey of types ofexternal
representations (e.g. sentences and pictures). In particular, our analysis of representations as
information-bearing control states undermines the idea that there are basically two kinds of
representations (a) verbal/symbolic and (b) pictorial/analogical/iconic, and such notions as that
representations can be unambiguously classified as declarative or procedural. By looking at the variety
of types of information-rich sub-states in control systems, we’ll find a much richer variety than such
simple theories allow. (A recent survey, Narayanan 1993, includes both papers that assume some of
these distinctions, and others that criticise them.)

The ‘control system’ viewpoint adopted here is also at odds with a standard notion of a ‘control
system’ that is limited to the kinds of systems normally studied by physicists and control engineers, in
which the behaviour can be completely described by fixed systems of partial differential equations
linking a fixed set of numerical variables. These conventional control systems all have a fixed degree
of complexity, corresponding to a fixed set of dimensions or quantities that can vary, and a fixed
collection of relations between these variables, usually expressed as equations or numerical
inequalities.

By contrast, control systems that exhibit intelligence, such as humans and other hominids, appear
to have architectures that are not only much richer, with far more functional differentiation between
components than in standard control systems, but also do not have a fixed architecture, since the
number and variety of components and connections between components can change over time, for
instance during infant development, and possibly even in adult life when new skills are learnt or new
connections formed between old skills. Furthermore, within intelligent systems, many of the control
states exhibit changes that are more like changing structures (e.g. trees and networks whose
components and links change over time) than like changing values of numerical variables (e.g.
voltage, pressure, velocity, etc.) The lack of a static architecture, and the use of information states that
change in structure rather than in values of a fixed set of variables together imply that standard
mathematics of control engineers will need to be enriched in order to cope with intelligent systems.

I am not suggesting that there is a sharp dividing line between intelligent and unintelligent
systems, nor that we know in any detail how biological control systems actually work. Instead I am
offering a theoretical framework within which different sorts of systems can be distinguished and
classified, and which may turn out to be useful for describing and analysing both natural and artificial
behaving systems, in terms of their architecture, their functional subdivisions, the types of
information-bearing states and the types of causal interactions underlying their observable behaviour.
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(2) The importance of ‘abstract’, or ‘virtual’, machines
The analysis of representations as sub-states in control systems undermines the notion that symbols or
representations are necessarily physical objects (as suggested by the ‘physical symbol system’
hypothesis of Newell and Simon 1981), or even that every part of every representation must have a
distinct underlying physical object as its implementation. This is because many representing structures
turn out not to be physical: they are not detectable or measurable by physical instruments, and they do
not obey the laws of physics neither do they disobey them— the laws are irrelevant to them. The use
of position of a screw to represent required temperature in a thermostat, or the state of a rotary
governor on a steam engine to represent speed are examples of physical symbols. By contrast, many of
the representing structures in AI systems are not physical, but are components of what computer
scientists normally describe as ‘virtual machines’ or ‘abstract machines’ in the sense in which a
programming language such as C, Lisp or Prolog defines a virtual machine with a specific ontology
(permitted abstract data-structures) and behavioural capabilities (i.e. operations on those data-
structures).

Typical software data-structures such as lists, networks, or arrays are not physical objects: their
laws of behaviour are not those of physical objects. For instance it is commonplace for listA to
containB as an element whilstB containsA as an element, whereas such mutual containment is not
possible for physical objects.

Computer programs typically manipulate states invirtual machines, e.g. machines containing
numbers, strings, arrays, lists, tables, procedures, etc. rather than states in a physical machine, like
voltage, current or physical location. These machines areemergent in the sense defined in Sloman
(1994b). Even machine code instructions manipulate bit patterns in abstract address spaces, rather
than physical objects. Of course, the virtual machine processes are implemented using physical
processes. However, there need not be any one-to-one mapping between virtual machine states or
structures and those of the underlying physical machine. For example a very large sparse array in a
computer can contain far more cells than there are atoms in the underlying physical machine, or even
in the universe. (Sparse arrays use a technique in which array locations containing a ‘default’ value are
not explicitly recorded, whereas those with a non-default value are. This can save a lot of space if the
vast majority of locations contain the default value.) Similarly, a logic-based database containing a
theorem prover could contain infinitely many items of information, without using infinitely many
physical components!

Virtual or abstract machines have many properties that make them suitable for building behaving
systems that need to be able to take in and process complex and rapidly changing information. A
network in an abstract machine, containing many nodes with many links, can be constructed or
reorganised far more rapidly than any physical network of comparable complexity, which is one of the
reasons why virtual machines are so important for intelligent systems. For example, by usingpointers
to complex structures it is very easy to have the effect of many copies of the same structure in different
locations, and then to produce the effect of changing all copies simply by changing the single structure
they all point to.

Nevertheless all the virtual machines to be found in actual behaving systems are (ultimately)
implemented in physical machines, be they brains or computers. A virtual machine need not be
directly implemented in a physical machine: it could use a simpler abstract machine. For example, the
virtual machine corresponding to a high level programming language is typically implemented in
terms of the lower level abstract machine corresponding to the ‘instruction set’ of the host computer,
which is itself an abstract machine capable of being implemented in physical machines in different
ways.
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This relationship of ‘implementation’ that can hold between machines at different levels of
abstraction, and between an abstract and a physical machine, is the inverse of the philosopher’s
concept of ‘supervenience’, as explained in Sloman (1994b). For now I shall assume that the reader is
familiar with the typical hierarchies of implementation levels that can be found in computer-based
systems. I shall also assume that causal relations can hold within abstract machines, and between
physical and abstract machines: an assumption without which software engineering would be
impossible (as explained in Sloman 1994b). In other words, causal influences can be non-physical and
can cross implementation boundaries. There is nothing mysterious or mystical about this: it happens
all the time in complex computing systems.

I am not saying that it isonly abstract machines that have information-bearing sub-states. Even a
simple thermostat controlling a room heater has a physical sub-state that can be thought of as
representing the current ambient temperature and another corresponding to the required temperature.
These sub-states can vary independently of each other, and they have different causal roles in the
system, but they are part of an integrated temperature control system that behaves as a whole.
Although the control systems that are of most interest in the study of mind have far more complex
architectures than this, it can still be illuminating for a survey of control systems to include the simpler
systems. Limiting cases can be part of a concept even though they are very different from most
instances.

The claim then is that sub-states of a control system contain information, and can be described as
being ‘representations’ in a new technical theory-based sense of the word that is intended ultimately to
replace and explicate the ordinary notion of a representation. More precisely, an information-bearing
state of a component of a control system is a representation-instance, and the range of states that are
possible for that component defines a representational system, or what Donald Peterson (1994) calls a
‘form of representation’, more commonly referred to as a ‘notation’ or ‘formalism’.

I shall not attempt to define ‘information-bearing’ state here. This is a concept that is best
analysed within the framework of the design-based approach to the study of mind (Sloman 1993b,
1993c, 1994b). The design-based approach attempts to understand how different kinds of
architectures, notations and mechanisms are able to underpin and explain different sorts of
capabilities, human and non-human. It contrasts with phenomena-based investigations, which merely
collect empirical facts, and the semantics-based investigations of some philosophers and cognitive
scientists which aim to analyse our existing concepts, as opposed to forging new powerful explanatory
concepts in the context of deep theories of how things work. Design-based concepts enrich and extend
ordinary concepts of mind, knowledge and representation, just as new theories of the architecture of
matter enriched and extended our concepts of kinds of stuff, via the periodic table of the elements and
theories of chemical composition.

From this standpoint the questions that lead to deeper understanding aredesign questions:
questions about how to design intelligent, sentient, autonomous agents, with their own desires, goals,
and so on. Design questions need to be addressed in the context ofrequirements and mappings
between designs and requirements (Sloman 1993c, 1994a). At present we understand little about the
requirements driving the design of intelligent agents, whether in the laboratory, or in biological
evolutionary processes.

(3) Avoid simplistic dichotomies
People who study representations tend to examine only a small range of cases, and as a result they
produce shallow or simplistic distinctions: verbal/visual, analog/digital, symbolic/sub-symbolic,
procedural/declarative, explicit/implicit etc. An examination of the history of mathematics, science,
engineering, and culture reveals a much greater diversity of types of representations, including many
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ad-hoc notations, such as the standard arabic notation for numbers in which concatenation
representations multiplication by 10 plus addition, a type of rule that has no application outside of
arithmetic. From a design standpoint we need to understand why diverse notations are to be expected:
the answer lies in the variety of functions fulfilled by different information-bearing sub-states in a
sophisticated control system (see also Sloman 1971, 1975, 1985a).

There are many different trade-offs in designing and selecting types of information-rich control
states (i.e. representations) for ‘run-time’ use, and these lead to a wide variety of design options, far
more than the common categorisations reflect. For example, so-called verbal or symbolic notations
often use ‘pictorial’ relationships, such as ordering, to represent similarly structured relationships.
‘She shot him and drove away’ usually implies a different temporal ordering from ‘She drove away
and shot him’, and to that extent such verbal forms include a pictorial or iconic function, undermining
the common distinction between the two. Likewise, both maps on paper and arrays of spatially
organised information in a computer can include verbal descriptions or labels and other non-spatial
information items.

Moreover, many programming languages that are normally described as ‘procedural’ make it
possible to use data-structures as information stores that are interpreted, just like ‘facts’ in allegedly
declarative languages. At the same time, supposedly declarative languages like Prolog usually provide
means for expressing not only what is to be done but also in what order various steps should be
followed (e.g. using the ordering of rules, the order of subgoals in a rule, the order of arguments to a
functional expression), and to that extent it is as procedural as any other programming language, and
partly pictorial in its interpretation, except that the mappings from syntactic ordering to process
ordering is complicated by backtracking. The terminological confusion is not helped by those who
apply the word ‘declarative’ to functional programming languages like Scheme or ML.

A first step towards getting a deeper understanding of the role of representations in intelligent
(and non-intelligent) behaving systems is to understand the requirements they may need to satisfy.
Some requirements concern their syntactic richness (including both richness of structure of individual
representations and the diversity in the class of representations), others concern their manipulability,
others concern speed with which they can be created, changed or used, and so on.

Among the variety of types of information states that we need to understand some are short term,
some enduring long term states, some mostly passive (changed by other things), some active (i.e.
sources of change), others mediators or modifiers of processes that they do not themselves initiate,
some directly manipulable by other mechanisms and others only indirectly modifiable (e.g. by
training), some consciously accessible, some not. In human beings the vast majority of information
states are not consciously accessible.

I am not assuming that there is a sharp and well-understood distinction between intelligent and
non-intelligent systems, and I shall say nothing about how that distinction might be clarified, for I
think it will eventually be replaced by a whole family of different distinctions concerned with
presence of absence of different collections of capabilities: taxonomies are usually more useful than
dichotomies.

(4) What is a form of representation?
Information of many kinds can be embodied in states of complex systems using different notations, or
‘forms of representation’. Confusion can follow from the common practice of referring to a notation
or formalism, such as predicate calculus, or algebra, as a ‘representation’, as well as individual
instances. I shall try to avoid this ambiguity by restricting the word ‘representation’ toinstances, and
will use the expression ‘formalism’, or ‘notation’ or ‘form of representation’ to refer to thegeneral
forms that individual representations are instances of. In this terminology, predicate calculus would be
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a formalism or notation but not a representation, whereas a particular predicate calculus expression
would be a representation. The word ‘symbol’ is also used to refer to particular instances, usually
those that lack meaningful internal structure, while ‘symbolism’ is sometimes used as a synonym for
‘notation’ or ‘formalism’. The word ‘language’ is fairly close to what is here described as a notation or
formalism, though it is often thought of as restricted to external forms of communication between
complete intelligent agents.

What I am here calling a ‘formalism’, ‘language’, or ‘notation’ will normally have syntax,
semantics, pragmatics, and inference rules which determine the consequences of transforming one
state into another. It is common in connection with natural languages to contrast syntax (grammar),
semantics (meaning) and pragmatics. There are considerable difficulties in making these notions very
precise in their full generality. However, attempting precision at this stage would be premature: we
first need a full theory of information-bearing substates in architectures for behaving systems, and a
survey of their possible structures and uses. Within such a theoretical framework it should be possible
to give more precise and systematic taxonomies and definitions than we can offer now.

We must take care to interpret these ideas in a sufficiently general way. Features of ‘external’
notations can mislead us into adopting over-simplified theories of representation. For example,
notations in a computer or brain may use a topology that cannot be directly represented on paper or
any other two dimensional surface. We can aim for full generality by considering how to design
behaving systems. From this ‘design’ perspective, a notation can be thought of as:the set of states that
is possible for a specific (information-bearing) part of a control system.(For now I shall leave the
notion of ‘information-bearing part’ undefined.) Insofar as each set of possible states includes a
variety of forms or structures I shall say that the notation involves agrammar or syntax.

It is possible for different notations with different grammars to be used by different sub-states of
the same complex system. Intelligent systems typically require many different kinds of notations or
forms of representation, corresponding to different functional roles played by different sub-states. For
example Sloman (1993b) claims that different components of a visual sub-system, or different
components of a motivational system, may need different forms of representation.

The relationship between representation and underlying physical structure can be quite
unobvious. Often a representation or symbol will be implemented using a perceivable physical pattern
or structure, but the physical object does not uniquely determine the representation or symbol. In
different contexts the same physical pattern can be an instance of different notations, a common
source of confusion for students learning a new programming language.

Below I shall try to show how the familiar concepts of syntax (grammar), pragmatics, semantics,
and inference can be generalised to correspond to this general notion of a representation, though not
all examples will exhibit the full richness of these concepts. For instance, not all notations need have
all these features: e.g. a notation used entirely in control signals need not include any inference
capabilities. In some simple cases there may be no clear distinction between pragmatics and
semantics.

(5) The syntax (or grammatical form) of a control state
A notation in this general sense corresponds to a ‘set of possible sub-states’ of a behaving system, just
as a conventional grammar determines a set of possible sentences. In some cases, the set of possible
states has a very simple structure, e.g. a linear continuum, like the temperature-representing sub-state
of a thermostat. In other cases it is far more complex, like the set of possible states of the ‘start-up’
files of an operating system, the set of programs permitted by a programming language, or the set of
sentences in a natural language. A neural net has a collection of possible control states corresponding
to the states of activation of the neurons, and another collection of states corresponding to the possible
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weights on connections between neurons. In both cases the grammar corresponds to the set of possible
locations in a high dimensional vector space of fixed structure. In a brain where new cells and new
links between cells can be grown, the grammar would allow states of varying complexity.

Syntax is not a physical property of a representing structure, but depends on the capabilities of the
system that uses that structure and other structures. Physically identical states need not implement
representations with the same syntax. A particular string of characters, e.g. ‘x+y’, does not uniquely
determine the underlying grammar of the language: the same string can occur in different languages
with different grammars. In many programming languages that would be a string of three symbols,
e.g. two variables separated by an infix operator, whereas in space-delimited languages like LISP it
could be a single symbol composed of three characters. Similarly, you cannot infer the underlying
notation, or representational formalism, by inspecting the physical form of a particular
representational state. What determines the syntax (or grammar) of an information-rich sub-state is
what kinds of variation in that state are both permitted by the underlying mechanisms and significant
in relation to controlling internal or external behaviour. This will typically depend on whatever
mechanism actually uses those states and the variety of possibilities that it can cope with.

A further complication is that any particular information-bearing sub-state will generally have a
syntax at more than one level of abstraction. English sentences have a syntax that is independent of
whether they are written or spoken. However, at a lower level, spoken English has a structure in terms
of phonemes (or possibly other units of sound-structure) whereas written English has a structure in
terms of sequences of letters and spaces and punctuation marks. At a still lower level there is yet
another form of syntactic structure corresponding to the fact that certain stroke patterns are available
for forming letters, and in principle additional letters could be constructed as needed. At that level the
syntax is different for different font styles.

Within a computing system there are also usually several different levels of ‘grammatical’
structure. For example, lists trees and networks can be constructed out of lower level units that are
made of sequences of bits. In a system with error-correcting memory the bit patterns themselves may
be made out of more complex sequences of bits in terms of which they are encoded.

All this shows that linguistic grammars and the sentences they generate are only special cases of a
more general concept. There are very many distinct notations, or representational formalisms, each
with its own sets of instances, its own properties, potential uses, etc. For example, conventional
grammatical notations cannot capture the syntax of forms of representation that allowcontinuous
variability (as is common in pictures, music and analog computers), or structures with mutual
containment (A contains B and B contains A), as can happen with lists in a computer.

I have previously (Sloman 1971, Sloman 1975) analysed some of the syntactic differences
between what I calledapplicative or Fregean representations (where the key syntactic relationship
involves ‘application’ of a function sign to argument expressions, as in logical notations) and what I
then calledanalogical representations, in which the key syntactic relationship is the holding of a
relation within the representing medium, where different syntactic relations have different semantic
interpretations. Applicative syntax allows a very rich variety of forms of semantic interpretation, since
arbitrary procedures can be associated with function names to compute denotation of complete
applicative expressions on the basis of denotations of their components.

An example is computing the truth values of sentences with very similar syntax but very different
semantics, or truth-conditions, such as ‘Mary is richer than Tom’, ‘Mary is taller than Tom’, ‘Mary is
cleverer than Tom’. By contrast if one sub-image is above another in a picture the possible
interpretations of that relationship are more limited. (Notice, as pointed out in Sloman (1971) that the
interpretation need not be rigidly fixed: in 2-D pictures of 3-D scenes, interpretations are generally
context-sensitive). In the simplest analogical representations syntactic relationships within the
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representing medium represent relations in the domain depicted, but this does not imply that there is
any isomorphism, as 2-D relationships can depict 3-D relationships. In some cases the mapping from
relations in the representation to represented relationships is deterministic (e.g. in some maps). In
other cases the representing relations are locally ambiguous and therefore the semantic relations are
highly context sensitive, and finding a consistent interpretation requires problem solving or search.
This is the source of much difficulty in designing vision systems.

Sometimes properties of the representing medium constrain what can be represented because of
the relatively direct semantic relationships used. Thus what can be depicted in a 2-D surface using an
analogical representation will be limited by the variety of relationships available in that surface,
relationships such as neighbourhood, direction, distance, containment, connectivity, and so on. A still
wider variety of relationships is available within the class of 3-D structures. The use of datastructures
containing pointers to other datastructures in a computer provides some of the benefits of pictorial
syntax since pointers can be allocated to classes, giving analogues of closeness, direction and other
spatial properties, without the constraints of 2-D or 3-D spaces, though at the price of loss of
continuity (since datastructures are essentially discrete), and the need for specialised procedures for
traversing and manipulating links.

At this stage it is not clear to what extent human brains use this kind of virtual machine, which is
particularly useful for processes that require rapid construction and reorganisation of temporary trees
or networks. I have previously suggested that some aspects of the development of children’s counting
skills could be explained by the construction of networks of datastructures. (Chapter 8, in Sloman
1978).

(6) Pragmatics of a control state
Information-bearing control states have a pragmatic role within a control system. This is defined in
terms of their function or purpose within the architecture. This notion of ‘purpose’ or ‘function’ does
not require a human designer or any conscious intention. It assumes only that we are talking about an
integrated system in which the various components somehow co-operate in a systematic way to
produce behaviour. The pragmatic role of a component is then defined in terms of how it contributes
towards the overall effect, whether directly or indirectly. This seems to be how the concept of
anatomical or physiological function is used in biology, though in some cases biologists make the (in
my view unnecessary) claim that their usage is justified by evolutionary selection of a design.
Examples of pragmatic roles include the following:

• storing information that can be accessed by other sub-systems,

• initiating new processes,
• terminating existing processes,
• suspending or interrupting processes,
• modifying processes,
• altering the information stores that control processes,

and many more. Within traditional control theory, notions such as positive feedback, negative
feedback, amplification and damping are all concerned with this generalised conception of pragmatics.
If we allow a richer variety of control states, and a richer variety of causal interactions then our notion
of pragmatics will be correspondingly richer. For example, where sub-systems include factual
databases that can be interrogated by, or given new information by, other sub-systems, we can find
analogues of assertions and questions. Simplified analogues of commands are available in many
mechanisms where a signal sent by one component can initiate behaviour in another. More complex
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sorts of commands, closer to linguistic commands, are possible where the control signals have internal
structure determining semantic content and can vary in complexity, as sentences can.

On the basis of this simple introduction, readers familiar with modern computing systems will
easily think of a wide variety of functional roles that could be used to provide a taxonomy of types of
pragmatic roles for sub-states in complex behaving systems.

(7) Semantics of a control state
Analysing the notion of meaning, or semantics, is a notoriously difficult philosophical problem, partly
because there are several different concepts with quite complex relations between them. For instance
Frege (following Mill and others) attempted to make a distinction between sense (connotation) and
reference (denotation), but it turned out a far more slippery task than he at first thought (as he found
out when he later began to analyse various tricky special cases, such as the use of the pronoun ‘I’). I
claim that there are no precisely definable concepts that correspond to our normal use of expressions
like ‘meaning’ or ‘information content’. There are clusters of features to be found in the contexts in
which we ordinarily talk about meaning, and different sub-clusters occur in connection with control
states of various kinds of machines. There is no ‘correct’ set of features that uniquely justifies the
attribution of meaning. Rather there are different subsets with interestingly different properties, and
instead of arguing about which features correspond tothe concept of ‘having a meaning’ we should
explore the similarities and differences implied by different subsets.

I have previously tried to show (Sloman 1985b) that a significant subset of features characteristic
of uses of symbols with meaning can be found even in the way in which a computer ‘understands’ its
machine language (i.e. without the need for any AI programming). For example, in typical machine
languages certain bit patterns are used (by the machine) to refer to locations in the machine’s virtual
address space, others are used to specify instructions to be performed and others are used as if to refer
to numbers, for example when they are incremented during repeated operations. Instead of arguing
over whether these arereal instances of meaning, or reference, we should accept that they are in some
ways like and in some ways unlike other instances, and we should try to analyse the implications of
these similarities and differences.

One of the characteristics of typically human uses of symbols is that they occur within an
architecture that supports motivational or affective states such as wanting, hoping, fearing, enjoying
and disliking. Fully human-like uses of symbols or representations with meanings will not be possible
in machines or other organisms whose architecture is not rich enough to provide the required context
for those uses. In other words,human-like semantics presupposes human-like pragmatics, and that
requires a human-like functional differentiation in the control-system architecture. (The actual
physical architecture could be very different, however.) At this stage it is too early to say exactly what
the architectural requirements for all those states are, though some ideas are reported in Sloman
1993b, Beaudoin and Sloman 1993, Beaudoin 1994).

We can make some negative points against over-simple theories of semantics. For example, it
would be a mistake to require all semantic relations to involve causal connections between
representations and what they represent. This would rule out representations of non-existent or
impossible states of affairs: any planning system needs to be able to create representations of
alternative possible situations most of which will never actually exist. Non-existent objects cannot
enter into causal relations. Another mistake would require all representations to share structure with
what they represent: many counter-examples are to be found in natural languages, including the fact
that the very same thing can be referred to either by a very simple pronoun, or by a variety of phrases
of differing structure. Similarly, 2-D images can depict 3-D scenes and many of the scene
relationships have no direct pictorial analogues. For example a visible edge of a cube can join a visible



July 1994 10 Towards a Theory of Representations

face and an invisible face on the far side, whereas a picture cannot include invisible objects or ‘far
sides’.

A more obvious semantic requirement is that where representation is context-free the variability
of a sub-state should at least match quantitatively the variety of things that it is required to represent.
A set of eight binary switches is capable of only 256 possible states, and so would be inadequate to
represent states of a chess board, since far more configurations are possible in chess. However, the set
of possible sub-states of a collection of switches grows very rapidly (indeed exponentially) as the
number of switches increases, so that a relatively small collection of switches can cover a huge variety
of possible states. This is one of the characteristics of computing mechanisms which accounts for their
generality and power.

Where the representing medium is the state of a virtual machine, and the syntax allows indefinite
structural extension, as in the case of natural languages, predicate calculus, and many programming
languages, the semantics may allow an indefinite variety of different situations to be differently
represented. This is obviously a requirement for many forms of creativity, in mathematics, science, art
and everyday life, when we cope effectively with novel situations.

The physical mechanisms in the system may impose a limit on that variety, as memory limits in a
computer can limit the size of programs or datastructures. But the potential variability inherent in the
virtual machine may be far greater than the actual implementation allows. In the world of computing
this manifests itself in programming languages that (in principle) allow programs and data to be
created that current computers cannot accommodate, driving the development of new forms of
hardware, including memory management systems with larger address spaces. When a computer
becomes available with a new bigger memory system it may be possible for the same programs as
before to run in it, but tackling larger, more complex, problems. Similarly, it is possible that once
animal brains started to use virtual machines this increased the evolutionary pressure towards bigger
brains to enable those virtual machines to be used more extensively. (This is one way of looking at the
old distinction in linguistics between ‘competence’ and ‘performance’, where the latter is limited by
implementation details, but not the former.)

Additional considerations from the design standpoint, include: how quickly required structures
can be created, how quickly they can be changed as needed, how quickly the required substructure can
be found in a very large database of structures, and how well the permitted structures fit the purposes
for which they are to be used. (Compare the criteria for adequacy of representations in McCarthy and
Hayes 1969.)

(8) Inferences (reasoning) in control states
Inference (reasoning) is normally defined as derivation of new propositions from old ones subject to
the constraint that it is impossible for the old ones to be true and the new ones false simultaneously.
We can generalize the concept of ‘inference’ to include all manipulation of information-bearing
structures to obtain new structures that enable something to be done that could not be done directly
with the originals. (Cf. Sloman 1971.) Examples of this generalized notion of inference include such
processes as:

• creating an interpretation of a sensory array, e.g. by a visual system,
• deriving a parse-tree from a sentence and a set of syntactic rules,
• forming a plan,
• translating (or compiling) a high level plan (or program) into a more detailed lower-level language,
• searching an abstract space for a solution to a problem (e.g. searching for a plan in a space of

possible plans),
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• using a neural net to transform a vector representing a desired configuration of limbs into a vector
representing a set of control signals to be sent to muscles or motors in order to produce that
configuration.,

• generating a new goal on the basis of new percepts and old attitudes (e.g. creating the goal to help
someone seen to be in distress),

and many more. The variety and power of the inference mechanisms available will be intimately
related to the variability of syntactic forms.

This general notion of inference is not restricted to manipulation of symbols that represent
propositions. A common form of inference in this sense is use of a map to find a good route, which
could be a much slower process if all the available information were in the form of lists of
propositions about the locations and features of various towns, roads, rivers, and segments of railways.
The use of diagrams or visual images is also very common in mathematical reasoning. (I discussed
some of the reasons for this in Sloman 1971, 1985a)

A full survey of types of inference would require a survey of architectures and the varieties of
functions that could be fulfilled by sub-mechanisms. Taxonomies of forms of syntax, types of
pragmatics, kinds of semantics and forms of inference would all need to be closely related.

External representations used by humans vary enormously in their structure, the kinds of
variability they allow, and their functions. Similarly, within a complex system that has multiple
independently variable components there can be internal sub-systems with information states that
dif fer widely in syntax, semantics, pragmatics and forms of inference. When the internal
representations are based on virtual machines the variety of possibilities is even greater.

There is no uniquely optimal way of representing any given set of information. Often
representational forms have properties that are tailored to particular problems or purposes, even
though the same information may be better represented in a different way for other purposes. This can
be illustrated by analysing a well known example of a change of representation.

(9) The magic square example
Algebraic and arithmetical notations are extremely useful for solving many problems relating to
numbers. For example, if you are given the values of six variables,a, b, d, e, g, andh and the task
of computing three more,c, f andi, then the following three equations would make the task very
easy, using simple algebraic transformations:

a + b + c = 15
d + e + f = 15
g + h + i = 15

Moreover, checking subsequently that the values all satisfied the following equations would also be
very easy:

a + d + g = 15
b + e + h = 15
c + f + i = 15
a + e + i = 15
c + e + g = 15

By contrast, a different task based on the same set of relationships, expressed in the same set of
equations, is much more tedious, namely the task of finding all the possible one-to-one mappings,
consistent with the above equations, from the numbers:
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1,2,3,4,5,6,7,8,9

onto the letters:

a,b,c,d,e,f,g,h,i

This can be done by exhaustive search through all possible ways of mapping the numbers onto the
letters, but the search space has factorial 9, i.e. 362880, nodes. This would be very simple for a
computer program, but is not easy for people: it would take a lot of time and be error prone.

It turns out very much easier for some people to perform the task if they switch to a pictorial
notation that reveals important features of the problem that enable the solution to be found in far fewer
steps. The crucial point is that the problem of finding a mapping that satisfies the equations is
isomorphic to the problem of creating a 3 by 3 ‘magic square’, in which all rows columns and
diagonals add up to 15, using only the numbers1 to9. The correspondence between the two tasks can
be seen by labelling the locations in the square with the variablesa toi, as in the diagram below. It is
also necessary to check the equations against the collinear triples in the square. That task would be
made harder if the letters within each equation were re-ordered, and the first three equations were
mixed up with the remaining five. This shows that the equations as they stand share some pictorial
structure with the diagram, whose properties are helpful in finding a solution, as I’ll now explain.

The square has three different kinds of locations with different roles in the solution, four mid-edge
locations each occurring in two collinear triples, four corner locations each occurring in three triples,
and the centre location, which occurs in four triples. In any solution to the problem there must

therefore also be three kinds of numbers corresponding to three kinds of locations: four numbers
occurring in two equations, four in three equations, and one in four equations. This is easily checked:
a, for example occurs in three equations, so it must correspond to a corner location, as shown, ande
occurs in four, so it must be mapped to the centre.

If for each number we check how many triples adding up to 15 contain it, we can use the size of
the set to assign the number to a particular category, which constrains the mappings onto letters,
considerably reducing the search space by eliminating inappropriate mappings, leaving a total of
factorial 4 x factorial 4 = 576 mappings to consider. However, consideration of most of those can be
avoided by propagating partial solutions over the square, using the observation that symmetry implies
that the first assignment can go toany location of the appropriate sort. This can be used to cut down
the search enormously. After a few numbers are in, the rest are fixed, and remaining solutions are
found by reflecting and rotating the original solution.

To illustrate how the search is cut down, start with the number1 and consider which pairs can be
combined with it. Because15-1=14, the numbers in each pair combined with1 must add up to
14. Since the largest other number is9 and14-9=5, that rules out the numbers2, 3 and4 as too
small to be combined with1. The only remaining candidate triples are quickly found to be (1 5 9)
and (1 6 8). Thus the number1 occurs in only two triples and must therefore be a ‘mid-edge’

a   b   c

d   e   f

g   h   i

! " # $ # % $ # & " $ # # ' ( ) * + , - . , / % & ( , ) + 0 1 ( * 2 # * 3 # 4 / , $ ) # $ 4 % ) *
/ # ) & $ # 5 + , & " # $ # 1 6 + & 7 # & " $ # # ' ( ) * + , - ) 6 1 7 # $ + & , 3 , ( ) & ,
& " # 1 8
0 9 5 - , 6 $ ) 6 1 7 # $ + ( ) & : , & $ ( ; . # + 0 1 ( * 2 # * 3 # 5
0 < 5 - , 6 $ ) 6 1 7 # $ + ( ) & " $ # # & $ ( ; . # + 0 / , $ ) # $ 5
0 = 5 , ) # ) 6 1 7 # $ ( ) - , 6 $ & $ ( ; . # + 0 / # ) & $ # 5

Using visually obvious differences between locations in a square
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number. It could be mapped onto locations labelledb d f or h, and at this stage, with no other
constraints, we could arbitrarily chooseb. A similar check shows that5 can occur in three more
triples: (2 5 8), (3 5 7), (4 5 6). Since it occurs in four triples5 must go in the middle, and
be mapped ontoe. Since the triple (1 5 9) starts with a mid-edge location and goes through the
middle, the diagram shows that it must end with a mid-edge location, and that means that9 must be
mapped ontoh. From this it follows that the other pair of numbers combining with1, i.e.6 and8
must lie in an edge triple, and therefore they must be in the adjacent corners, i.e.a andc (at this stage
either mapping would do, as the situation is still symmetrical, so assign6 toa and8 toc). Asa and
e are now fixed and add up to11, their collinear companioni must be4.Completing the other
triples can be done without any further search. Another solution is obtained by reflecting about the
middle vertical axis. All remaining solutions can be found by rotation of those two solutions through
90 degrees. (Is it obvious that no other solutions are possible?)

Perceiving the symmetries in the whole structure and detecting the differences in types of
locations both use human abilities to detect spatial structures and spatial relations. It seems that the
visible structures in a 3 by 3 array form patterns that are instances of general schemata that our visual
systems have frequently encountered, so that properties of such patterns are readily accessed and used.
(How exactly this happens remains a hard research problem: until that is solved we have only a very
sketchy theory.) In part the very syntax of the representation makes certain properties easier to detect
than corresponding properties in the equation format. For example finding how many equations
contain the lettere requires a search through the nine equations for occurrences of the letter, whereas
finding how many collinear triples go through the central location does not require such a search as
there is only one occurrence of the location, and for someone accustomed to such structures it is easy
to cycle through the lines counting them.

Unfortunately, the speed and introspective simplicity of these visual experiences hides very
complex processing, which we still do not understand, and which it is too easy to take for granted as if
they provided explanations: from the design standpoint they merely help to define what needs to be
explained. These are special uses of sophisticated general human visual capabilities not yet matched
by AI vision systems nor explained by brain scientists. Only when we have a good theory of vision
and spatial inference can we hope to have a deep account of how people combine different forms of
representation in solving such problems. In the mean time we cannot trust introspection. (See also the
papers by Reisberg and Slezak in Narayanan 1993).

(10) Simpler processing requires more sophisticated concepts
It is worth noting that in the case of the magic square the representational sophistication required

for finding the solution without search is far greater than that required to understand the original
problem and test a solution. In particular, the ‘short-cut’ requires use of a richer language for
describing and manipulating the information in the problem, including descriptions of different sorts
of triples (e.g. ‘diagonal’), and different sorts of numbers, or different sorts of locations (‘mid-edge’,
‘corner’, ‘centre’). This extra capability is not required for the task of finding the solution using a
systematic generate and test algorithm, which would be much easier to implement. It is far easier to
write a program to do the exhaustive search than to write one that can go through the search-avoiding
manipulations illustrated above.

This is a general phenomenon: finding a solution without ‘brute-force’ combinatorial searching
often requires more sophisticated, and often more varied, representational abilities than are required
for finding some solution or checking any proposed solution. In this sense, intellectual laziness
requires intelligence. In fact, a major component of intelligence as we know it could be characterised
as ‘productive laziness’, though how this is achieved still remains to be explained.
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A system with human-like intelligence would also needgeneral information about different types
of representations and their uses, in order to enable it to determine when to switch from one notation
to another. How is that general information acquired? How is it stored? How is it used? Do any other
animals have that sort of ‘meta-level’ representational capability?

In humans this ability is far from perfect. I was aware of the magic square problem for many years
before I noticed that the distinction between three types of location in the square could be used
drastically to reduce the search space. Why did it take so long? Why is it not blindingly obvious
immediately the problem is posed? The answer may have something to do with the way in which the
meta-level representational capabilities are deployed. Perhaps some individuals deploy them far more
effectively than others?

(11) Efficiency of a representation is relative to a virtual machine
It is often claimed that for certain problems analogical or pictorial representations are more efficient
than applicative (e.g. logical) ones. However, talking about efficiency requires care. Often the
question ‘Which solution requires fewer steps?’ does not have a unique answer. It depends on which
implementation machine is being considered. For example, on a machine that is well suited to
generating sets of numbers and adding them up, the exhaustive search through combinations of
numbers may require fewer ‘machine instructions’ than any attempt to simulate, on the same machine,
the human visual capabilities that enable spatial and topological features to be detected very quickly
and easily (compare Glasgow 1993, Sloman 1993a). It may turn out that this human capability
depends on massive neural networks, whose simulation on a standard computer would be very
expensive, and which inherently require more storage space and more ‘atomic’ operations than the
exhaustive combinatorial search. Thus what appears efficient and effortless for us may actually, in
some deep sense, be very inefficient, though very quick because of the parallelism. This illustrates a
general point: biological designs, produced by evolution, often trade huge amounts of storage space
and processing power for speed and versatility. The costs are sometimes forgotten by those who
advocate spatial representations on computers as ‘more efficient’. The following questions need to be
distinguished:

(a) For problem P, does formalism F1 or formalism F2 enable solutions to be found in fewer steps at
the level of the formalism (which may be a virtual machine level)?

(b) For problem P, using implementation machine M and a particular implementation on M, does
formalism F1 or formalism F2 enable solutions to be found in fewer steps at the level of
machine M?

(c) For problem P, which combination of formalisms and implementations produces the fastest solu-
tion in real time using available physical mechanisms?

The answer to (a) may be F1 and the answer to (b) F2, and the best answer to (c) may be something
totally different.

Thus asking in the abstract which formalism is better for a problem can be a silly exercise. A full
analysis of this problem would require investigation of the relative efficiency of implementing
different kinds of abstract formalisms in different kinds of implementation machines, which may also
be virtual machines concerning which similar questions arise relative to lower level implementation
machines, and so on. Until we know a lot more about these issues, debates about which
representations are best in the abstract, are pointless. (Pat Hayes made similar comments in his 1974
paper criticising my 1971 paper. See also Hayes 1993.)
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(12) Ontological, epistemological and heuristic requirements.
Different kinds of representations have a syntax and semantics that implicitly assume different
ontologies. E.g. predicate calculus presupposes an ontological carving up of the world into objects,
properties, relations, functions, etc. plus a pair of truth values. Whether a pictorial notation does this
depends on the detailed form and use of the notation. For example, use of a 2-D array each location of
which can contain only a list of names of objects (as in Glasgow 1993) presupposes a different
ontology from the use of an array of pixels representing a sampling of intensity values in the
continuously varying optic array from a particular viewpoint. Many maps use a mixed ontology, with
names and other symbols representing distinct objects superimposed on analogical depictions of
continuously varying contours, coast-lines, rivers, roads, etc.

As McCarthy and Hayes pointed out in 1969, there are several different questions that can be
asked in relation to a representational formalism and the world it is used to represent. For example
there are questions about:
• Metaphysical (or ontological) scope/adequacy relative to a world: can the notation represent

everything that can exist in the world?
• Epistemological scope/adequacy relative to an agent: can the notation represent everything the

agent needs to know about the world, or everything the agent needs to be able to suppose or ask
about the world?

• Heuristic scope/adequacy relative to an agent, a set of purposes, in a particular world: does the
notation (with its associated mechanisms) allow the agent to solve problems in order to fulfil those
purposes and do so in a reasonable time, with reasonable accuracy? As remarked in the previous
section, questions about relative efficiency can be deeply ambiguous.

In addition to their questions we can ask others from the standpoint of biology or cognitive science:
• Could the notation have evolved from earlier forms?
• Could it be extended as required to cope with new developments in the environment and new

purposes?

These can be broken down into further sub-questions. For example questions about heuristic adequacy
can break down into questions concerning the following (many of which are obvious to AI researchers
though not to people who do not adopt the design stance):

Learnability: could the notation be learnt? Does it support learning of information that it expresses?

Storage, searching, matching: e.g. what are the space or time costs and trade-offs?

Size of search spaces: does the notation allow irrelevant nodes to be generated in searching so that
they have to be explicitly rejected, or does it inherently constrain searching to what is relevant
(Sloman 1971)?

Expressive power relative to solving new problems. E.g. does the notation make it easy to match a new
problem against stored information about previously solved problems? Does it make it easy to explore
different representations of the same problem to find one that facilitates solution? (‘Easy’ may itself be
relative to a mechanism, as previously explained, rather than being an intrinsic property of the
formalism.)

Sensitivity to changes in the ‘world’: can fine differences between objects, or between viewpoints be
expressed? (E.g. without this kind of sensitivity in visual images, binocular disparity could not be a
cue to depth.)

Stability: does the representation remain invariant when the context or object depicted changes in a
way that is irrelevant to current purposes (e.g. an object centred coordinate frame can provide a
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representation that is invariant with respect to viewing direction and distance). (Note that stability and
sensitivity can be in opposition.)

Ease of construction, and ease of derivation from originally available data. E.g. enhanced images are
easy to derive from visual data by filtering processes, whereas descriptions of 3-D scene structure can
be very hard to derive.

Flexibility and multiplicity of use. E.g. Marr’s hierarchical representations of 3-D structure simplified
the task of recognition, but made it hard to represent or compute some potentially useful relationships,
such as that a person’s finger tip was on his nose, because computing the relationship between finger
and nose required computing a sequence of coordinate transformations from nose to head, head to
torso, torso to arm, and so on.

Ability to be tailored to requirements of particular applications. Some ways of storing information to
specify a computer interface are far more rigid than others. Some databases assume fixed numbers of
information slots for each item.

Use as a substratum for other ‘virtual machines’. Many programming languages and abstract machine
languages are designed to have this capability. An open question is the extent to which neural nets
provide a useful substratum for implementing totally different kinds of virtual machines.

Extendability: this depends on whether the formalism uses some medium that has more richness than
the formalism already exploits. For example, English does not use all the sets of possible character
sequences corresponding to normal word lengths. E.g. ‘glutterzank’ remains unused.

Use for transmitting information. This involves such things as bandwidth required, ease of parsing/
decoding/interpreting by the receiver, ability to make use of shared knowledge in encoding or
decoding messages, as is commonplace in natural language. Ambiguity that might seem to be a flaw in
a language can sometimes support reduction of bandwidth required where shared knowledge is used
for disambiguation.

Robustness. E.g. do minor deformations during storage or transmission lead to undetectable errors?

and no doubt many more!

These properties need not be inherent in the syntax of a formalism, but may be relative both to a
class of problems and also to an implementation mechanism.

Choice of formalism can involve subtle trade-offs. Features that are nice from a mathematical
point of view, e.g. economy of basic symbols and syntactic simplicity or elegance, may be undesirable
from other points of view. Features that are desirable from the point of view of a designer (at compile
time) may not necessarily be desirable at run time. For example, economy of primitives leads to
complexity of representations, complexity of matching and complexity of searching for solutions to
problems. (Compare building an aeroplane out of general-purpose Lego and building one out of a
Lego aeroplane kit.) Syntactic simplicity of a notation (as in Lisp and other mathematically elegant
programming languages) can imply considerable local ambiguity that needs global context for
disambiguation, and therefore make the parsing and interpreting process difficult for an agent with
limited short term memory, such a s a human being, though it is no problem for computing systems
with a very large stack.

(13) Conclusion
I’ll end with a few conjectures and some unanswered questions. First the conjectures.

• Major steps in evolution involved the development of new representational formalisms and
mechanisms for manipulating them. We cannot ask what the steps might have been or what the
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evolutionary pressures were, without having a good theory of types of representations. I have tried
to outline a theory by distinguishing dimensions in which representations can vary, including
syntax, semantics, inference and pragmatics.

• Unfortunately internal representations used by animals don’t leave fossil records. So evidence is
necessarily very indirect and difficult to interpret.

• A major gap in our current knowledge concerns representation of spatial structure adequate to
support the antics of birds, squirrels, and other animals that interact in a quick and fluent manner
with an intricate, changing, collection of spatial structures. Representations currently employed in
CAD, computer vision, expert systems seem to lack the richness and flexibility required for human
and animal vision.

• It may turn out that the effective representation of shape is not a representation of structure but of
‘affordances’ (Gibson 1979). So a cube is not (just) a collection of edges and surfaces (like CAD
representations), but a collection ofpossibilities for andrestrictions of motion, deformation,
change, etc., as claimed in Sloman (1989) Intelligent agents need a way of generating all this
information very quickly from structural information in images, and making it accessible formany
different uses, including control of movement, planning, recognition, etc.

There is much that we still don’t understand about the representational powers of human beings and
other animals. That is partly because we do not yet have a good understanding of the requirements,
including, for example, the requirements for a human-like visual system or motor control system. For
instance: what are the affordances in a piece of crumpled paper? How arbitrary shapes and motions
should be represented is still an unanswered question. Yet many animals must have solutions implicit
in their design, since they cope so well with varied and richly structured spatial environments.
Similarly we don’t yet know what the design requirements are underlying human motivational and
affective states (Beaudoin and Sloman 1993). In humans there appear to be many levels of control
with subtle differences corresponding to such notions as personality, character, attitudes, preferences,
tastes, moods, desires, emotions, and so on. We still know little about such control hierarchies are
implemented (Sloman 1993b).

Apart from denotational or model-theoretic semantics how many other kinds are there? In
particular, what should be said about ‘intensional’ semantics, according to which knowing the
meaning of something need not involve knowing what it refers to but does involve knowing how to
determine whether something is or is not the thing referred to. It is not clear whether, and to what
extent, such distinctions can also be applied to pictorial representations, information states distributed
over the weights in a neural net, and other non-propositional information stores.

I suspect that contrary to the standard approach to analysing properties of a language, like its
semantic and pragmatic properties, by simply writing down sentences and formulas relating that
language to things in the world, a truly general theory would have to define semantics in terms of the
architecture of the control system that makes use of the particular information-rich state, the
functional roles of such states within the architecture and their relations to actual and possible
environmental states. Philosophy needs to be closely allied with engineering design.
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