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Abstract 

To build a machine that has ‘common sense’ was once a principal goal in the field 
of Artificial Intelligence. But most researchers in recent years have retreated from 
that ambitious aim. Instead, each developed some special technique that could 
deal with some class of problem well, but does poorly at almost everything else. 
We are convinced, however, that no one such method will ever turn out to be 
‘best’, and that instead, the powerful AI systems of the future will use a diverse 
array of resources that, together, will deal with a great range of problems. To 
build a machine that’s resourceful enough to have human-like common sense, we 
must develop ways to combine the advantages of multiple methods to represent 
knowledge, multiple ways to make inferences, and multiple ways to learn. We 
held a two-day symposium in St. Thomas, U. S. Virgin Islands, to discuss such a 
Project—to develop new architectural schemes that can bridge between different 
strategies and representations. This article reports on the events and ideas 
developed at this meeting and subsequent thoughts by the authors on how to make 
progress. 

The need for synthesis in modern AI 

To build a machine that has ‘common sense’ was once a principal goal in the field of Artificial 
Intelligence. But most researchers in recent years have retreated from that ambitious aim. 
Instead, each developed some special technique that could deal with some class of problem well, 
but does poorly at almost everything else. An outsider might regard our field as a chaotic array of 
attempts to exploit the advantages of (for example) Neural Networks, Formal Logic, Genetic 
Programming, or Statistical Inference—with the proponents of each method maintaining that 
their chosen technique will someday replace most of the other competitors. 

We do not mean to dismiss any particular technique. However, we are convinced that no one 
such method will ever turn out to be ‘best’, and that instead, the powerful AI systems of the 
future will use a diverse array of resources that, together, will deal with a great range of 
problems. In other words, we should not seek a single ‘unified theory!’ To build a machine that’s 
resourceful enough to have human-like common sense, we must develop ways to combine the 
advantages of multiple methods to represent knowledge, multiple ways to make inferences, and 
multiple ways to learn.  

We held a two-day symposium in St. Thomas, U. S. Virgin Islands, to discuss such a Project—to 
develop new architectural schemes that can bridge between different strategies and 



representations. This article reports on the events and ideas developed at this meeting and 
subsequent thoughts by the authors on how to make progress.1 

Organizing the diversity of AI methods 

Marvin Minsky kicked off the meeting by discussing how we might begin to organize the many 
techniques that have been developed in AI so far. While AI researchers have invented many 
representations, methods, and architectures for solving many types of problems, they still have 
little understanding of the strengths and weaknesses of each these techniques. We need a theory 
that helps to map the types of problems we face onto the types of solutions that are available to 
us. When should one use a neural network? When should one use statistical learning? When 
should one use logical theorem proving? 

To help answer these kinds of questions, Minsky suggested that we could organize different AI 
methods into a ‘causal diversity matrix’ (Figure 1.) Here, each problem-solving method, such as 
analogical reasoning, logical theorem proving, and statistical inference, is assessed in terms of its 
competence at dealing with problem domains with different causal structures. 

 

Figure 1 – The causal diversity matrix (diagram from Minsky’s Future of AI Technology 
[1].) Each common AI technique is matched to problem-types with particular causal 
structures. Note that this is just a first draft of one idea about describing what each AI 

                                                
1 This meeting was held in St. Thomas, U. S. Virgin Islands, on April 14-16, 2002. The meeting included the 
following participants: Larry Birnbaum, Ken Forbus, Ben Kuipers, Douglas Lenat, Henry Lieberman, Henry 
Minsky, Marvin Minsky, Erik Mueller, Srini Narayanan, Ashwin Ram, Doug Riecken, Roger Schank, Mary 
Shepard, Push Singh, Jeffrey Mark Siskind, Aaron Sloman, Oliver Steele, Linda Stone, Vernor Vinge, and Michael 
Witbrock. 
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technique can do—each reader may have a different view about what your own favorite 
method can do, and whether these 'axes' make sense for you. 

Statistical inference is often useful for situations that are affected by many different matched 
causal components, but where each contributes only slightly to the final phenomenon. A good 
example of such a problem-type is visual texture classification, e.g. determining whether a region 
in an image is a patch of skin or a fragment of a cloud. This can be done by summing the 
contributions of many small pieces of evidence such as the individual pixels of the texture. No 
one pixel is terribly important, but en masse they determine the classification. Formal logic, on 
the other hand, works well on problems where there are relatively few causal components, but 
which are arranged in intricate structures sensitive to the slightest disturbance or inconsistency. 
An example of such a problem-type is verifying the correctness of a computer program, whose 
behavior can be changed completely by modifying a single bit of its code. Case-based and 
analogical reasoning lie between these extremes, matched to problems where there are a 
moderate number of causal components each with a modest amount of influence. Many common 
sense domains, such as human social reasoning, may fall into this category. Such problems may 
involve knowledge too difficult to formalize as a small set of logical axioms, or too difficult to 
acquire enough data about to train an adequate statistical model. 

It is true that many of these techniques have worked well outside of the regimes suggested by 
this causal diversity matrix. For example, statistical methods have found application in realms 
where previously rule-based methods were the norm, such as in the syntactic parsing of natural 
language text. However, we need a richer heuristic theory of when to apply different AI 
techniques, and this causal diversity matrix could be an initial step toward that. We need to 
further develop and extend such theories to include the entire range of AI methods that have been 
developed, so that we can more systematically exploit the advantages of particular techniques. 

How could such a ‘meta-theory of AI techniques’ be used by an AI architecture? Before we 
turned to this question, we discussed a concrete problem domain in which we could think more 
clearly about the goal of building a machine with common sense. 

Returning to the Blocks World 

Later that first morning, Push Singh presented a possible target domain for a commonsense 
architecture project. Consider the situation of two children playing together with blocks (Figure 
2.) 
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Figure 2 – A pair of busy youths. 

Even in this simple situation, the children may have concerns that span many ‘mental realms’: 

• Physical: What if I pulled out that bottom block? 
• Bodily: Can I reach that green block from here? 
• Social: Should I help him with his tower or knock it down? 
• Psychological: I forgot where I left the blue block. 
• Visual: Is the blue block hidden behind that stack? 
• Spatial: Can I arrange those blocks into the shape of a table? 
• Tactile: What would it feel like to grab five blocks at once? 
• Self-Reflective: I’m getting bored with this—what else is there to do? 
 
Singh argued that no present-day AI system demonstrates such a broad range of commonsense 
skills. Any architecture we design should aim to achieve some competence within each of these 
and other important mental realms. He proposed that to do this we work within the simplest 
possible domain requiring reasoning in each of these realms. He suggested that we develop our 
architectures within a physically realistic model world resembling the classic Blocks World, but 
where the world was populated by several simulated beings, and thus emphasizing social 
problems in addition to physical ones. These beings would manipulate simple objects like 
blocks, balls, and cylinders, and would participate in the kinds of scenarios depicted in Figure 3, 
which include jointly building structures of various kinds, competing to solve puzzles, teaching 
each other skills through examples and through conversation, and verbally reflecting on their 
own successes and failures. 

 4



“I see you’re trying
to build a tower”

“Yes but I can’t
reach that block”

“I can reach it, let
me get it for you”

Recognizes the
purpose behind the
actions of the other
agent.

Involves some
spatial, physical,
visual, and
psychological
reasoning.

Notices an impasse
or problem that it
cannot solve.

Involves knowledge
about space, bodies
and their abilities,
problem solving,
and reflection.

Realizes that it can
achieve that goal,
and it does not
conflict with its own
goals.

Involves social
reasoning and
cooperative problem
solving.  

Figure 3 – Reasoning in multiple mental realms to solve a problem in the model world. 

The apparent simplicity of this world is deceptive, for many of the kinds of problems that show 
up in this world have not yet been tackled in AI, for they require combining elements of: 

• Spatial Reasoning about the spatial arrangements of objects in one’s environment and how 
the parts of objects are oriented and situated in relation to one another. (Which of those 
blocks is closest to me?) 

• Physical Reasoning about the dynamic behavior of physical objects with masses and 
colliding/supporting surfaces. (What would happen if I removed that middle block from the 
tower?) 

• Bodily Reasoning about the capabilities of one’s physical body. (Can I reach that block 
without having to get up?) 

• Visual Reasoning about the world that underlies what can be seen. (Is that a cylinder-shaped 
block or part of a person’s leg?) 

• Psychological Reasoning about the goals and beliefs oneself and of others. (What is the 
other person trying to do?) 

• Social Reasoning about the relationships, shared goals and histories that exist between 
people. (How can I accomplish my goal without the other person interfering?) 

• Reflective Reasoning about one’s own recent deliberations. (What was I trying to do a 
moment ago?) 
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• Conversational Reasoning about how to express one’s ideas to others. (How can I explain 
my problem to the other person?) 

• Educational Reasoning about how to best learn about some subject, or to teach it to 
someone else.  (How can I generalize useful rules about the world from experiences?) 

Many of the meeting participants were enthusiastic about this proposal and agreed that there 
would be challenging visual, spatial, and robotics problems within this domain. Ken Forbus 
pointed out that the video game communities would soon produce programmable virtual worlds 
that would easily meet our needs. Several participants mentioned the success of the RoboCup 
competitions [2], but some concluded that the RoboCup domain, while appropriate for those 
interested in the problem of coordinating multiagent teams in a competitive scenario, was very 
different in character from the situation of two or three people more slowly working together on 
a physical task, communicating in natural language, and in general operating on a more 
thoughtful and reflective level. 

Still, the participants had a heated debate about the adequacy of the proposed problem domain. 
The most common criticism was that this world does not contain enough of a variety of objects 
or richness of behavior. Doug Lenat suggested a solution to this, which was to embed the people 
within not a Blocks World, but instead somewhere like a typical house or office, as in the 
popular computer game The Sims. Doug Riecken argued that we could develop enough of the 
architecture within the more limited virtual world, and later add extensions to deal with a wider 
range of objects and phenomena. 

A different response to this criticism was that in order to focus on architectural issues, it would 
help to simplify the problem domain, so that we could focus less on acquiring a large mass of 
world knowledge, and more on developing better ways for systems to use the knowledge they 
have. However, other participants argued that restricting the world would not entirely bypass the 
need for large databases of commonsense knowledge, for even this simple world would likely 
require hundreds of thousands or even millions of elementary pieces of commonsense knowledge 
about space, time, physics, bodies, social interactions, object appearances, and so forth. 

Other participants disagreed with the virtual world domain. They felt that we should instead take 
the more practical approach of developing the architecture by starting with a useful application 
like a search engine or conversational agent, and extending its common sense abilities over time. 
But Ben Kuipers worried that choosing too specific an application would lead to what happened 
to most previous projects—someone discovers some set of ad hoc tricks that leads to adequate 
performance, without making any more general progress toward more versatile, resourceful, or 
‘more intelligent’ systems. 

In the end, after long debates we achieved a substantial consensus that to solve harder problems 
requiring common sense, we first needed to solve the more restricted class of problems that show 
up in simpler domains like the proposed virtual world. Once we get the core of the architecture 
functioning in this rich but limited domain, we can attempt to extend it—or it extend itself—to 
deal with a broader range of problems using a much broader array of commonsense knowledge. 

Establishing a collection of graded mini-scenarios 

How would we guide such a project and measure its progress over time? Some participants 
suggested trying to emulate the abilities of human children at various ages. However, others 
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argued that while this should inspire us, we should not use it as a plan for the project, because we 
don’t really yet know enough about the details of early human mental development.  

Aaron Sloman argued that it might be better to try to model the mind of a four or five year old 
human child because that might lead more directly toward more substantial adult abilities. After 
the meeting, Sloman developed the notion of a ‘commonsense mini-scenario’, a concrete 
description in the form of a simple story or ‘comic script’ of a particular skill that a 
commonsense architecture should be able to demonstrate. Each mini-scenario has several 
features: 

• It describes some forms of competence which are robust insofar as they can cope with wide 
ranges of variation in the conditions.  

• Each comes with some meta-competence for thinking and speaking about what was done, 
e.g., competence can have a number of different facets, including: describing the process; 
explaining why something was done, or why something else would not have worked; being 
able to answer hypothetical questions about what would happen otherwise; being able to 
improve performance in such ways as improving fluency, removing bugs in strategies, and 
expanding the variety of contexts. The system should also be able to further justify these 
kinds of remarks. 

Sloman proposed this example of a sequence of increasingly sophisticated such mini-scenarios in 
the proposed multi-robot problem domain: 

1. Person wants to get box from high shelf. Ladder is in place. Person climbs ladder, picks up 
box, and climbs down. 

2. As for 1, except that the person climbs ladder, finds he can't reach the box because it's too far 
to one side, so he climbs down, moves the ladder sideways, then as 1. 

3. As for 1, except that the ladder is lying on the floor at the far end of the room. He drags it 
across the room lifts it against the wall, then as 1.  

4. As for 1, except that if asked while climbing the ladder why he is climbing it the person 
answers: something like "To get the box.” It should understand why "To get to the top of the 
ladder" or "To increase my height above the floor" would be inappropriate, albeit correct.  

5. As for 2 and 3, except that when asked, “Why are you moving the ladder?” the person gives a 
sensible reply. This can depend in complex ways on the previous contexts, as when there is 
already a ladder closer to the box, but which looks unsafe or has just been painted. If asked, 
“would it be safe to climb if the foot of the ladder is right up against the wall?” the person 
can reply with an answer that shows an understanding of the physics and geometry of the 
situation.  

6. The ladder is not long enough to reach the shelf if put against the wall at a safe angle for 
climbing. Another person suggests moving the bottom closer to the wall, and offers to hold 
the bottom of the ladder to make it safe. If asked why holding it will make it safe, gives a 
sensible answer about preventing rotation of ladder. 

7. There is no ladder, but there are wooden rungs, and rails with holes from which a ladder can 
be constructed. The person makes a ladder and then acts as in previous scenarios. (This needs 
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further unpacking, e.g. regarding sensible sequences of actions, things that can go wrong 
during the construction, and how to recover from them, etc.) 

8. As for 7, but the rungs fit only loosely into the holes in the rails. Person assembles the ladder 
but refuses to climb up it, and if asked why can explain why it is unsafe. 

9. Person watching another who is about to climb up the ladder with loose rungs should be able 
to explain that a calamity could result, that the other might be hurt, and that people don't like 
being hurt. 

Such a system should be made to face a substantial library of such graded sequences of mini-
scenarios that require it both to learn new skills, to improve its abilities to reflect on them, and 
(with practice) to become much more fluent and quick at achieving these tasks. These orderings 
should be based on such factors as the required complexity of objects, processes, and knowledge 
involved, the linguistic competence required, and the understanding of how others think and feel. 
That library could include all sorts of things children learn to do in such various contexts as 
dressing and undressing dolls, coloring in a picture book, taking a bath (or washing a dog), 
making toys out of Meccano and other construction kits, eating a meal, feeding a baby, cleaning 
a mess made by spilling some powder or liquid, reading a story and answering questions about it, 
making up stories, discussing behavior of a naughty person, and learning to think and talk about 
the past, the future, and about distant places, etc. 

Large-scale architectures for human-level intelligence 

In the afternoon, we discussed large-scale architectures for machines with human-level 
intelligence and common sense. Marvin Minsky and Aaron Sloman each presented their current 
architectural proposals as a starting point for the meeting participants to criticize, debug, and 
elaborate. These two architectures share so many features that we will refer to them together as 
the Minsky-Sloman model. 

These architectures are distinguished by their emphasis on reflective thinking. Most cognitive 
models have focused only on ways to react or deliberate. However, to make machines more 
versatile, they will need better ways to recognize and repair the obstacles, bugs and deficiencies 
that result from their own activities. In particular, whenever one strategy fails, they’ll need to 
have a collection of ways to switch alternative ways to think.” To provide for this, Minsky’s 
architectural design includes several reflective levels beyond the reactive and deliberative levels. 
Here is one view of his model for the architecture of a person’s mind, as described in his book, 
“The Emotion Machine” and shown here in Figure 4. 
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Innate Reactions
Instinctive reflexes and responses to opportunities and
emergencies that occur in the external world or in the

mind itself.

Learned Reactions
Learned reflexes, scripts, and otherwise automatic, non-
deliberative processes acting both on the external world

and within the mind.

Deliberative Thinking
Reasons about the situations and events in the external
world, e.g. prediction, explanation, planning, diagnosis,

generalization.

Reflective Thinking
Reflects on and manages deliberative activity, including
assigning credit to inference methods, selecting suitable

representations, and so forth.

Self-Reflective Thinking
Concerned with larger scale models of “self”, including

the extent and boundaries of one’s physical and cognitive
abilities and knowledge.

Self-Conscious Thinking
Concerned with relationship between this mind and
others, including self-appraisal by comparing one’s

abilities and goals with those of others.

 

Figure 4 – Minsky’s Emotion Machine Architecture 

Some participants questioned the need for so many reflective layers; would not a single one be 
enough? Minsky responded by arguing that today, when our theories still explain too little, we 
should elaborate rather than simplify, and we should be building theories with more parts, not 
fewer. This general philosophy pervades his architectural design, with its many layers, 
representations, critics, reasoning methods, and other diverse types of components. Only once we 
have built an architecture rich enough to explain most of what people can do will it make sense 
to try to simplify things. But today, we are still far from an architectural design that explains 
even a tiny fraction of human cognition. 

Aaron Sloman’s Cognition and Affect project has explored a space of architectures proposed as 
models for human minds; a sketch of Sloman’s H-CogAff model is shown in Figure 5. This 
architecture appears to provide a framework for defining with greater precision than previously a 
host of mental concepts, including affective concepts, such as "emotion,” "attitude,” "mood,” 
"pleasure,” etc. For instance, H-CogAff allows us to define at least three distinct varieties of 
emotions; primary, secondary and tertiary emotions, involving different layers of the architecture 
which evolved at different times—and the same architecture can also distinguish different forms 
of learning, perception, and control of behavior. (A different architecture might be better for 
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exploring analogous states of insects, reptiles, or other mammals.) Human infants probably have 
a much-reduced version of the architecture that includes self-bootstrapping mechanisms that lead 
to the adult form. 

 

Figure 5 – Aaron Sloman’s H-CogAff Architecture 

The central idea behind the Minsky-Sloman architectures is that the source of human 
resourcefulness and robustness is the diversity of our cognitive processes: we have many ways to 
solve every kind of problem—both in the world and in the mind—so that when we get stuck 
using one method of solution, we can rapidly switch to another. There is no single underlying 
knowledge representation scheme or inferencing mechanism. 

How do such architectures support such diversity? In the case of Minsky’s Emotion Machine 
Architecture, the top level is organized as follows. When the system encounters a problem, it 
first uses some knowledge about ‘problem-types’ to select some ‘way-to-think’ that might work. 
Minsky describes ‘ways-to-think’ as configurations of agents within the mind that dispose it 
towards using certain styles of representation, collections of commonsense knowledge, strategies 
for reasoning, types of goals and preferences, memories of past experiences, manners of 
reflections, and all the other aspects that go into a particular ‘cognitive style’. One source of 
knowledge relating problem-types to ways-to-think is the causal diversity matrix discussed at the 
start of the meeting—e.g. if the system were presented with a social problem, it might use the 
causal diversity matrix to then select a case-based style of reasoning, and a particular database of 
social reasoning episodes to use with it. 

However, any particular such approach is likely to fail in various ways. Then if certain ‘critic’ 
agents notice specific ways in which that approach has failed, they either suggest strategies to 
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adapt that approach, or suggest alternative ways-to-think, as suggested shown in Figure 6. This is 
not done by employing any simple strategy for reflection and repair, but rather by using large 
arrays of higher level knowledge about where each way-to-think has advantages and 
disadvantages, and how to adapt them to new contexts.  

Reactive

Deliberative

Reflective

Self-Reflective

Self-Conscious

Self-Ideals

Reactive

Deliberative

Reflective

Self-Reflective

Self-Conscious

Self-Ideals

Initial Way-to-Think New Way-to-Think

 

Figure 6 – Switching from a largely reactive to a largely deliberative way-to-think. 
Circles represent agents and other mental resources (fragments of knowledge, methods of 
reasoning, ways to learn, etc.) specific to that way-to-think, spanning the many levels of 
the architecture. 

In Minsky’s design, several ways-to-think are usually active in parallel. This enables the system 
to quickly and fluently switch between different ways-to-think because, instead of starting over 
at each transition, each newly activated way-to-think will find an already-prepared 
representation. The system will rarely “get stuck” because those alternative ways-to-think will be 
ready to take over when the present one runs into trouble, as shown in Figure 7. 

Spatial & Bodily reasoning
(Can I reach the block?)

Bodily & Social reasoning
(Could the other person

hand me the block?)

Social-Competitive reasoning
(The other person is taking the

block for themselves!)

Economic reasoning
(Trade with them a block

I don’t need)

Grasping a
block Got

block!

Critic anticipates problem or detects fatal impasse

Reasoning within a set of mental realms

Communication between agents across mental realms  

Figure 7 – Using several ways-to-think in parallel in a social blocks world. Here each 
way-to-think involves reasoning in a particular subset of mental realms. Impasses 
encountered while reasoning in one set of mental realms can be overcome within others. 
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Further information about these architectures can be found in [3] [4] and [5]. Minsky’s model 
will be described in detail in his forthcoming book The Emotion Machine [6]. 

Generally, the participants were sympathetic to these proposals, and all agreed with the idea that 
to achieve human-level intelligence we needed to develop more effective ways to combine 
multiple AI techniques. Ken Forbus suggested that we needed a kind of “component 
marketplace,” and that we should find ways to instrument these components so that the reflective 
layers of the architecture had useful information available to them. He contrasted the Soar 
project [7] as an effort to eliminate and unify components rather than to accumulate and diversify 
them, as in the Minsky-Sloman proposals. 

Ashwin Ram and Larry Birnbaum both pointed out that despite the agreement over the 
architectural proposals it was still not clear what the particular components of the architecture 
would be. They pointed out that we needed to think more about what the units of reasoning 
would be. In other words, we needed to come up with a good list of way-to-think. Some 
examples might include: 

• Solving problems by making analogies to past experiences 
• Predicting what will happen next by rule-based mental simulations 
• Constructing new ‘ways to think’ by building new collections of agents 
• Explaining unexpected events by diagnosing causal graphs 
• Learning from problem-solving episodes by debugging semantic networks 
• Inferring the state of other minds by re-using self-models 
• Classifying types of situations using statistical inference 
• Getting unstuck by reformulating the problem situation 
 
This list could be extended to include all available AI techniques. 

Educating the architecture 

On the morning of the second day of the meeting, we addressed the problem of how to supply 
the architecture with a broad range of commonsense knowledge, so that it would not have to 
‘start from scratch’. We all agreed that learning was of value, but we didn’t all agree on where to 
start. Many researchers would like to start with nothing; however, Aaron Sloman pointed out that 
an architecture that comes with no knowledge is like a programming language that comes with 
no programs or libraries. 

One view that was expressed was that approaches that start out with too little initial knowledge 
would likely not achieve enough versatility in any practical length of time. Minsky criticized the 
increasing popularity of the concept of a ‘baby machine’—learning systems designed to achieve 
great competence, given very little initial structure. Some of these ideas include genetic 
programming, robots that learn by associating sensory-motor patterns, and online chatbots that 
try to learn language by generalizing from thousands of conversations. Minsky’s complaint was 
that the problem is not that the concept of a baby machine is itself unsound, but rather that we 
don’t know how to do it yet. Such approaches have all failed to make much progress because 
they started out with inadequate schemes for learning new things. You cannot teach algebra to a 
cat; among other things, human infants are already equipped with architectural features to equip 
them to think about the causes of their successes and failures and then to make appropriate 
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changes. Today we do not yet have enough ideas about how to represent, organize, and use much 
of commonsense knowledge, let alone build a machine that could learn all of that automatically 
on its own. As John McCarthy noted long ago, in order for a program to be capable of learning 
something, it must first be able to represent that knowledge. 

There are very few general-purpose commonsense knowledge resources in the AI community. 
Doug Lenat gave a wonderful presentation of the Cyc system, which is presently the project 
furthest along at developing a useful and reusable such resource for the AI community, so that 
new AI programs don’t have to start with almost nothing. The Cyc project [8] has developed a 
great many ways to represent commonsense knowledge, and has built a database of over a 
million commonsense facts and rules. However, Lenat estimated that an adult-level 
commonsense system might require 100 million units of commonsense knowledge, and so one of 
their current directions is to move to a distributed knowledge acquisition approach, where it is 
hoped that eventually thousands of volunteer teachers around the world will work together teach 
Cyc new commonsense knowledge. Lenat spent some time describing the development of 
friendly interfaces to Cyc that allow non-logicians to participate in the complicated teaching and 
debugging processes involved in building up the Cyc knowledge base. 

Many of the participants agreed that Cyc would be useful, and some suggested we could even 
base our effort on top of it, but others were sharply critical. Jeffrey Siskind doubted that Cyc 
contained the spatial and perceptual knowledge needed to do important kinds of visual scene 
interpretation. Roger Schank argued that Cyc’s axiomatic approach was unsuitable for making 
the kinds of generalizations and analogies that a more case-based and narrative-oriented 
approach would support. Srini Narayanan worried that the Cyc project was not adequately based 
on what cognitive scientists have learned about how people make commonsense inferences. 
Oliver Steele concluded that while we disagreed about whether Cyc was 90% of the solution or 
only 10%, this was really an empirical question that we would answer during the course of the 
project. But generally, the architectural proposal was regarded as complementary to parallel 
efforts to accumulate substantial commonsense knowledge bases.  

Minsky predicted that if we used Cyc, we might need to augment each existing item of 
knowledge with additional kinds of procedural and heuristic knowledge, such as descriptions of: 

• Problems that this knowledge item could help solve 

• Ways of thinking that it could participate in 

• Known arguments for and against using it 

• Ways to adapt it to new contexts 

It was stressed that knowledge about the world was not enough by itself—we also need a 
knowledge base about how to reason, reflect and learn, the knowledge that the reflective layers 
of the architecture must possess. The problem remains that the programs we have for using 
knowledge are not flexible enough, and neither Cyc’s ‘adult machine’ approach of supplying a 
great deal of world knowledge, nor the ‘baby machine’ approach of learning common sense from 
raw sensory-motor experience, will likely succeed without first developing an architecture that 
supports multiple ways to reason, learn, and reflect upon and improve its activities. 
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An important application 

Several of the participants felt that such a project would not receive substantial support unless it 
proposed an application that clearly would benefit much of the world. Not just an improvement 
to something existing, it would need to be one that could not be built without being capable of 
human-level commonsense reasoning. 

After a good deal of argument, several participants converged upon a vision from The Diamond 
Age, a novel by Neil Stephenson. That novel envisioned an “intelligent book”—The Young 
Ladies Illustrated Primer—that, when given to a young girl, would immediately bond with her 
and come to understand her so well as to become a powerful personal tutor and mentor. 

This suggested that we could try to build a personalized teaching machine that would adapt itself 
to someone’s particular circumstances, difficulties, and needs. The system would carry out a 
conversation with you, to help you understand a problem or achieve some goal. You could 
discuss with it such subjects as how to choose a house or car, how to learn to play a game or get 
better at some subject, how to decide whether to go to the doctor, and so forth. It would help you 
by telling you what to read, stepping you through solutions, and teaching you about the subject in 
other ways it found to be effective for you. Textbooks then could be replaced by systems that 
know how to explain ideas to you in particular, because they would know your background, your 
skills, and how you best learn.  

This kind of application could form the basis for a completely new way to interact with 
computers, one that bypasses the complexities and limitations of current operating systems. It 
would use common sense in many different ways: 

• It would understand human goals so that it could avoid the silliest mistakes. 

• It would understand human reasoning so that it could present you with the right level of 
detail and avoid saying things that you probably inferred. 

• It would converse in natural language so that you could easily talk to it about complex 
matters without having to learn a special language or complex interface. 

To build such a kind of “helping machine,” we would first need to give it knowledge about 
space, time, beliefs, plans, stories, mistakes, successes, relationships, and so forth, as well as 
good conversational skills. However, little of this could be realized by anything less than a 
system with common sense. To accomplish this we would need to pursue some sequence of more 
modest goals that would help one with simpler problem types—until the system achieved the 
sorts of competence that we expect from a typical human four- or five-year-old.  

However, to get such a system to work, we would need to address many presently unsolved 
commonsense problems that show up in the model-world problem domain. 

Final consensus 

• The participants agreed that no single technique (such as statistics, logic, or neural networks) 
could cope with a sufficiently wide range of problem-types. To achieve human-level 
intelligence we must create an architecture that can support many different ways to represent, 
acquire, and apply many kinds of commonsense knowledge. 
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• Most participants agreed that we should combine our efforts to develop a model world that 
supports simplified versions of everyday physical, social, and psychological problems. This 
simplified world would then be used to develop and debug the core components of the 
architecture. Later, we can expand it to solve more difficult and more practical problems. 

• The participants did not all agree on which particular larger-scale application would both 
attract sufficient support and also produce substantial progress toward making machines that 
use commonsense knowledge. Still, many agreed with the concept of a personalized teaching 
machine that would come to understand you so well that it could adapt to your particular 
circumstances, difficulties, and needs. 

Ben Kuipers sketched the diagram shown in Figure 8, which captures the general dependencies 
between the three points of consensus: Practical applications depend on developing an 
architecture for commonsense thinking flexible enough to integrate a wide array of processes and 
representations of problems that come up in the model-world problem domain. 

Commonsense Architecture

Knowledge bases
Cyc

Open Mind
The Web

Reasoning components
Case-based reasoning
Statistical inference

Neural networks
Formal logic Architectural elements

Agent communication protocols
Ways-to-Think

Reflective layers
Deliberative subsystems

Reactive procedures

Virtual World
Physical simulations

Several simulated people
Graded mini-scenarios

Multiple realms (physical,
social, psychological, etc.)

Applications
Personal teaching machine

Office assistants
Story telling and entertainment

Intelligent search engines

 

Figure 8 – Dependencies between points of consensus 

A collaborative project? 

At the end of the meeting, we brainstormed about how we might organize a distributed, 
collaborative project to build an architecture based on the ideas discussed at this meeting. It is a 
difficult challenge, both technically and socially, to get a community of researchers to work on a 
common project. However, successes in the Open Source community show that such distributed 
projects are feasible when the components can be reasonably disassociated.  
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Furthermore, this kind of architecture itself should help to make it easy for members of the 
project to add new types of representations and processes. However, we first would have to 
develop a set of protocols to support the interoperation of such a diverse array of methods. Erik 
Mueller suggested that such an organization could be modeled after the W3C (the World Wide 
Web Consortium), and its job would largely be to assess, standardize and publish the protocols 
and underlying tools that such a distributed effort would demand. 

While we did not sketch a detailed plan for how to proceed, Aaron Sloman, Erik Mueller and 
Push Singh listed some technical steps that such a project would need: 

• It should not be too hard to develop a suitable virtual model world, because the present-day 
video game and computer graphics industry has produced most of the required components. 
These should already include adequate libraries for computer graphics, physics simulation, 
collision detection, and so forth. 

• We need to develop and order the set of mini-scenarios that we will use to organize and 
evaluate our progress. This would be a continuous process, as new types of problems will 
constantly be identified.  

• What kinds of protocols could the agents of this cognitive system use to coordinate with each 
other? This would include messages for updating representations, describing goals, 
identifying impasses, requesting knowledge, and so forth. We would consider the radical 
proposal to use, for this, an Interlingua based on a simplified form of English, rather than 
trying to develop some brand new ontology for expressing commonsense ideas. Of course, 
each individual agent could be free to use internally whatever ontology or representation 
scheme was most convenient and useful. 

• We would need to create a comprehensive catalog of ways-to-think, to incorporate into the 
architecture. A commonsense system should be at least capable of reasoning about 
prediction, explanation, generalization, exemplification, planning, diagnosis, reflection, 
debugging, learning, and abstracting. 

• What are the kinds of self-reflections that a commonsense system should be able to make of 
itself, and how should these invoke and modify ways-to-think as problems are encountered? 

• In any case, such a system will need a substantial, general-purpose, and reusable 
commonsense knowledge base about the spatial, physical, bodily, social, psychological, 
reflective, and other important realms, enough to deal with a broad range of problems within 
the model world problem domain. 

• We might need to develop a new kind of “intention-based” programming language to support 
the construction of such an architecture. 

Towards the future 

Since our meeting similar sentiments have been expressed at DARPA, most notably in the recent 
‘Cognitive Systems’ IPTO BAA [9], which solicits proposals for building AI systems that 
combine many elements of knowledge, reasoning, and learning. While we are gratified that 
architectural approaches are becoming more popular, we would like to see more emphasis placed 
on architectural designs that specifically support more common sense styles of thinking. 
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There was a genuine sense of excitement at this meeting. The participants felt that it was a rare 
opportunity to focus once more on the grand goal of building a human-level intelligence. Over 
the next few years, we plan to develop a concrete implementation of an architecture based on the 
ideas discussed at this meeting, and we invite the rest of the AI community to join us in such 
efforts. 
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